File: DeNovoIndex.java

package info (click to toggle)
rockhopper 2.0.3%2Bdfsg2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 33,136 kB
  • sloc: java: 10,831; sh: 31; xml: 29; makefile: 14
file content (568 lines) | stat: -rw-r----- 18,531 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/*
 * Copyright 2014 Brian Tjaden
 *
 * This file is part of Rockhopper.
 *
 * Rockhopper is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * Rockhopper is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * (in the file gpl.txt) along with Rockhopper.  
 * If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.ArrayList;
import java.util.Random;
import java.util.concurrent.atomic.AtomicIntegerArray;
import java.util.concurrent.atomic.AtomicLongArray;

public class DeNovoIndex {

    /********************************************
     **********   Instance Variables   **********
     ********************************************/

    public String sequence;  // Concatenated transcripts (separated by '^' with '$' at end)
    private int length;       // Length of sequence
    private int[] rotations;  // Burrows-Wheeler matrix of cyclic rotations
    private String BWT;       // Borrows-Wheeler transform of original sequence
    private boolean stopAfterOneHit;  // Report only one mapping as opposed to all mappings
    public AtomicIntegerArray[] readCounts;  // Number of reads mapping to each nt of each transcript from each sequencing reads file
    private AtomicIntegerArray numReads;         // Num reads from each file
    private AtomicIntegerArray numMappingReads;  // Num reads from each file mapping to transcripts
    private AtomicLongArray avgLengthReads;      // Avg length of mapping reads from each file

    private int[] C;          // Number of chars lexicographically less than...
    private int[][] occ;      // Number of occurrences of char up to row...



    /*****************************************
     **********   Class Variables   **********
     *****************************************/

    private static Random rand = new Random();



    /**************************************
     **********   Constructors   **********
     **************************************/

    public DeNovoIndex(ArrayList<StringBuilder> transcripts) {
	StringBuilder sb = new StringBuilder();
	for (StringBuilder transcript : transcripts) {
	    sb.append(transcript);
	    sb.append('^');
	}
	sb.append('$');
	this.sequence = sb.toString();
	this.length = sequence.length();
	this.rotations = rotations();
	this.BWT = getTransform();
	precomputeCharacterInfo();  // Populate "C" and "occ" instance variables
    }



    /*************************************************
     **********   Public Instance Methods   **********
     *************************************************/

    /**
     * Returns true if s is in index, false otherwise.
     */
    public boolean exactMatch(String s) {
	return exactMatch(s, 0, s.length());
    }

    /**
     * Returns true if s[start:end] is in index, false otherwise.
     * Note "start" is inclusive and "end" is exclusive.
     */
    public boolean exactMatch(String s, int start, int end) {
	int i = end - 1;
	char c = s.charAt(i);
	int sp = getC(Dictionary.charToInt(c));
	int ep = -1;
	if (Dictionary.charToInt(c) < 4) ep = getC(Dictionary.charToInt(c)+1);
	else ep = length;
	i--;
	while ((sp < ep) && (i >= start)) {
	    int index = Dictionary.charToInt(s.charAt(i));
	    sp = getC(index) + getOcc(index, sp);
	    ep = getC(index) + getOcc(index, ep);
	    i--;
	}
	if (ep > sp) return true;
	return false;
    }

    /**
     * Tallies the number of full length reads mapping to 
     * each nucleotide of each transcript.
     * If full length read does not map EXACTLY, then the
     * tally is not incremented.
     */
    public void exactMatch_fullRead(String s) {
	numReads.getAndIncrement(Assembler.readsFileIndex);
	int start = 0;
	int end = s.length();
	int i = end - 1;
	char c = s.charAt(i);
	int sp = getC(Dictionary.charToInt(c));
	int ep = -1;
	if (Dictionary.charToInt(c) < 4) ep = getC(Dictionary.charToInt(c)+1);
	else ep = length;
	i--;
	while ((sp < ep) && (i >= start)) {
	    int index = Dictionary.charToInt(s.charAt(i));
	    sp = getC(index) + getOcc(index, sp);
	    ep = getC(index) + getOcc(index, ep);
	    i--;
	}
	if (!stopAfterOneHit) {  // Report all mappings of read
	    for (int j=sp; j<ep; j++) {
		for (int k=getRotations(j); k<getRotations(j)+s.length(); k++) readCounts[Assembler.readsFileIndex].incrementAndGet(k);
	    }
	    if (ep > sp) {
		avgLengthReads.getAndAdd(Assembler.readsFileIndex, s.length());
		numMappingReads.getAndIncrement(Assembler.readsFileIndex);
	    }
	} else {  // Report only one mapping of read
	    if (ep > sp) {
		int randIndex = sp + rand.nextInt(ep-sp);
		for (int k=getRotations(randIndex); k<getRotations(randIndex)+s.length(); k++) readCounts[Assembler.readsFileIndex].incrementAndGet(k);
		avgLengthReads.getAndAdd(Assembler.readsFileIndex, s.length());
		numMappingReads.getAndIncrement(Assembler.readsFileIndex);
	    }
	}
    }

