1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
# Copyright (C) 2021 - 2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""A few small utilities."""
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List
from functools import reduce
import sys
#
# Join shortcuts
#
def join(sep, s):
"""Return 's' joined with 'sep'. Coerces to str."""
return sep.join(str(x) for x in list(s))
def sjoin(s):
"""Return 's' joined with spaces."""
return join(' ', [str(x) for x in s])
def njoin(s):
"""Return 's' joined with newlines."""
return join('\n', s)
def cjoin(s):
"""Return 's' joined with commas."""
return join(',', s)
def tjoin(s):
"""Return 's' joined with tabs."""
return join('\t', s)
#
# Misc
#
def shape(n, nbatch):
"""Return NumPy shape."""
if isinstance(n, (list, tuple)):
return [nbatch] + list(n)
return [nbatch, n]
def product(xs):
"""Return product of factors."""
return reduce(lambda x, y: x * y, xs, 1)
def flatten(xs):
"""Flatten list of lists to a list."""
return sum(xs, [])
def write_tsv(path, records, meta={}, overwrite=False):
"""Write tab separated file."""
path = Path(path)
dat = []
with open(path, 'a') as f:
if overwrite:
f.truncate(0)
if f.tell() == 0:
if meta is not None:
for k, v in meta.items():
dat.append(f'# {k}: {v}')
dat += [tjoin([str(x) for x in r]) for r in records]
f.write(njoin(dat))
f.write('\n')
def write_csv(path, records, meta={}, overwrite=False):
"""Write commas separated file."""
path = Path(path)
dat = []
with open(path, 'a') as f:
if overwrite:
f.truncate(0)
if meta is not None:
for k, v in meta.items():
dat.append(f'# {k}: {v}')
dat += [cjoin([str(x) for x in r]) for r in records]
f.write(njoin(dat))
f.write('\n')
# Find the number of matching test tokens.
def find_ncompare(runs):
import perflib.utils
outdirs = [Path(outdir) for outdir in runs]
ncompare = 0
if len(outdirs) == 2:
refdir, testdir = outdirs
all_runs = perflib.utils.read_runs(outdirs)
runs = perflib.utils.by_dat(all_runs)
for dat_name, dat_runs in runs.items():
if (refdir in dat_runs.keys() and testdir in dat_runs.keys()):
refdat = dat_runs[refdir]
testdat = dat_runs[testdir]
for token, sample in refdat.get_samples():
if token not in testdat.samples:
continue
ncompare += 1
return ncompare
def find_geomean(outdirs, verbose):
import perflib.utils
all_runs = perflib.utils.read_runs(outdirs, verbose)
if len(all_runs) != 2:
return None
runs = perflib.utils.by_dat(all_runs)
refdir, testdir = outdirs
ratios = []
import statistics
from dataclasses import dataclass
for dat_name, dat_runs in runs.items():
if (refdir in dat_runs.keys() and testdir in dat_runs.keys()):
refdat = dat_runs[refdir]
testdat = dat_runs[testdir]
for token, sample in refdat.get_samples():
if token in testdat.samples:
Avals = refdat.samples[token].times
Bvals = testdat.samples[token].times
ratios.append(
statistics.median(Avals) / statistics.median(Bvals))
import scipy
return scipy.stats.mstats.gmean(ratios)
def find_slower_faster(outdirs, method, multitest, significance, ncompare,
verbose):
# Takes exactly two outdirs; the first is the reference, the
# second is the values to be compared.
import perflib.utils
import statistics
slower = []
faster = []
all_runs = perflib.utils.read_runs(outdirs, verbose)
if len(all_runs) != 2:
return slower, faster, significance
import numpy as np
import scipy
token_p_measures = []
new_significance = significance
runs = perflib.utils.by_dat(all_runs)
refdir, testdir = outdirs
from dataclasses import dataclass
@dataclass
class tokendata:
token: str
pval: float
measure_a: float
measure_b: float
for dat_name, dat_runs in runs.items():
if (refdir in dat_runs.keys() and testdir in dat_runs.keys()):
refdat = dat_runs[refdir]
testdat = dat_runs[testdir]
for token, sample in refdat.get_samples():
if token in testdat.samples:
Avals = refdat.samples[token].times
Bvals = testdat.samples[token].times
pval = None
measure_a = None
measure_b = None
if method == 'moods':
_, pval, _, _ = scipy.stats.median_test(Avals, Bvals)
measure_a = statistics.median(Avals)
measure_b = statistics.median(Bvals)
elif method == 'ttest':
_, pval = scipy.stats.ttest_ind(Avals, Bvals)
measure_a = np.mean(Avals)
measure_b = np.mean(Bvals)
elif method == 'mwu':
_, pval = scipy.stats.mannwhitneyu(Avals, Bvals)
measure_a = statistics.median(Avals)
measure_b = statistics.median(Bvals)
else:
print("unsupported statistical method")
sys.exit(1)
thistokendata = tokendata(token, pval, measure_a,
measure_b)
dats = [token, pval, measure_a, measure_b]
token_p_measures.append(thistokendata)
if multitest == "bonferroni" and ncompare > 0:
new_significance /= ncompare
if multitest == "bh":
pvals = []
for stuff in token_p_measures:
pvals.append(stuff.pval)
pvals.sort()
#print(pvals)
new_significance = None
# Find the largest index
for idx, pval in enumerate(pvals):
j_alpha = (idx + 1) * significance / ncompare
if pval < j_alpha:
new_significance = pval
# if new_significance == None:
# print("Warning: didn't find cutoff alpha for bh multi-hypothesis testing")
# new_significance = significance
# Now that we have the new significance, decide on cases.
for dat in token_p_measures:
if dat.pval < new_significance:
#print(measure_a, measure_b)
if dat.measure_a > dat.measure_b:
faster.append([dat.token, dat.measure_a, dat.measure_b])
else:
#print(dat.token, dat.measure_a, dat.measure_b)
slower.append([dat.token, dat.measure_a, dat.measure_b])
return slower, faster, new_significance
#
# DAT files
#
@dataclass
class Sample:
"""Dyna-bench/bench timing sample: list of times for a given token.
