1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
// Copyright (C) 2020 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "tree_node.h"
#include "../../shared/precision_type.h"
#include "function_pool.h"
#include "kernel_launch.h"
#include "logging.h"
#include "plan.h"
#include "repo.h"
#include "rocfft_mpi.h"
#include "twiddles.h"
#include <limits>
#include <sstream>
struct rocfft_mp_request_t
{
#ifdef ROCFFT_MPI_ENABLE
rocfft_mp_request_t(const MPI_Request& req)
: mpi_request(req)
{
}
MPI_Request mpi_request;
#endif
};
TreeNode::~TreeNode()
{
if(twiddles)
{
if(scheme == CS_KERNEL_2D_SINGLE)
Repo::ReleaseTwiddle2D(twiddles);
else
Repo::ReleaseTwiddle1D(twiddles);
twiddles = nullptr;
}
if(twiddles_large)
{
Repo::ReleaseTwiddle1D(twiddles_large);
twiddles_large = nullptr;
}
if(chirp)
{
Repo::ReleaseChirp(chirp);
chirp = nullptr;
}
}
NodeMetaData::NodeMetaData(TreeNode* refNode)
{
if(refNode != nullptr)
{
precision = refNode->precision;
batch = refNode->batch;
direction = refNode->direction;
rootIsC2C = refNode->IsRootPlanC2CTransform();
deviceProp = refNode->deviceProp;
}
}
bool LeafNode::CreateLargeTwdTable()
{
if(large1D != 0)
{
std::tie(twiddles_large, twiddles_large_size)
= Repo::GetTwiddles1D(large1D, 0, precision, deviceProp, largeTwdBase, false, {});
}
return true;
}
size_t LeafNode::GetTwiddleTableLength()
{
// length used by twiddle table is length[0] by default
// could be override by some special schemes
return length[0];
}
FMKey LeafNode::GetKernelKey() const
{
if(!externalKernel)
return FMKey::EmptyFMKey();
return TreeNode::GetKernelKey();
}
void LeafNode::GetKernelFactors()
{
FMKey key = GetKernelKey();
kernelFactors = function_pool::get_kernel(key).factors;
// Hard-coded kernel factors for len 64x64x64 partial-pass
// TODO: Remove this hard-coded logic once
// partial-pass is integrated into the stockham generators.
if(scheme == CS_KERNEL_STOCKHAM && applyPartialPass)
kernelFactors = {8, 8};
if(scheme == CS_KERNEL_STOCKHAM_BLOCK_CC && applyPartialPass)
kernelFactors = {8, 8};
}
void LeafNode::GetKernelPartialPassFactors()
{
// Hard-coded kernel partial-pass factors for len 64x64x64.
// TODO: Remove this hard-coded logic once
// partial-pass is integrated into the Stockham generators.
if(scheme == CS_KERNEL_STOCKHAM && applyPartialPass)
{
kernelFactorsPP = {16};
std::stringstream msg;
msg << "work in the off-dimension:" << std::endl;
msg << "\t radix: [";
for(const auto factor : kernelFactorsPP)
msg << " " << factor;
msg << " ] pass(es) + Hadamard product with twiddle factors. \n";
comments.push_back(msg.str());
}
if(scheme == CS_KERNEL_STOCKHAM_BLOCK_CC && applyPartialPass)
{
kernelFactorsPP = {4};
std::stringstream msg;
msg << "work in the off-dimension:" << std::endl;
msg << "\t local data transposition + radix: [";
for(const auto factor : kernelFactorsPP)
msg << " " << factor;
msg << " ] pass(es). \n";
comments.push_back(msg.str());
}
}
bool LeafNode::KernelCheck(std::vector<FMKey>& kernel_keys)
{
if(!externalKernel)
{
// such as solutions kernels for 2D_RTRT or 1D_CRT, the "T" kernel is not an external one
// so in the solution map we will keep it as a empty key. By storing and checking the emptykey,
// we can increase the reilability of solution map.
