1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
#!/usr/bin/env python3
# Copyright (C) 2021 - 2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Performance utilities for rocFFT.
Overview
========
General workflow:
- run: runs a suite of FFTs to collect timing information
- post: post processes timing information to compute various statistics
- plot: generate pdf or html plots of the results
- autoperf: clones, builds, runs, posts, and plots two rocFFT commits
Multiple runs can be compared at the post processing and plotting
stages. Multiple runs may:
- be from different benchmark programs (eg, rocFFT, cuFFT, vkFFT etc)
- be from dyna-rocfft-bench.
Usually:
- a single bench (rocFFT) would be used to track performance over
time;
- multiple benchess (rocFFT, cuFFT) would be used to compare different
FFT libraries;
- a dyna-bench with multiple libraries (rocFFT) would be used to
compare two different rocFFT commits.
Runs/subprocesses are logged to `rocfft-perf.log`.
Run
===
The 'run' command drives FFT benchmarkers (if they accept the same
command line arguments as `rocfft-bench`). The benchmark program to
use is specified by the `--bench/-w` switch.
Test problems are generated using a `ProblemGenerator` and a filter.
The default generator is a simple radix based generator.
See
$ rocfft-perf run -h
for more details. To see which problems will be run without running
them, use `--list/-l`.
Using the `--suite/-S` option, problems are loaded from a "suites"
file. The default suites file is `suites.py`. Alternatively, you can
load the suite named "qa1" from a file called "mysuites.py" like this:
$ rocfft-perf run -S mysuites:qa1 ...
That is, FILENAME:SUITENAME.
By default, output files are stored in the `out0` directory. This can
be changed with the `--output/-o` agrument.
Dynamic testing
===============
Dynamic testing is enabled by specifying more than one `--lib/-i`
option. These are passed down to the benchmarker, and hence it is assumed
that the specific benchmarker is a "dyna" bench.
Multiple output directories are used to store the results.
Post processing
===============
During the post processing stage, various statistics are computed and
saved:
$ rocfft-perf post DOCDIR OUTPUT [OUTPUT ...]
The first directory is the 'document directory'. When comparing
multiple runs, comparative statistics are saved here in `.sdat` files.
For each `.dat` file in the output directories, summary statistics are
saved in `.mdat` files.
Plotting
========
Based on the results from post processing, generate either an html or
pdf report:
$ rocfft-perf html DOCDIR OUTPUT [OUTPUT ...]
$ rocfft-perf pdf DOCDIR OUTPUT [OUTPUT ...]
"""
import argparse
import logging
import statistics
import sys
import os
import tempfile
import re
import collections
from pathlib import Path
from multiprocessing import Pool
top = Path(__file__).resolve().parent
sys.path.append(str(top))
import perflib
console = logging.StreamHandler()
import types
#
# Helpers
#
def update(attr, dst, src):
"""Set attribute `attr` on dst if it is not None on `src`."""
value = getattr(src, attr, None)
if value is not None:
setattr(dst, attr, value)
#
# Commands
#
def command_test(arguments):
"""Test for regressions."""
# FIXME: rename and replace above comment
sig = arguments.significance
outdirs = [Path(x) for x in arguments.runs]
verbose = arguments.verbose
significance = arguments.significance
bonferroni = arguments.bonferroni
all_runs = perflib.utils.read_runs(outdirs, verbose)
if len(all_runs) != 2:
print(
"Error: one must provide exactly two runs for statistical comparison"
)
sys.exit(1)
import numpy
import scipy.stats
ncompare = 0
slower = []
faster = []
runs = perflib.utils.by_dat(all_runs)