    /**
     * Tallies the number of full length *paired-end* reads mapping to 
     * each nucleotide of each transcript.
     * If full length *paired-end* read does not map EXACTLY, then the
     * tally is not incremented.
     */
    public void exactMatch_fullRead(String s, String s2) {
	numReads.getAndIncrement(Assembler.readsFileIndex);

	// Read 1
	int start = 0;
	int end = s.length();
	int i = end - 1;
	char c = s.charAt(i);
	int sp = getC(Dictionary.charToInt(c));
	int ep = -1;
	if (Dictionary.charToInt(c) < 4) ep = getC(Dictionary.charToInt(c)+1);
	else ep = length;
	i--;
	while ((sp < ep) && (i >= start)) {
	    int index = Dictionary.charToInt(s.charAt(i));
	    sp = getC(index) + getOcc(index, sp);
	    ep = getC(index) + getOcc(index, ep);
	    i--;
	}
	if (sp >= ep) return;

	// Read 2
	start = 0;
	end = s2.length();
	i = end - 1;
	c = s2.charAt(i);
	int sp2 = getC(Dictionary.charToInt(c));
	int ep2 = -1;
	if (Dictionary.charToInt(c) < 4) ep2 = getC(Dictionary.charToInt(c)+1);
	else ep2 = length;
	i--;
	while ((sp2 < ep2) && (i >= start)) {
	    int index = Dictionary.charToInt(s2.charAt(i));
	    sp2 = getC(index) + getOcc(index, sp2);
	    ep2 = getC(index) + getOcc(index, ep2);
	    i--;
	}
	if (sp2 >= ep2) return;

	// Combine paired-end hits
	ArrayList<Integer> hits1 = new ArrayList<Integer>(ep-sp);
	for (int j=sp; j<ep; j++) hits1.add(getRotations(j));
	ArrayList<Integer> hits2 = new ArrayList<Integer>(ep2-sp2);
	for (int j=sp2; j<ep2; j++) hits2.add(getRotations(j));
	ArrayList<Integer> starts = new ArrayList<Integer>();
	ArrayList<Integer> ends = new ArrayList<Integer>();
	combinePairedEndHits(s.length(), s2.length(), hits1, hits2, starts, ends);

	if (!stopAfterOneHit) {  // Report all mappings of read
	    int sum = 0;
	    for (int j=0; j<starts.size(); j++) {
		for (int k=starts.get(j); k<ends.get(j); k++) readCounts[Assembler.readsFileIndex].incrementAndGet(k);
		sum += ends.get(j) - starts.get(j);
	    }
	    if (starts.size() > 0) {
		avgLengthReads.getAndAdd(Assembler.readsFileIndex, sum/starts.size());
		numMappingReads.getAndIncrement(Assembler.readsFileIndex);
	    }
	} else {  // Report only one mapping of read
	    if (starts.size() > 0) {
		int randIndex = rand.nextInt(starts.size());
		for (int k=starts.get(randIndex); k<ends.get(randIndex); k++) readCounts[Assembler.readsFileIndex].incrementAndGet(k);
		avgLengthReads.getAndAdd(Assembler.readsFileIndex, ends.get(randIndex)-starts.get(randIndex));
		numMappingReads.getAndIncrement(Assembler.readsFileIndex);
	    }
	}
    }