if(!kernel_keys.empty())
{
if(LOG_TRACE_ENABLED())
(*LogSingleton::GetInstance().GetTraceOS())
<< "solution kernel is an built-in kernel" << std::endl;
// kernel_key from solution map should be an EmptyFMKey for a built-in kernel
if(kernel_keys.front() != FMKey::EmptyFMKey())
return false;
kernel_keys.erase(kernel_keys.begin());
}
return true;
}
specified_key = nullptr;
if(!kernel_keys.empty())
{
FMKey assignedKey = kernel_keys.front();
kernel_keys.erase(kernel_keys.begin());
// check if the assigned key is consistent with the node information
if((length[0] != assignedKey.lengths[0])
|| (dimension == 2 && length[1] != assignedKey.lengths[1])
|| (precision != assignedKey.precision) || (scheme != assignedKey.scheme)
|| (ebtype != assignedKey.kernel_config.ebType))
{
if(LOG_TRACE_ENABLED())
(*LogSingleton::GetInstance().GetTraceOS())
<< "solution kernel keys are invalid: key properties != node's properties"
<< std::endl;
return false;
}
else
{
// get sbrc_trans_type from assignedKey (for sbrc)
sbrcTranstype = assignedKey.sbrcTrans;
function_pool::add_new_kernel(assignedKey);
specified_key = std::make_unique<FMKey>(assignedKey);
}
}
// get the final key and check if we have the kernel.
// Note that the check is trivial if we are using "specified_key"
// since we definitly have the kernel, but not trivial if it's the auto-gen key
FMKey key = GetKernelKey();
if(!function_pool::has_function(key))
{
if(LOG_TRACE_ENABLED())
(*LogSingleton::GetInstance().GetTraceOS()) << PrintMissingKernelInfo(key);
return false;
}
dir2regMode = (function_pool::get_kernel(key).direct_to_from_reg)
? DirectRegType::TRY_ENABLE_IF_SUPPORT
: DirectRegType::FORCE_OFF_OR_NOT_SUPPORT;
GetKernelFactors();
if(applyPartialPass)
GetKernelPartialPassFactors();
return true;
}
void LeafNode::SanityCheck(SchemeTree* solution_scheme, std::vector<FMKey>& kernels_keys)
{
if(!KernelCheck(kernels_keys))
throw std::runtime_error("Kernel not found or mismatches node (solution map issue)");
TreeNode::SanityCheck(solution_scheme, kernels_keys);
}
void LeafNode::Print(rocfft_ostream& os, int indent) const
{
TreeNode::Print(os, indent);
std::string indentStr;
while(indent--)
indentStr += " ";
os << indentStr.c_str() << "Leaf-Node: external-kernel configuration: ";
indentStr += " ";
os << "\n" << indentStr.c_str() << "workgroup_size: " << wgs;
os << "\n" << indentStr.c_str() << "trans_per_block: " << bwd;
os << "\n" << indentStr.c_str() << "radices: [ ";
for(size_t i = 0; i < kernelFactors.size(); i++)
{
os << kernelFactors[i] << " ";
}
os << "]\n";
}
bool LeafNode::CreateDevKernelArgs()
{
devKernArg = kargs_create(length, inStride, outStride, iDist, oDist);
return (devKernArg != nullptr);
}
bool LeafNode::CreateDeviceResources()
{
if(need_chirp)
{
std::tie(chirp, chirp_size) = Repo::GetChirp(lengthBlueN, precision, deviceProp);
}
if(need_twd_table)
{
if(!twd_no_radices)
GetKernelFactors();
size_t twd_len = GetTwiddleTableLength();
std::tie(twiddles, twiddles_size) = Repo::GetTwiddles1D(twd_len,
GetTwiddleTableLengthLimit(),
precision,
deviceProp,
0,
twd_attach_halfN,
kernelFactors);
}
return CreateLargeTwdTable();
}
void LeafNode::SetupGridParamAndFuncPtr(DevFnCall& fnPtr, GridParam& gp)
{
// derived classes setup the gp (bwd, wgs, lds, padding), funPtr
SetupGPAndFnPtr_internal(fnPtr, gp);
auto key = GetKernelKey();
// common: sum up the value;
gp.lds_bytes = lds * complex_type_size(precision);
if(scheme == CS_KERNEL_STOCKHAM && ebtype == EmbeddedType::NONE)
{
if(function_pool::has_function(key))
{
auto kernel = function_pool::get_kernel(key);
// NB:
// Special case on specific arch:
// For some cases using hald_lds, finer tuning(enlarge) dynamic
// lds allocation size affects occupancy without changing the
// kernel code. It is a middle solution between perf and code
// consistency. Eventually, we need better solution arch
// specific.