refdir, testdir = outdirs
# In order to do the Bonferroni correction, We need to adjust the
# significance threshold based on the number of tests, so count
# them first.
for dat_name, dat_runs in runs.items():
refdat = dat_runs[refdir]
testdat = dat_runs[testdir]
for token, sample in refdat.get_samples():
if token not in testdat.samples:
continue
ncompare += 1
if bonferroni and ncompare > 0:
significance /= ncompare
for dat_name, dat_runs in runs.items():
refdat = dat_runs[refdir]
testdat = dat_runs[testdir]
for token, sample in refdat.get_samples():
if token not in testdat.samples:
continue
#print(token)
Avals = refdat.samples[token].times
Bvals = testdat.samples[token].times
pval = -1
if arguments.method == 'moods':
_, pval, _, _ = scipy.stats.median_test(Avals, Bvals)
if pval < significance:
if statistics.median(Avals) > statistics.median(Bvals):
faster.append(token)
else:
slower.append(token)
elif arguments.method == 'ttest':
_, pval = scipy.stats.ttest_ind(Avals, Bvals)
if pval < significance:
if numpy.mean(Avals) > numpy.mean(Bvals):
faster.append(token)
else:
slower.append(token)
elif arguments.method == 'mwu':
_, pval = scipy.stats.mannwhitneyu(Avals, Bvals)
if pval < significance:
if statistics.median(Avals) > statistics.median(Bvals):
faster.append(token)
else:
slower.append(token)
else:
print("unsupported statistical method")
sys.exit(1)
if verbose:
print("faster:", faster)
print("slower:", slower)
print("nh0:", ncompare - (len(faster) + len(slower)))
print("nh1:", len(faster) + len(slower))
print("ncompare:", ncompare)
print("faster:", len(faster))
print("slower:", len(slower))
return len(slower) > 0
def generate_mdat(dat, measure, confidence):
import numpy
vals = [['token', 'median_sample', 'median_low', 'median_high']]
for token, sample in dat.get_samples():
if measure == "median":
median = statistics.median(sample.times)
elif measure == "mean":
median = numpy.mean(sample.times)
low, high = perflib.analysis.confidence_interval(sample.times,
measure=measure,
confidence=confidence)
vals.append([sample.label, median, low, high])
path = dat.path.with_suffix('.mdat')
perflib.utils.write_tsv(path, vals, meta=dat.meta, overwrite=True)
def generate_pts_dat(dat):
"""
For PTS system, extract data from raw dat and mdat.
"""
import pandas
mdat = dat.path.with_suffix('.mdat')
mdat_df = pandas.read_csv(mdat, delimiter='\t', comment='#')
# The parsing rule subjects to changes in the future
ss = dat.tag
input_params = []
# placeness
input_params.append(ss[ss.rfind('_') + 1:])
ss = ss[:ss.rfind('_')]
# transform type
input_params.append(ss[ss.rfind('_', 0, ss.rfind('_') - 1) + 1:])
ss = ss[:ss.rfind('_', 0, ss.rfind('_') - 1)]
# precision
input_params.append(ss[ss.rfind('_') + 1:])
# suite
input_params.append(ss[:ss.rfind('_')])
input_params.reverse()
dimensions = set()
rows = []
for row_idx, sample in enumerate(dat.get_samples()):
new_row = []
token = sample[0]
transform_type, placeness, length, batch, precision = perflib.utils.parse_token(
token)
new_row.extend(input_params)
dimensions.add(len(length))
new_row.append(len(length))
new_row.extend(length)
if len(batch) == 1:
new_row.append(batch[0])
else:
print("multi-batch data format; exiting abnormally")
sys.exit(1)
new_row.extend(
mdat_df.loc[row_idx,
['median_sample', 'median_low', 'median_high']].
to_numpy().tolist())
times = sample[1].times
new_row.append(len(times))
new_row.extend(times)
rows.append(new_row)
if len(set(dimensions)) > 1:
print("mixed dimensions in the set; exiting abnormally")
sys.exit(1)
if len(set(dimensions)) == 0:
print("PTS data set empty")
return
dimension = list(dimensions)[0]
header = [
'suite', 'precision', 'transform type', 'placeness', 'dimension',
'xlength'
]
if dimension == 2:
header.append('ylength')
elif dimension == 3:
header.extend(['ylength', 'zlength'])
header.extend([
'nbatch', 'median_sample', 'median_low', 'median_high', 'nsample',
'samples'
])
content = [header]
content.extend(rows)
perflib.utils.write_pts_dat(dat.path.with_suffix('.ptsdat'),
content,
meta=dat.meta)
def command_post(arguments):
"""Post process results in directories listed in `outdirs`.
Median confidence intervals for each run are written in 'mdat'
files.
Speedups and pvals are written in 'sdat' files.
