1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
.. simple_examples
Simple Examples
===============
RocketCEA always begins with an import statement and an instance of a CEA_obj::
from rocketcea.cea_obj import CEA_Obj
C = CEA_Obj( oxName='LOX', fuelName='LH2')
If the above is done at a command prompt, we can query the CEA_Obj as shown below::
>>> from rocketcea.cea_obj import CEA_Obj
>>> C = CEA_Obj( oxName='LOX', fuelName='LH2')
>>> C.get_Isp(Pc=100.0, MR=1.0, eps=40.0)
374.3036176557629
>>> C.get_Isp(Pc=100.0, MR=6.0, eps=40.0)
448.190232998362
Note that the number of significant figures in the Isp above are much higher than in the standard CEA output.
While there is likely no physical significance to this, it can sometimes be useful numerically in
computations that take derivatives of Isp with respect to a design variable. (for example optimizers.)
Simple SI Units Example
-----------------------
By importing CEA_Obj from **cea_obj_w_units** instead of **cea_obj**, all of the I/O
units can be changed from the default units (i.e. ft, lbm, BTU, degR, etc.).
The above example in English units is recreated below with SI units(chamber pressure input in MPa).
Notice that CEA_Obj is created with **pressure_units='MPa'** as an input parameter.
(For ease of comparison, the 100 psia input value of Pc from above is converted to MPa as 100/145.037738.)::
>>> from rocketcea.cea_obj_w_units import CEA_Obj
>>> C = CEA_Obj( oxName='LOX', fuelName='LH2', pressure_units='MPa')
>>> C.get_Isp(Pc=100.0 /145.037738, MR=1.0, eps=40.0)
374.30361765576265
>>> C.get_Isp(Pc=100.0 /145.037738, MR=6.0, eps=40.0)
448.1902329983554
All of the units may be specified by changing the CEA_Obj inputs from the defaults
given below, to the desired units shown as comments.
Simply include an input parameter in the creation of CEA_Obj as shown above with pressure_units.::
isp_units = 'sec', # N-s/kg, m/s, km/s
cstar_units = 'ft/sec', # m/s
pressure_units = 'psia', # MPa, KPa, Pa, Bar, Atm, Torr
temperature_units = 'degR', # K, C, F
sonic_velocity_units = 'ft/sec', # m/s
enthalpy_units = 'BTU/lbm', # J/g, kJ/kg, J/kg, kcal/kg, cal/g
density_units = 'lbm/cuft', # g/cc, sg, kg/m^3
specific_heat_units = 'BTU/lbm degR' # kJ/kg-K, cal/g-C, J/kg-K
viscosity_units = 'millipoise' # lbf-sec/sqin, lbf-sec/sqft, lbm/ft-sec, poise, centipoise
thermal_cond_units = 'mcal/cm-K-s' # millical/cm-degK-sec, BTU/hr-ft-degF, BTU/s-in-degF,
# cal/s-cm-degC, W/cm-degC
.. note::
If the units you desire are not shown above, your units may be added by importing
**add_user_units** from **rocketcea.units** and calling it prior to
creating CEA_Obj. For example MPa was added with the line.
add_user_units('psia', 'MPa', 0.00689475729) # multiplier = user units / default units
N2O4/MMH Performance
--------------------
Successive queries of the CEA_Obj can be made to create tables of information.
The script below will make a table of N2O4/MMH performance data.
.. literalinclude:: ./_static/example_scripts/perf_table.py
The resulting table is shown below::
Pc(psia) AreaRatio MixtureRatio IspVac(sec) Cstar(ft/sec) Tc(degR) MolWt gamma
250.0 50.0 1.0 306.1 5378.5 4243.4 16.73 1.2539
250.0 50.0 1.1 311.6 5476.1 4532.8 17.39 1.2377
250.0 50.0 1.2 316.7 5554.9 4791.1 18.03 1.2216
250.0 50.0 1.3 321.4 5617.1 5018.0 18.63 1.2062
250.0 50.0 1.4 325.6 5664.5 5214.0 19.21 1.1918
250.0 50.0 1.5 329.3 5698.4 5379.7 19.75 1.1786
250.0 50.0 1.6 332.4 5719.6 5515.7 20.26 1.1668
250.0 50.0 1.7 335.1 5728.7 5623.4 20.74 1.1569
250.0 50.0 1.8 337.4 5726.4 5704.9 21.19 1.1489
250.0 50.0 1.9 339.3 5713.9 5763.2 21.60 1.1428
250.0 50.0 2.0 340.8 5692.9 5801.9 21.99 1.1384
250.0 50.0 2.1 341.9 5665.4 5824.6 22.34 1.1353
250.0 50.0 2.2 342.7 5633.5 5834.8 22.67 1.1333
250.0 50.0 2.3 343.0 5598.6 5835.2 22.98 1.1319
250.0 50.0 2.4 342.8 5562.1 5828.0 23.27 1.1311
250.0 50.0 2.5 341.6 5524.8 5814.9 23.54 1.1307
250.0 50.0 2.6 338.7 5487.2 5797.4 23.79 1.1305
250.0 50.0 2.7 335.5 5449.7 5776.3 24.03 1.1306
250.0 50.0 2.8 332.4 5412.5 5752.5 24.25 1.1308
250.0 50.0 2.9 329.3 5375.8 5726.4 24.47 1.1311
LOX/LH2 Delta V
---------------
Conducting an analysis with RocketCEA is much easier than the standard approach to running CEA and
reviewing the pages of CEA output (as we did in the LOX/LH2 example from :ref:`Standard Examples <std_examples_link>`)
We can query the CEA_Obj instance repeatedly for specific information, as opposed to simply printing a page of CEA output.
If we wanted to run some deltaV calculations on a LOX/LH2 stage to see what impact changing the engine's area ratio
would have, we might do the following.
.. literalinclude:: ./_static/example_scripts/deltav_calc.py
The script above calls RocketCEA for a number of area ratio values to get ideal vacuum Isp.
An efficiency is applied to that ideal Isp to arrive at a delivered Isp.
The delivered Isp is then used to calculate a stage deltaV.
The script gives the following output::
Pc(psia) AreaRatio MixtureRatio IspVac(sec) IspDel(sec) deltaV(ft/sec)
475.0 84.0 5.88 464.9 450.5 21392.5
475.0 100.0 5.88 467.7 453.2 21518.6
475.0 150.0 5.88 473.5 458.8 21785.7
475.0 200.0 5.88 477.1 462.3 21954.9
475.0 250.0 5.88 479.8 464.9 22075.5
475.0 280.0 5.88 481.0 466.1 22133.4
|