bool double_half_lds_alloc = false;
if(is_device_gcn_arch(deviceProp, "gfx90a") && (length[0] == 343 || length[0] == 49))
{
double_half_lds_alloc = true;
}
if(kernel.half_lds && (!double_half_lds_alloc))
gp.lds_bytes /= 2;
}
}
if(scheme == CS_KERNEL_STOCKHAM_BLOCK_CC)
{
// SBCC support half-lds conditionally
if((dir2regMode == DirectRegType::TRY_ENABLE_IF_SUPPORT) && (ebtype == EmbeddedType::NONE)
&& function_pool::has_function(key))
{
auto kernel = function_pool::get_kernel(key);
if(kernel.half_lds)
gp.lds_bytes /= 2;
}
auto apply_large_twd = (largeTwdBase > 0 && ltwdSteps > 0);
if(apply_large_twd && largeTwdBase < 8)
{
// append twiddle table to dynamic lds
auto kernel = function_pool::get_kernel(key);
gp.lds_bytes += twiddles_large_size;
}
}
// NB:
// SBCR / SBRC are not able to use half-lds due to both of them can't satisfy dir-to/from-registers at them same time.
// Confirm that the requested LDS bytes will fit into what the
// device can provide. If it can't, we've made a mistake in our
// computation somewhere.
if(gp.lds_bytes > deviceProp.sharedMemPerBlock)
throw std::runtime_error(std::to_string(gp.lds_bytes)
+ " bytes of LDS requested, but device only provides "
+ std::to_string(deviceProp.sharedMemPerBlock));
}
/*****************************************************
* CS_KERNEL_TRANSPOSE
* CS_KERNEL_TRANSPOSE_XY_Z
* CS_KERNEL_TRANSPOSE_Z_XY
*****************************************************/
// grid params are set up by RTC
void TransposeNode::SetupGPAndFnPtr_internal(DevFnCall& fnPtr, GridParam& gp) {}
void TreeNode::SetTransposeOutputLength()
{
switch(scheme)
{
case CS_KERNEL_TRANSPOSE:
{
outputLength = length;
std::swap(outputLength[0], outputLength[1]);
break;
}
case CS_KERNEL_TRANSPOSE_XY_Z:
case CS_KERNEL_STOCKHAM_TRANSPOSE_XY_Z:
{
outputLength = length;
std::swap(outputLength[1], outputLength[2]);
std::swap(outputLength[0], outputLength[1]);
break;
}
case CS_KERNEL_TRANSPOSE_Z_XY:
case CS_KERNEL_STOCKHAM_TRANSPOSE_Z_XY:
{
outputLength = length;
std::swap(outputLength[0], outputLength[1]);
std::swap(outputLength[1], outputLength[2]);
break;
}
default:
throw std::runtime_error("can't set transpose output length on non-transpose node");
}
}
void TreeNode::CollapseContiguousDims()
{
// collapse children
for(auto& child : childNodes)
child->CollapseContiguousDims();
const auto collapsibleDims = CollapsibleDims();
if(collapsibleDims.empty())
return;
// utility function to collect the dims to collapse
auto collectCollapse = [&collapsibleDims](const size_t dist,
size_t& newBatch,
const std::vector<size_t>& length,
const std::vector<size_t>& stride) {
std::vector<size_t> dimsToCollapse;
// start with batch dim and go backwards through collapsible dims
// so we can collapse them without invalidating remaining indexes
auto curStride = dist;
for(auto i = collapsibleDims.rbegin(); i != collapsibleDims.rend(); ++i)
{
if(curStride % stride[*i] != 0)
break;
if(curStride / stride[*i] != length[*i])
break;
dimsToCollapse.push_back(*i);
newBatch *= length[*i];