"""
outdirs = arguments.runs
docdir = arguments.output
verbose = arguments.verbose
import itertools
if verbose:
print("docdir:", docdir)
print("outdirs:", outdirs)
outdirs = [Path(x) for x in outdirs]
all_runs = perflib.utils.read_runs(outdirs, verbose)
# median confidence intervals
for run in all_runs:
with Pool(None) as p:
p.starmap(
generate_mdat,
itertools.product(run.dats.values(), [arguments.measure],
[arguments.confidence]))
p.map(generate_pts_dat, run.dats.values())
# speedup and pvals
if len(outdirs) > 1:
docdir = Path(docdir)
docdir.mkdir(parents=True, exist_ok=True)
import scipy.stats, numpy
runs = perflib.utils.by_dat(all_runs)
refdir, *otherdirs = outdirs
for dat_name, dat_runs in runs.items():
refdat = dat_runs[refdir]
for otherdat in [
dat_runs[otherdir] for otherdir in otherdirs
if otherdir in dat_runs
]:
speedups = [[
'token', 'speedup', 'speedup_low', 'speedup_high',
'speedup_pval'
]]
for token, sample in refdat.get_samples():
if token not in otherdat.samples:
continue
sample = refdat.samples[token]
Avals = refdat.samples[token].times
Bvals = otherdat.samples[token].times
if arguments.measure == "median":
speedup = statistics.median(Avals) / statistics.median(
Bvals)
elif arguments.measure == "mean":
speedup = numpy.mean(Avals) / numpy.mean(Bvals)
low, high = perflib.analysis.ratio_confidence_interval(
Avals, Bvals)
pval = -1
if arguments.method == 'moods':
_, pval, _, _ = scipy.stats.median_test(Avals, Bvals)
elif arguments.method == 'ttest':
_, pval = scipy.stats.ttest_ind(Avals, Bvals)
elif arguments.method == 'mwu':
_, pval = scipy.stats.mannwhitneyu(Avals, Bvals)
else:
print("unsupported statistical method")
sys.exit(1)
speedups.append([sample.token, speedup, low, high, pval])
path = docdir / (str(otherdat.path.parent.name) + '-over-' +
str(refdat.path.parent.name) + '-' +
dat_name + '.sdat')
perflib.utils.write_tsv(path,
speedups,
meta=refdat.meta,
overwrite=True)
def command_generate(runs=None,
label=None,
output=None,
significance=None,
bonferroni=None,
type='pdf',
**kwargs):
"""Generate PDF/HTML/DOCX from run results."""
import perflib.pdf
import perflib.html
Figure = {
'pdf': perflib.pdf.PDFFigure,
'html': perflib.html.HTMLFigure,
'docx': perflib.pdf.PDFFigure,
}[type]
docdir = Path(output)
docdir.mkdir(parents=True, exist_ok=True)
outdirs = [Path(outdir) for outdir in runs]
if label is None:
label = [outdir.stem for outdir in outdirs]
reference = perflib.utils.read_run(outdirs[0])
import pandas
ncompare = 0
figures = []
for datname in perflib.utils.list_runs(outdirs[0]):
tag = datname.stem
title = reference.dats[datname.stem].meta.get('title', tag)
caption = reference.dats[datname.stem].meta.get('caption',
title).replace(
'_', ' ')
figtype = reference.dats[datname.stem].meta.get('figtype', 'linegraph')
primary, secondary = perflib.utils.get_post_processed(
tag, docdir, outdirs)
figure = Figure(tag, title, caption, docdir, label, primary, secondary,
figtype)
for p in figure.secondary:
df = pandas.read_csv(p, sep="\t", comment='#')
ncompare += len(df.index)
figures.append(figure)
print("ncompare:", ncompare)
if bonferroni and ncompare > 0:
significance /= ncompare
for figure in figures:
figure.make(significance)
if type == 'pdf':
pool = Pool(None)
for figure in figures:
pool.map_async(Figure.runasy, [figure])
pool.close()
pool.join()
if type == 'pdf':
perflib.pdf.make_tex(figures, docdir, outdirs, label, significance)
if type == 'html':
title = f"Performance report: {perflib.utils.cjoin(outdirs)}"
perflib.html.make_html(figures, title, docdir, outdirs, significance)
if type == 'docx':
import perflib.docx
perflib.docx.make_docx(figures, docdir, outdirs, significance)
def command_run(arguments):
"""Run dyna-bench or bench."""