This corresponds to a single line of a dat file.
"""
token: str
times: List[float]
label: str = None
def __post_init__(self):
self.label = self.token
@dataclass
class DAT:
"""Dyna-bench/bench DAT.
This corresponds to a single .dat file.
"""
tag: str
path: Path
samples: Dict[str, Sample]
meta: Dict[str, str]
def get_samples(self):
keys = self.samples.keys()
for key in keys:
yield key, self.samples[key]
def print(self):
print("tag:", self.tag)
print("path:", self.path)
print("meta:", self.meta)
print("samples:", self.samples)
@dataclass
class Run:
"""Dyna-bench/bench runs.
This corresponds to a directory of .dat files.
"""
title: str
path: Path
dats: Dict[Path, DAT]
def write_dat(fname, token, seconds, meta={}):
"""Append record to dyna-bench/bench .dat file."""
record = [token, len(seconds)] + seconds
write_tsv(fname, [record], meta=meta, overwrite=False)
def parse_token(token):
words = token.split("_")
precision = None
length = []
transform_type = None
batch = None
placeness = None
if words[0] not in {"complex", "real"}:
print("Error parsing token:", token)
sys.exit(1)
if words[1] not in {"forward", "inverse"}:
print("Error parsing token:", token)
sys.exit(1)
transform_type = ("forward" if words[1] == "forward" else
"backward") + "_" + words[0]
lendidx = -1
for idx in range(len(words)):
if words[idx] == "len":
lenidx = idx
break
for idx in range(lenidx + 1, len(words)):
if words[idx].isnumeric():
length.append(int(words[idx]))
else:
# Now we have the precision and placeness
precision = words[idx]
placeness = "out-of-place" if words[idx +
1] == "op" else "in-place"
break
batchidx = -1
for idx in range(len(words)):
if words[idx] == "batch":
batchidx = idx
break
batch = []
for idx in range(batchidx + 1, len(words)):
if words[idx].isnumeric():
batch.append(int(words[idx]))
else:
break
return transform_type, placeness, length, batch, precision
def read_dat(fname):
"""Read dyna-bench/bench .dat file."""
path = Path(fname)
records, meta = {}, {}
for line in path.read_text().splitlines():
if line.startswith('# '):
k, v = [x.strip() for x in line[2:].split(':', 1)]
meta[k] = v
continue
words = line.split("\t")
token = words[0]
times = list(map(float, words[2:]))
records[token] = Sample(token, times)
tag = meta['title'].replace(' ', '_')
return DAT(tag, path, records, meta)
def read_run(dname, verbose=False):
"""Read all .dat files in a directory."""
path = Path(dname)
if verbose:
print("reading", path)
dats = {}
for dat in list_runs(dname):
dats[dat.stem] = read_dat(dat)
return Run(path.stem, path, dats)
def list_runs(dname):
"""List all .dat files in a directory."""
path = Path(dname)
return sorted(list(path.glob('*.dat')))
def read_runs(dnames, verbose=False):
"""Read all .dat files in directories."""
return [read_run(dname, verbose) for dname in dnames]
def get_post_processed(dname, docdir, outdirs, ngroup):
"""Return file names of post-processed performance data.
The 'primary' files contain median confidence intervals for each
DAT file.
The 'secondary' files contain XXX.
"""
primary = []
for outdir in outdirs:
path = (Path(outdir) / dname).with_suffix('.mdat')
if path.exists():
primary.append(path)
import os
secondary = []
if ngroup == None:
totalgroups = 1
else:
totalgroups = (len(outdirs) + ngroup - 1) // ngroup
# FIXME: ngroup needs to be here as well.
for gidx in range(totalgroups):
sdatname = 'group_' + str(gidx) + "-" + dname + ".sdat"
path = os.path.join(docdir, sdatname)
if os.path.isfile(path):
secondary.append(path)
return primary, secondary
def by_dat(runs):
r = {}
for dat in runs[0].dats.values():
dstem = dat.path.stem
r[dstem] = {
run.path: run.dats[dstem]
for run in runs if dstem in run.dats
}
return r
def to_data_frames(primaries, secondaries):
import pandas
data_frames = []
for primary in primaries:
df = pandas.read_csv(primary, delimiter='\t', comment='#')
data_frames.append(df)
for i, secondary in enumerate(secondaries):
df = pandas.read_csv(secondary, delimiter='\t', comment='#')
data_frames[i + 1] = data_frames[i + 1].merge(df,
how='left',
on='token',
suffixes=('', '_y'))
return data_frames
def write_pts_dat(fname, records, meta={}):
"""Write data to *.ptsdat"""
write_csv(fname, records, meta=meta, overwrite=True)
|