curStride = stride[*i];
}
return dimsToCollapse;
};
// utility function to actually do the collapsing -
// dimsToCollapse must be in reverse order so we erase dims from
// highest to lowest
auto doCollapse = [](size_t& dist,
const std::vector<size_t>& dimsToCollapse,
std::vector<size_t>& lengthToCollapse,
std::vector<size_t>& strideToCollapse) {
for(auto i : dimsToCollapse)
{
dist /= lengthToCollapse[i];
lengthToCollapse.erase(lengthToCollapse.begin() + i);
strideToCollapse.erase(strideToCollapse.begin() + i);
}
};
size_t newInputBatch = batch;
std::vector<size_t> inputDimsToCollapse
= collectCollapse(iDist, newInputBatch, length, inStride);
auto outputLengthTemp = GetOutputLength();
size_t newOutputBatch = batch;
std::vector<size_t> outputDimsToCollapse
= collectCollapse(oDist, newOutputBatch, outputLengthTemp, outStride);
if(inputDimsToCollapse != outputDimsToCollapse || newInputBatch != newOutputBatch)
return;
if(!inputDimsToCollapse.empty())
{
std::stringstream msg;
msg << "collapsed contiguous high length(s)";
for(auto i = inputDimsToCollapse.rbegin(); i != inputDimsToCollapse.rend(); ++i)
msg << " " << length[*i];
msg << " into batch";
comments.push_back(msg.str());
}
doCollapse(iDist, inputDimsToCollapse, length, inStride);
doCollapse(oDist, outputDimsToCollapse, outputLengthTemp, outStride);
batch = newInputBatch;
if(!outputLength.empty())
outputLength = outputLengthTemp;
}
bool TreeNode::IsBluesteinChirpSetup()
{
// setup nodes must be under a bluestein parent. multi-kernel fused
// bluestein is an exception to this rule as the first two chirp + padding
// nodes are under an L1D_CC node.
if(typeBlue != BT_MULTI_KERNEL_FUSED && (parent == nullptr || parent->scheme != CS_BLUESTEIN))
return false;
// bluestein could either be 3-kernel plan (so-called single kernel Bluestein),
// meaning the first two are setup kernels, or multi-kernel bluestein (fused or non-fused)
// where only the first is setup
switch(parent->typeBlue)
{
case BluesteinType::BT_NONE:
return false;
case BluesteinType::BT_SINGLE_KERNEL:
return this == parent->childNodes[0].get() || this == parent->childNodes[1].get();
case BluesteinType::BT_MULTI_KERNEL:
return this == parent->childNodes[0].get();
case BluesteinType::BT_MULTI_KERNEL_FUSED:
return (fuseBlue == BFT_FWD_CHIRP) ? true : false;
}
throw std::runtime_error("unexpected bluestein plan shape");
}
MultiPlanItem::MultiPlanItem() {}
MultiPlanItem::~MultiPlanItem() {}
std::string MultiPlanItem::PrintBufferPtrOffset(const BufferPtr& ptr, size_t offset)
{
std::stringstream ss;
ss << ptr.str() << " offset " << offset << " elems";
return ss.str();
}
int MultiPlanItem::GetOperationCommTag(size_t multiPlanIdx, size_t opIdx)
{
// use top half of int for multiPlan index, bottom half for
// operation index
int tag = multiPlanIdx;
tag <<= 16;
tag |= static_cast<uint16_t>(opIdx);
return tag;
}
void MultiPlanItem::WaitCommRequests()
{
#ifdef ROCFFT_MPI_ENABLE
if(comm_requests.empty())
return;
std::vector<MPI_Request> mpi_requests;