# build generator
generator = None
if arguments.suite is not None:
generator = perflib.generators.SuiteProblemGenerator(arguments.suite)
else:
generator = perflib.generators.RadixProblemGenerator()
for attr in [
'radix', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax',
'verbose', 'timeout'
]:
update(attr, generator, arguments)
for attr in ['nbatch']:
update(attr, generator, arguments)
# build filter
filtered = perflib.generators.FilteredProblemGenerator()
if arguments.direction is not None:
filtered.direction = [arguments.direction]
if arguments.inplace:
filtered.inplace = [True]
if arguments.outplace:
filtered.inplace = [False]
if arguments.real:
filtered.real = [True]
if arguments.complex:
filtered.real = [False]
if arguments.precision:
filtered.precision = arguments.precision
if arguments.dimension:
filtered.dimension = arguments.dimension
if arguments.list:
for test in filtered(generator).generate_problems():
print(test)
return
# build timer
if arguments.bench is None:
print("No benchmarker set... use -w /path/to/benchmarker.")
return
dyna = 'dyna' in arguments.bench
if dyna:
if not arguments.lib:
print(
"Need to set dynamically loaded library when using dyna-bench."
)
return
if not arguments.out:
nout = len(arguments.lib) if dyna else 1
arguments.out = ['out' + str(i) for i in range(nout)]
timer = perflib.timer.GroupedTimer()
for attr in [
'device', 'bench', 'accutest', 'lib', 'out', 'device', 'ntrial',
'verbose', 'timeout', 'sequence'
]:
update(attr, timer, arguments)
specs = perflib.specs.get_machine_specs(timer.device, arguments.specs_type)
for out in timer.out:
specs_file = Path(out) / 'specs.txt'
specs_file.parent.mkdir(parents=True, exist_ok=True)
specs_file.write_text(str(specs))
failed_tokens = timer.run_cases(filtered(generator))
if failed_tokens:
print()
logging.info("failed tokens: " + "\n".join(failed_tokens))
print("failed tokens:\n" + "\n".join(failed_tokens))
def command_autoperf(arguments):
"""Compare performance of two builds automagically."""
workdir = arguments.workdir
reference_commit = arguments.reference_commit
reference_repository = arguments.reference_repository
reference_label = arguments.reference_label
commit = arguments.commit
repository = arguments.repository
label = arguments.label
suite = arguments.suite
format = arguments.format
static = arguments.static
timeout = arguments.timeout
# Use the short version of the hashes (default length: 7)
if commit != None:
commit = commit[0:6]
if reference_commit != None:
reference_commit = reference_commit[0:6]
from perflib.build import build_rocfft
if reference_repository is None:
reference_repository = repository
if reference_label is None:
reference_label = reference_commit
if label is None:
label = commit
top = Path(workdir).resolve()
build1 = top / f'build-{reference_commit}'
build2 = top / f'build-{commit}'
output = top / f'doc-{commit}'
# build rocFFTs
top.mkdir(parents=True, exist_ok=True)
os.chdir(str(top))
lib1 = build1 / 'lib' / 'librocfft.so'
lib1.parent.mkdir(parents=True, exist_ok=True)
if not lib1.exists():
build_rocfft(reference_commit, dest=build1, repo=reference_repository)
lib2 = build2 / 'lib' / 'librocfft.so'
lib2.parent.mkdir(parents=True, exist_ok=True)
if not lib2.exists():
build_rocfft(commit, dest=build2, repo=repository)
# run cases
if static:
# use more trials for static bench
timer1 = perflib.timer.GroupedTimer()
timer1.bench = build1 / 'rocfft-bench'
timer1.lib = None
timer1.out = [build1]
timer1.ntrial = 20
timer1.timeout = timeout
timer2 = perflib.timer.GroupedTimer()
timer2.bench = build2 / 'rocfft-bench'
timer2.lib = None
timer2.out = [build2]
timer2.ntrial = 20
timer2.timeout = timeout
timers = [timer1, timer2]
else:
timer = perflib.timer.GroupedTimer()
timer.bench = build1 / 'dyna-rocfft-bench'
timer.lib = [lib1, lib2]
timer.out = [build1, build2]
timer.timeout = timeout
timers = [timer]
specs = perflib.specs.get_machine_specs(timers[0].device,
arguments.specs_type)
for t in timers:
for out in t.out:
specs_file = Path(out) / 'specs.txt'
specs_file.write_text(str(specs))
generator = perflib.generators.SuiteProblemGenerator(suite)
for t in timers:
t.run_cases(generator)
# post-process results
arguments.runs = [build1, build2]
arguments.output = output
arguments.label = [reference_label, label]
command_post(arguments)
# generate report
for report_type in format:
command_generate(type=report_type, **vars(arguments))
def command_bweff(arguments):
"""Collect bandwidth efficiency information."""
