1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// Copyright (C) 2019 - 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <cassert>
#include <complex>
#include <iostream>
#include <vector>
#include <hip/hip_runtime_api.h>
#include <rocfft/rocfft.h>
int main(int argc, char* argv[])
{
std::cout << "rocFFT real/complex 3d FFT example\n";
// The problem size
const size_t Nx = (argc < 2) ? 8 : atoi(argv[1]);
const size_t Ny = (argc < 3) ? 8 : atoi(argv[2]);
const size_t Nz = (argc < 4) ? 8 : atoi(argv[3]);
const bool inplace = (argc < 5) ? false : atoi(argv[4]);
std::cout << "Nx: " << Nx << "\tNy: " << Ny << "\tNz: " << Nz << "\tin-place: " << inplace
<< std::endl;
const size_t Nzcomplex = Nz / 2 + 1;
const size_t Nzstride = inplace ? 2 * Nzcomplex : Nz;
std::cout << "Nzcomplex: " << Nzcomplex << "\tNzstride: " << Nzstride << std::endl;
std::cout << "Input:\n";
std::vector<float> cx(Nx * Ny * Nzstride);
std::fill(cx.begin(), cx.end(), 0.0);
for(size_t i = 0; i < Nx; ++i)
{
for(size_t j = 0; j < Ny; ++j)
{
for(size_t k = 0; k < Nz; ++k)
{
const size_t pos = i * Ny * Nzstride + j * Nzstride + k;
cx[pos] = i + j + k;
}
}
}
for(size_t i = 0; i < Nx; ++i)
{
for(size_t j = 0; j < Ny; ++j)
{
for(size_t k = 0; k < Nzstride; ++k)
{
const size_t pos = i * Ny * Nzstride + j * Nzstride + k;
std::cout << cx[pos] << " ";
}
std::cout << "\n";
}
std::cout << "\n";
}
std::cout << "\n";
// Output buffer
std::vector<std::complex<float>> cy(Nx * Ny * Nzcomplex);
rocfft_setup();
// Create HIP device objects:
float* x = NULL;
hipMalloc(&x, cx.size() * sizeof(decltype(cx)::value_type));
hipMemcpy(x, cx.data(), cx.size() * sizeof(decltype(cx)::value_type), hipMemcpyHostToDevice);
float2* y = inplace ? (float2*)x : NULL;
if(!inplace)
{
hipMalloc(&y, cy.size() * sizeof(decltype(cy)::value_type));
}
// Length are in reverse order because rocfft is column-major.
const size_t lengths[3] = {Nz, Ny, Nx};
rocfft_status status = rocfft_status_success;
// Create plans
rocfft_plan forward = NULL;
status = rocfft_plan_create(&forward,
inplace ? rocfft_placement_inplace : rocfft_placement_notinplace,
rocfft_transform_type_real_forward,
rocfft_precision_single,
3, // Dimensions
lengths, // lengths
1, // Number of transforms
NULL); // Description
assert(status == rocfft_status_success);
// The real-to-complex transform uses work memory, which is passed
// via a rocfft_execution_info struct.
rocfft_execution_info forwardinfo = NULL;
status = rocfft_execution_info_create(&forwardinfo);
assert(status == rocfft_status_success);
size_t fbuffersize = 0;
rocfft_plan_get_work_buffer_size(forward, &fbuffersize);
assert(status == rocfft_status_success);
void* fbuffer = NULL;
if(fbuffersize > 0)
{
hipMalloc(&fbuffer, fbuffersize);
status = rocfft_execution_info_set_work_buffer(forwardinfo, fbuffer, fbuffersize);
assert(status == rocfft_status_success);
}
// Execute the forward transform
status = rocfft_execute(forward, // plan
(void**)&x, // in_buffer
(void**)&y, // out_buffer
forwardinfo); // execution info
assert(status == rocfft_status_success);
hipMemcpy(cy.data(), y, cy.size() * sizeof(decltype(cy)::value_type), hipMemcpyDeviceToHost);
std::cout << "Transformed:\n";
for(size_t i = 0; i < Nx; i++)
{
for(size_t j = 0; j < Ny; ++j)
{
for(size_t k = 0; k < Nzcomplex; k++)
{
const size_t pos = (i * Ny + j) * Nzcomplex + k;
std::cout << cy[pos] << " ";
}
std::cout << "\n";
}
std::cout << "\n";
}
std::cout << "\n";
// Create plans
rocfft_plan backward = NULL;
status = rocfft_plan_create(&backward,
inplace ? rocfft_placement_inplace : rocfft_placement_notinplace,
rocfft_transform_type_real_inverse,
rocfft_precision_single,
3, // Dimensions
lengths, // lengths
1, // Number of transforms
NULL); // Description
assert(status == rocfft_status_success);
rocfft_execution_info backwardinfo = NULL;
status = rocfft_execution_info_create(&backwardinfo);
assert(status == rocfft_status_success);
size_t bbuffersize = 0;
status = rocfft_plan_get_work_buffer_size(backward, &bbuffersize);
assert(status == rocfft_status_success);
void* bbuffer = NULL;
if(bbuffersize > 0)
{
hipMalloc(&bbuffer, bbuffersize);
status = rocfft_execution_info_set_work_buffer(backwardinfo, bbuffer, bbuffersize);
assert(status == rocfft_status_success);
}
// Execute the backward transform
status = rocfft_execute(backward, // plan
(void**)&y, // in_buffer
(void**)&x, // out_buffer
backwardinfo); // execution info
assert(status == rocfft_status_success);
std::cout << "Transformed back:\n";
std::vector<float> backx(cx.size());
hipMemcpy(
backx.data(), x, backx.size() * sizeof(decltype(backx)::value_type), hipMemcpyDeviceToHost);
for(size_t i = 0; i < Nx; ++i)
{
for(size_t j = 0; j < Ny; ++j)
{
for(size_t k = 0; k < Nzstride; ++k)
{
const size_t pos = i * Ny * Nzstride + j * Nzstride + k;
std::cout << backx[pos] << " ";
}
std::cout << "\n";
}
std::cout << "\n";
}
std::cout << "\n";
const float overN = 1.0f / (Nx * Ny * Nz);
float error = 0.0f;
for(size_t i = 0; i < Nx; i++)
{
for(size_t j = 0; j < Ny; j++)
{
for(size_t k = 0; k < Nzstride; k++)
{
float diff = std::abs(backx[i] * overN - cx[i]);
if(diff > error)
{
error = diff;
}
}
}
}
std::cout << "Maximum error: " << error << "\n";
hipFree(x);
if(!inplace)
{
hipFree(y);
}
hipFree(fbuffer);
hipFree(bbuffer);
// Destroy plans
rocfft_plan_destroy(forward);
rocfft_plan_destroy(backward);
rocfft_cleanup();
}
|