mpi_requests.reserve(comm_requests.size());
for(auto& comm_req : comm_requests)
mpi_requests.push_back(comm_req.mpi_request);
std::vector<MPI_Status> mpi_status(mpi_requests.size());
auto rcmpi = MPI_Waitall(mpi_requests.size(), mpi_requests.data(), mpi_status.data());
if(rcmpi != MPI_SUCCESS)
throw std::runtime_error("MPI_Waitall failed: " + std::to_string(rcmpi));
comm_requests.clear();
#endif
}
void CommPointToPoint::ExecuteAsync(const rocfft_plan plan,
void* in_buffer[],
void* out_buffer[],
rocfft_execution_info info,
size_t multiPlanIdx)
{
rocfft_scoped_device dev(srcLocation.device);
stream.alloc();
event.alloc();
if(LOG_PLAN_ENABLED())
{
log_plan("CommPointToPoint\n");
}
auto srcWithOffset = ptr_offset(
srcPtr.get(in_buffer, out_buffer, local_comm_rank), srcOffset, precision, arrayType);
auto destWithOffset = ptr_offset(
destPtr.get(in_buffer, out_buffer, local_comm_rank), destOffset, precision, arrayType);
if(srcLocation.comm_rank == destLocation.comm_rank)
{
const auto memSize = numElems * element_size(precision, arrayType);
auto hiprt = hipSuccess;
if(srcLocation.device == destLocation.device)
{
hiprt = hipMemcpyAsync(
destWithOffset, srcWithOffset, memSize, hipMemcpyDeviceToDevice, stream);
}
else
{
hiprt = hipMemcpyPeerAsync(destWithOffset,
destLocation.device,
srcWithOffset,
srcLocation.device,
memSize,
stream);
}
if(hiprt != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
// all work is enqueued to the stream, record the event on
// the stream
if(hipEventRecord(event, stream) != hipSuccess)
throw std::runtime_error("hipEventRecord failed");
}
else
{
#if !defined ROCFFT_MPI_ENABLE
throw std::runtime_error("MPI communication not enabled");
#else
if(srcLocation.comm_rank == local_comm_rank)
{
MPI_Request request;
const auto mpiret = MPI_Isend(srcWithOffset,
numElems,
rocfft_type_to_mpi_type(precision, arrayType),
destLocation.comm_rank,
multiPlanIdx,
plan->desc.mpi_comm,
&request);
if(mpiret != MPI_SUCCESS)
{
throw std::runtime_error("MPI_Isend PointToPoint failed on rank "
+ std::to_string(local_comm_rank));
}
comm_requests.push_back(request);
}
else if(destLocation.comm_rank == local_comm_rank)
{
MPI_Request request;
const auto mpiret = MPI_Irecv(destWithOffset,
numElems,
rocfft_type_to_mpi_type(precision, arrayType),
srcLocation.comm_rank,
multiPlanIdx,
plan->desc.mpi_comm,
&request);
if(mpiret != MPI_SUCCESS)
{
throw std::runtime_error("MPI_Irecv PointToPoint failed on rank "
+ std::to_string(local_comm_rank));
}
comm_requests.push_back(request);
}
#endif
}
}
void CommPointToPoint::Wait()
{
WaitCommRequests();
if(hipEventSynchronize(event) != hipSuccess)
throw std::runtime_error("hipEventSynchronize failed");
}
void CommPointToPoint::Print(rocfft_ostream& os, const int indent) const
{
const std::string indentStr(" ", indent);
os << indentStr << "CommPointToPoint " << precision_name(precision) << " "
<< PrintArrayType(arrayType) << ":"
<< "\n";
os << indentStr << " srcCommRank: " << srcLocation.comm_rank << "\n";
os << indentStr << " srcDeviceID: " << srcLocation.device << "\n";