# build generator from suite
generator = perflib.generators.SuiteProblemGenerator(arguments.suite)
Path(arguments.out).mkdir(parents=True, exist_ok=True)
all_problems = collections.defaultdict(list)
for problem in generator.generate_problems():
all_problems[problem.tag].append(problem)
# create temporary file
fp = tempfile.NamedTemporaryFile()
# set environment variables
os.environ['ROCFFT_LAYER'] = '4'
os.environ['ROCFFT_LOG_PROFILE_PATH'] = fp.name
data = []
for i, (tag, problems) in enumerate(all_problems.items()):
print(
f'\n{tag} (group {i} of {len(all_problems)}): {len(problems)} problems'
)
bench = Path(arguments.bench)
if not bench.is_file():
raise RuntimeError(
f"Unable to find benchmarker: {arguments.bench}")
effdat_paths = [Path(arguments.out) / (tag + '.effdat')]
generator = perflib.generators.VerbatimGenerator(problems)
for prob in generator.generate_problems():
# determine appropriate batch size
if prob.precision == "half":
elem_size_bytes = 4
elif prob.precision == "single":
elem_size_bytes = 8
elif prob.precision == "double":
elem_size_bytes = 16
for length in prob.length:
elem_size_bytes *= length
nbatch = (arguments.target_size << 30) // elem_size_bytes
# run bench
token = perflib.bench.run(arguments.bench,
prob.length,
direction=prob.direction,
real=prob.real,
inplace=prob.inplace,
precision=prob.precision,
nbatch=nbatch,
ntrial=arguments.ntrial)[0]
fp.seek(0)
# parse profile log
profile_log = []
for line in fp:
line = line.decode('UTF-8').strip('\n')
perf_info = {}
items = re.split(r',(?![^\[]*[\]])', line)
for i in range(1, len(items), 2):
perf_info.update({items[i]: items[i + 1]})
profile_log.append(perf_info)
fp.truncate(0)
# collect data in tab-separated .effdat files
for path in effdat_paths:
out = Path(path)
logging.info("output: " + str(out))
meta = {'title': prob.tag}
meta.update(prob.meta)
for row in profile_log:
records = [
token, # testcase token
row['scheme'], # scheme
row['duration_ms'], # kernel duration in milliseconds
row['bw_efficiency_pct'], # estimated efficiency
row['kernel_index'] # index number of this kernel in the execution plan
]
data.append(records)
perflib.utils.write_tsv(out, [records], meta=meta)
# close temporary file
fp.close()
# unset environment variables
if 'ROCFFT_LAYER' in os.environ:
del os.environ['ROCFFT_LAYER']
del os.environ['ROCFFT_LOG_PROFILE_PATH']
# determine median duration and efficiency by token and index
medians = collections.defaultdict(list)
for entry in data:
token = entry[0]
scheme = entry[1]
duration = float(entry[2])
efficiency = float(entry[3])
index = int(entry[4])
medians[(token, index, scheme)].append((duration, efficiency))
# collect median data in tab-separated .effdat files
out = Path(arguments.out) / ("median_values.effdat")
logging.info("output: " + str(out))
meta = {'title': "median values"}
for key in medians:
if arguments.mesaure == "median":
records = [
key[0], # token
key[1], # index
key[2], # scheme
statistics.median(medians[key][0]), # duration_ms
statistics.median(medians[key][1]) # bw_efficiency_pct
]
elif arguments.mesaure == "mean":
records = [
key[0], # token
key[1], # index
key[2], # scheme
numpy.mean(medians[key][0]), # duration_ms
numpy.mean(medians[key][1]) # bw_efficiency_pct
]
perflib.utils.write_tsv(out, [records], meta=meta)
#
# Main
#
def main():
parser = argparse.ArgumentParser(
prog='rocfft-perf',
epilog="For a detailed usage overview, run: %(prog)s overview")
parser.add_argument('-v', '--verbose', action='store_true', default=False)
subparsers = parser.add_subparsers(dest='command')
subparsers.add_parser('overview', help='print a general usage overview')
specs_parser = subparsers.add_parser('specs', help='print machine specs')
run_parser = subparsers.add_parser('run', help='run!')