os << indentStr << " srcBuf: " << PrintBufferPtrOffset(srcPtr, srcOffset) << "\n";
os << indentStr << " destCommRank: " << destLocation.comm_rank << "\n";
os << indentStr << " destDeviceID: " << destLocation.device << "\n";
os << indentStr << " destBuf: " << PrintBufferPtrOffset(destPtr, destOffset) << "\n";
os << indentStr << " numElems: " << numElems << "\n";
os << std::endl;
}
void CommScatter::ExecuteAsync(const rocfft_plan plan,
void* in_buffer[],
void* out_buffer[],
rocfft_execution_info info,
size_t multiPlanIdx)
{
rocfft_scoped_device dev(srcLocation.device);
stream.alloc();
event.alloc();
if(LOG_PLAN_ENABLED())
{
log_plan("CommScatter\n");
}
for(unsigned int opIdx = 0; opIdx < ops.size(); ++opIdx)
{
const auto& op = ops[opIdx];
auto srcWithOffset = ptr_offset(
srcPtr.get(in_buffer, out_buffer, local_comm_rank), op.srcOffset, precision, arrayType);
auto destWithOffset = ptr_offset(op.destPtr.get(in_buffer, out_buffer, local_comm_rank),
op.destOffset,
precision,
arrayType);
hipError_t err = hipSuccess;
if(op.destLocation.comm_rank == srcLocation.comm_rank)
{
const auto memSize = op.numElems * element_size(precision, arrayType);
if(local_comm_rank == op.destLocation.comm_rank)
{
if(srcLocation.device == op.destLocation.device)
err = hipMemcpyAsync(
destWithOffset, srcWithOffset, memSize, hipMemcpyDeviceToDevice, stream);
else
err = hipMemcpyPeerAsync(destWithOffset,
op.destLocation.device,
srcWithOffset,
srcLocation.device,
memSize,
stream);
if(err != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
}
}
else
{
// Inter-proccess communication
#if !defined ROCFFT_MPI_ENABLE
throw std::runtime_error("MPI communication not enabled");
#else
if(local_comm_rank == srcLocation.comm_rank)
{
MPI_Request request;
const auto mpiret = MPI_Isend(srcWithOffset,
op.numElems,
rocfft_type_to_mpi_type(precision, arrayType),
op.destLocation.comm_rank,
GetOperationCommTag(multiPlanIdx, opIdx),
plan->desc.mpi_comm,
&request);
if(mpiret != MPI_SUCCESS)
{
throw std::runtime_error("MPI_Isend failed on rank"
+ std::to_string(local_comm_rank));
}
comm_requests.push_back(request);
}
else if(local_comm_rank == op.destLocation.comm_rank)
{
MPI_Request request;
const auto mpiret = MPI_Irecv(destWithOffset,
op.numElems,
rocfft_type_to_mpi_type(precision, arrayType),
srcLocation.comm_rank,
GetOperationCommTag(multiPlanIdx, opIdx),
plan->desc.mpi_comm,
&request);
if(mpiret != MPI_SUCCESS)
{
throw std::runtime_error("MPI_Irecv failed on rank"
+ std::to_string(local_comm_rank) + " for op index "
+ std::to_string(opIdx));
}
comm_requests.push_back(request);
}
#endif
}
}
// All work is enqueued to the stream, record the event on the stream
if(hipEventRecord(event, stream) != hipSuccess)
throw std::runtime_error("hipEventRecord failed");
}
void CommScatter::Wait()
{
WaitCommRequests();
if(hipEventSynchronize(event) != hipSuccess)
throw std::runtime_error("hipEventSynchronize failed");
}
void CommScatter::Print(rocfft_ostream& os, const int indent) const
{
std::string indentStr;
int i = indent;
while(i--)
indentStr += " ";
os << indentStr << "CommScatter " << precision_name(precision) << " "
<< PrintArrayType(arrayType) << ":\n";
os << indentStr << " srcCommRank: " << srcLocation.comm_rank << "\n";
os << indentStr << " srcDeviceID: " << srcLocation.device << "\n";
for(const auto& op : ops)
{
os << indentStr << " destCommRank: " << op.destLocation.comm_rank << "\n";
os << indentStr << " destDeviceID: " << op.destLocation.device << "\n";
os << indentStr << " srcBuf: " << PrintBufferPtrOffset(srcPtr, op.srcOffset) << "\n";
os << indentStr << " destBuf: " << PrintBufferPtrOffset(op.destPtr, op.destOffset)
<< "\n";
os << indentStr << " numElems: " << op.numElems << "\n";
os << "\n";
}
}
void CommGather::ExecuteAsync(const rocfft_plan plan,
void* in_buffer[],
void* out_buffer[],
rocfft_execution_info info,
size_t multiPlanIdx)
{
streams.resize(ops.size());
events.resize(ops.size());
if(LOG_PLAN_ENABLED())
{
log_plan("CommGather\n");
}
for(unsigned int opIdx = 0; opIdx < ops.size(); ++opIdx)
{
const auto& op = ops[opIdx];
auto& stream = streams[opIdx];
auto& event = events[opIdx];
rocfft_scoped_device dev(op.srcLocation.device);
stream.alloc();
event.alloc();
auto srcWithOffset = ptr_offset(op.srcPtr.get(in_buffer, out_buffer, local_comm_rank),
op.srcOffset,
precision,
arrayType);
auto destWithOffset = ptr_offset(destPtr.get(in_buffer, out_buffer, local_comm_rank),
op.destOffset,
precision,
arrayType);
hipError_t err = hipSuccess;
if(destLocation.comm_rank == op.srcLocation.comm_rank)
{
const auto memSize = op.numElems * element_size(precision, arrayType);
if(local_comm_rank == destLocation.comm_rank)
{
if(op.srcLocation.device == destLocation.device)
{
err = hipMemcpyAsync(
destWithOffset, srcWithOffset, memSize, hipMemcpyDeviceToDevice, stream);
}
else
{
err = hipMemcpyPeerAsync(destWithOffset,
destLocation.device,
srcWithOffset,
op.srcLocation.device,
memSize,
stream);
}
if(err != hipSuccess)
throw std::runtime_error("hipMemcpy failed");
}
}
else
{
// Inter-proccess communication
#if !defined ROCFFT_MPI_ENABLE
throw std::runtime_error("MPI communication not enabled");
#else
if(local_comm_rank == op.srcLocation.comm_rank)
{
MPI_Request request;
auto rcmpi = MPI_Isend(srcWithOffset,
op.numElems,
rocfft_type_to_mpi_type(precision, arrayType),
destLocation.comm_rank,
GetOperationCommTag(multiPlanIdx, opIdx),
plan->desc.mpi_comm,
&request);
if(rcmpi != MPI_SUCCESS)
throw std::runtime_error("MPI_Isend failed: " + std::to_string(rcmpi));
comm_requests.push_back(request);
}
else if(local_comm_rank == destLocation.comm_rank)
{
MPI_Request request;
auto rcmpi = MPI_Irecv(destWithOffset,
op.numElems,
rocfft_type_to_mpi_type(precision, arrayType),
op.srcLocation.comm_rank,
GetOperationCommTag(multiPlanIdx, opIdx),
plan->desc.mpi_comm,
&request);
if(rcmpi != MPI_SUCCESS)
throw std::runtime_error("MPI_Irecv failed: " + std::to_string(rcmpi));
comm_requests.push_back(request);
}
#endif
}
// FIXME: we don't need events for MPI communications.