post_parser = subparsers.add_parser('post', help='post processing')
pdf_parser = subparsers.add_parser('pdf', help='generate pdf plots')
html_parser = subparsers.add_parser('html', help='generate html plots')
docx_parser = subparsers.add_parser('docx', help='generate docx plots')
test_parser = subparsers.add_parser('test', help='test for regressions')
autoperf_parser = subparsers.add_parser(
'autoperf',
help='clone, build, run, post, and plot two rocFFT commits')
specs_parser.add_argument(dest='specs_type',
type=str,
default='default',
nargs='?',
choices=['default', 'host', 'device'],
help="type of specs")
for p in [post_parser, pdf_parser, html_parser, docx_parser]:
p.add_argument('output', type=str)
for p in [post_parser, pdf_parser, html_parser, docx_parser, test_parser]:
p.add_argument('runs', type=str, nargs='+')
for p in [post_parser, autoperf_parser]:
p.add_argument('--confidence',
type=str,
choices=["bootstrap", "stdev"],
help="method for generating confidence interval",
default="bootstrap")
for p in [post_parser, pdf_parser, test_parser, autoperf_parser]:
p.add_argument('--method',
type=str,
choices=["moods", "ttest", "mwu"],
help="statistical method",
default="moods")
for p in [
post_parser, pdf_parser, html_parser, docx_parser, test_parser,
autoperf_parser
]:
p.add_argument('--measure',
type=str,
choices=["mean", "median"],
help="measure of central tendancy: median or mean",
default="median")
for p in [
pdf_parser, html_parser, docx_parser, test_parser, autoperf_parser
]:
p.add_argument('--significance',
type=float,
help='moods significance threshold',
default=0.001)
p.add_argument('--bonferroni',
action='store_true',
help='Apply Bonferroni significance correction')
p.add_argument('--no-bonferroni',
dest='bonferroni',
action='store_false')
p.set_defaults(bonferroni=True)
# Python 3.9+ method:
# p.add_argument('--bonferroni',
# help='Apply Bonferroni significance correction',
# type=bool,
# action=argparse.BooleanOptionalAction,
# default=True)
for p in [pdf_parser, html_parser, docx_parser]:
p.add_argument('-l',
'--label',
type=str,
help='label (appendable)',
action='append')
run_parser.add_argument('-g', '--device', type=int, help='device number')
run_parser.add_argument('-l',
'--list',
help='list runs (but do not run them)',
action='store_true',
default=False)
run_parser.add_argument('-o',
'--out',
type=str,
help='output (appendable)',
action='append')
run_parser.add_argument('-S',
'--suite',
type=str,
help='test suite name (appendable)',
action='append')
run_parser.add_argument('-w',
'--bench',
type=str,
help='test executable path')
run_parser.add_argument('-i',
'--lib',
type=str,
help='test library path (appendable)',
action='append')
run_parser.add_argument('-r', '--radix', type=int, help='radix')
run_parser.add_argument('-x',
'--xmin',
type=int,
help='minimum problem size in x direction')
run_parser.add_argument('-X',
'--xmax',
type=int,
help='maximum problem size in x direction')
run_parser.add_argument('-y',
'--ymin',
type=int,
help='minimum problem size in y direction')
run_parser.add_argument('-Y',
'--ymax',
type=int,
help='maximum problem size in y direction')
run_parser.add_argument('-z',
'--zmin',
type=int,
help='minimum problem size in z direction')
run_parser.add_argument('-Z',
'--zmax',
type=int,
help='maximum problem size in z direction')
run_parser.add_argument('-D',
'--direction',
type=int,
help='direction of transform')
run_parser.add_argument('-I',
'--inplace',
help='make transform in-place',
action='store_true',
default=False)
run_parser.add_argument('-O',
'--outplace',
help='make transform out-of-place',
action='store_true',
default=False)
run_parser.add_argument('-R',
'--real',
help='make transform real/complex',
action='store_true',
default=False)
run_parser.add_argument('-C',
'--complex',
help='make transform complex/complex',
action='store_true',
default=False)
run_parser.add_argument('-d',
'--dimension',
type=int,
help='dimension of transform',
action='append')
run_parser.add_argument('-b',
'--nbatch',
type=int,
help='number of batches')
run_parser.add_argument('-N',
'--ntrial',
type=int,
help='number of trials',
default=20)
run_parser.add_argument(
'-T',
'--timeout',
type=int,
help='test timeout in seconds (0 disables timeout)',
default=600)
run_parser.add_argument('--sequence',
type=int,
help='dyna-bench test sequence',
default=0)
run_parser.add_argument('-f',
'--precision',
type=str,
help='precision',
action='append')
run_parser.add_argument('-t',
'--accutest',
type=str,
help='accuracy test executable path')
run_parser.add_argument('--specs_type',
type=str,
default='default',
nargs='?',
choices=['default', 'host', 'device'],
help="type of specs")
autoperf_parser.add_argument('--workdir',
type=str,
help='Working directory',
default='.')
autoperf_parser.add_argument('--reference_commit',
type=str,
help='Reference commit',
required=True)
autoperf_parser.add_argument(
'--reference_repository',
type=str,
help='Reference repository (if different from repository)')
autoperf_parser.add_argument(
'--reference_label',
type=str,
help='Reference label (if different from reference commit)')
autoperf_parser.add_argument('--commit',
type=str,
help='Commit to test',
required=True)
autoperf_parser.add_argument('--repository',
type=str,
help='Repository to test',
required=True)
autoperf_parser.add_argument(
'--label', type=str, help='Test label (if different from test commit)')
autoperf_parser.add_argument('--suite',
type=str,
help='Test suite name (appendable)',
action='append',
required=True)
autoperf_parser.add_argument('--format',
type=str,
help='Output format (appendable)',
action='append',
default=['html'])
autoperf_parser.add_argument('--static',
help='Use static bench instead of dyna',
action='store_true',
default=False)
autoperf_parser.add_argument(
'-T',
'--timeout',
type=int,
help='test timeout in seconds (0 disables timeout)',
default=600)
autoperf_parser.add_argument('--specs_type',
type=str,
default='default',
nargs='?',
choices=['default', 'host', 'device'],
help="type of specs")
bweff_parser = subparsers.add_parser(
'bweff', help='bandwidth efficiency collection')
# suite of tests to run
bweff_parser.add_argument('-S',
'--suite',
type=str,
help='test suite name (appendable)',
action='append',
required=True)
# path to bench executable
bweff_parser.add_argument('-w',
'--bench',
type=str,
help='test executable path',
required=True)
# output directory for results
bweff_parser.add_argument('-o',
'--out',
type=str,
help='output',
default='out')
# number of trials to run per test case
bweff_parser.add_argument('-N',
'--ntrial',
type=int,
help='number of trials',
default=10)
# target transform size
bweff_parser.add_argument('--target_size',
type=int,
help='target transform size in GiB',
default=5)
arguments = parser.parse_args()
if arguments.verbose:
console.setLevel(logging.INFO)
if arguments.command == 'specs':
# Todo: find unified way to specify device id
print(perflib.specs.get_machine_specs(0, arguments.specs_type))
if arguments.command == 'overview':
print(globals()['__doc__'])
if arguments.command == 'run':
command_run(arguments)
if arguments.command == 'post':
command_post(arguments)
if arguments.command == 'test':
sys.exit(command_test(arguments))
if arguments.command == 'pdf':
command_generate(type='pdf', **vars(arguments))
if arguments.command == 'html':
command_generate(type='html', **vars(arguments))
if arguments.command == 'docx':
command_generate(type='docx', **vars(arguments))
if arguments.command == 'autoperf':
command_autoperf(arguments)
if arguments.command == 'bweff':
command_bweff(arguments)
sys.exit(0)
if __name__ == '__main__':
logging.basicConfig(filename='rocfft-perf.log',
format='%(asctime)s %(levelname)s: %(message)s',
level=logging.DEBUG)
console.setLevel(logging.WARNING)
console.setFormatter(logging.Formatter('%(levelname)-8s: %(message)s'))
logging.getLogger('').addHandler(console)
main()
|