// All work for this stream is enqueued, record the event on the stream
if(hipEventRecord(event, stream) != hipSuccess)
throw std::runtime_error("hipEventRecord failed");
}
}
void CommGather::Wait()
{
WaitCommRequests();
for(const auto& event : events)
{
if(hipEventSynchronize(event) != hipSuccess)
throw std::runtime_error("hipEventSynchronize failed");
}
}
void CommGather::Print(rocfft_ostream& os, const int indent) const
{
std::string indentStr;
int i = indent;
while(i--)
indentStr += " ";
os << indentStr << "CommGather " << precision_name(precision) << " "
<< PrintArrayType(arrayType) << ":"
<< "\n";
os << indentStr << " destCommRank: " << destLocation.comm_rank << "\n";
os << indentStr << " destDeviceID: " << destLocation.device << "\n";
for(const auto& op : ops)
{
os << indentStr << " srcCommRank: " << op.srcLocation.comm_rank << "\n";
os << indentStr << " srcDeviceID: " << op.srcLocation.device << "\n";
os << indentStr << " srcBuf: " << PrintBufferPtrOffset(op.srcPtr, op.srcOffset) << "\n";
os << indentStr << " destBuf: " << PrintBufferPtrOffset(destPtr, op.destOffset) << "\n";
os << indentStr << " numElems: " << op.numElems << "\n";
os << "\n";
}
}
void CommAllToAllv::ExecuteAsync(const rocfft_plan plan,
void* in_buffer[],
void* out_buffer[],
rocfft_execution_info info,
size_t multiPlanIdx)
{
// check that we have as many elems in our count/offset buffers as
// we have ranks
const size_t num_ranks = plan->get_local_comm_size();
if(sendOffsets.size() != num_ranks || sendCounts.size() != num_ranks
|| recvOffsets.size() != num_ranks || recvCounts.size() != num_ranks)
throw std::runtime_error(
"CommAllToAllv: number of counts/offsets does not match number of ranks");
if(LOG_PLAN_ENABLED())
{
log_plan("MPI_Ialltoallv\n");
}
#ifdef ROCFFT_MPI_ENABLE
// MPI takes ints for everything, convert our size_t elements to int bytes
auto convertToInt = [](const std::vector<size_t>& src, std::vector<int>& dest) {
dest.reserve(src.size());
for(auto i : src)
{
if(i > std::numeric_limits<int>::max())
throw std::runtime_error("MPI integer limit exceeded");
dest.push_back(i);
}
};
std::vector<int> intSendOffsets;
std::vector<int> intSendCounts;
std::vector<int> intRecvOffsets;
std::vector<int> intRecvCounts;
convertToInt(sendOffsets, intSendOffsets);
convertToInt(sendCounts, intSendCounts);
convertToInt(recvOffsets, intRecvOffsets);
convertToInt(recvCounts, intRecvCounts);
MPI_Request request;
const auto mpiret = MPI_Ialltoallv(sendBuf.get(in_buffer, out_buffer, local_comm_rank),
intSendCounts.data(),
intSendOffsets.data(),
rocfft_type_to_mpi_type(precision, arrayType),
recvBuf.get(in_buffer, out_buffer, local_comm_rank),
intRecvCounts.data(),
intRecvOffsets.data(),
rocfft_type_to_mpi_type(precision, arrayType),
plan->desc.mpi_comm,
&request);
if(mpiret != MPI_SUCCESS)
throw std::runtime_error("MPI_Ialltoallv failed: " + std::to_string(mpiret));
comm_requests.push_back(request);
#else
throw std::runtime_error("CommAllToAllv not implemented");
#endif
}
void CommAllToAllv::Wait()
{
WaitCommRequests();
}
void CommAllToAllv::Print(rocfft_ostream& os, const int indent) const
{
std::string indentStr;
int i = indent;
while(i--)
indentStr += " ";
auto printVec = [&os](const char* prefix, const std::vector<size_t>& vec) {
os << prefix << ": ";
for(auto val : vec)
os << val << " ";
os << "\n";
};
os << indentStr << "CommAllToAllv " << precision_name(precision) << " "
<< PrintArrayType(arrayType) << ":\n";
printVec("sendOffsets", sendOffsets);
printVec("sendCounts", sendCounts);
printVec("recvOffsets", recvOffsets);
printVec("recvCounts", recvCounts);
}
void ExecPlan::Print(rocfft_ostream& os, const int indent) const
{
std::string indentStr;
int i = indent;
while(i--)
indentStr += " ";
os << indentStr << "MPI rank: " << local_comm_rank << "\n";
os << indentStr << "ExecPlan:" << std::endl;
os << indentStr << " deviceID: " << location.device << std::endl;
os << indentStr << " local_comm_rank:" << local_comm_rank << "\n";
os << indentStr << " commRanks:" << location.comm_rank << std::endl;
if(inputPtr)
os << indentStr << " inputPtr: " << inputPtr.str() << std::endl;
if(outputPtr)
os << indentStr << " outputPtr: " << outputPtr.str() << std::endl;
PrintNode(os, *this, indent);
}
|