    /**
     * Creates infrastructure to store information about
     * full length reads mapping to the length (rather
     * than just k-mers).
     */
    public void initializeReadMapping(boolean stopAfterOneHit) {
	int numReadsFiles = Assembler.readsFileIndex;
	readCounts = new AtomicIntegerArray[numReadsFiles];
	numReads = new AtomicIntegerArray(numReadsFiles);
	avgLengthReads = new AtomicLongArray(numReadsFiles);
	numMappingReads = new AtomicIntegerArray(numReadsFiles);
	for (int i=0; i<numReadsFiles; i++) readCounts[i] = new AtomicIntegerArray(length);
	this.stopAfterOneHit = stopAfterOneHit;
    }

    public int[] getAvgLengthOfReads() {
	int[] avgLengths = new int[avgLengthReads.length()];
	for (int i=0; i<avgLengths.length; i++) {
	    if (numMappingReads.get(i) == 0) avgLengths[i] = 0;
	    else avgLengths[i] = (int)(avgLengthReads.get(i)/numMappingReads.get(i));
	}
	return avgLengths;
    }

    /**
     * In the case of unstranded (strand ambiguous) reads,
     * we invoke exactMatch_fullRead twice, once per strand,
     * thereby double counting each read. Here we fix the
     * double dip.
     */
    public void halveReads(int fileIndex) {
	numReads.set(fileIndex, numReads.get(fileIndex)/2);
    }

    /**
     * Returns an array containing the total number of full-length reads
     * in each file.
     */
    public int[] getNumReads() {
	int[] reads = new int[numReads.length()];
	for (int i=0; i<reads.length; i++)
	    reads[i] = numReads.get(i);
	return reads;
    }

    /**
     * Returns an array containing the number of full-length reads
     * in each file mapping to assembled transcripts.
     */
    public int[] getNumMappingReads() {
	int[] mappingReads = new int[numMappingReads.length()];
	for (int i=0; i<mappingReads.length; i++)
	    mappingReads[i] = numMappingReads.get(i);
	return mappingReads;
    }

    /**
     * Returns the total number of full-length reads
     * in the specified file.
     */
    public int getNumReads(int fileIndex) {
	return numReads.get(fileIndex);
    }

    /**
     * Returns the number of full-length reads
     * in the specified file mapping to assembled transcripts.
     */
    public int getNumMappingReads(int fileIndex) {
	return numMappingReads.get(fileIndex);
    }

    /**
     * Returns a 2D array representating the total number of reads mapping to every nt
     * in each replicate.
     */
    public ArrayList<ArrayList<Long>> getTotalReads() {
	ArrayList<ArrayList<Long>> totalReads = new ArrayList<ArrayList<Long>>(Assembler.conditionFiles.size());
	int linearIndex = 0;
	for (int i=0; i<Assembler.conditionFiles.size(); i++) {
	    String[] files = Assembler.conditionFiles.get(i).split(",");
	    totalReads.add(new ArrayList<Long>(files.length));
	    for (int j=0; j<files.length; j++) {
		totalReads.get(i).add((long)0);
		for (int k=0; k<readCounts[linearIndex].length(); k++) {
		    totalReads.get(i).set(j, totalReads.get(i).get(j) + readCounts[linearIndex].get(k));
		}
		linearIndex++;
	    }
	}
	return totalReads;
    }



    /**************************************************
     **********   Private Instance Methods   **********
     **************************************************/

    // Return a row of the cyclic rotations matrix.
    private String getStringInRotationsMatrix(int row) {
	return sequence.substring(rotations[row]) + sequence.substring(0, rotations[row]);
    }

    // Reverse the BWT transform
    private String unpermute() {
	StringBuilder sb = new StringBuilder();
	int r = 0;
	while (BWT.charAt(r) != '$') {
	    sb.append(BWT.charAt(r));
	    r = stepLeft(r);
	}
	return sb.reverse().toString();
    }

    /**
     * Returns number of characters lexographically less than x.
     */
    private int getC(int x) {
	return this.C[x];
    }

    /**
     * Returns number of occurrences of character x up to row y.
     */
    private int getOcc(int x, int y) {
	return this.occ[x][y];
    }

    /**
     * Returns index in Burrows-Wheeler rotations matrix at row x.
     */
    private int getRotations(int x) {
	return this.rotations[x];
    }

    /**
     * Compute the Burrows-Wheeler matrix of cyclic rotations.
     * Rather than return a matrix, we return an array of integers
     * where each value in the array is an index into the sequence.
     * So a "row" of the matrix corresponds to the cyclic sequence
     * beginnning at the specified index. All rows of the matrix
     * have length equal to the length of the sequence.
     */
    private int[] rotations() {
	int[] indices = new int[this.length];
	for (int i=0; i<length; i++) indices[i] = i;
	quicksort(indices, 0, length-1);
	return indices;
    }

    /**
     * Compute the Burrows-Wheeler transform from the "rotations"
     * matrix, i.e., the last column of the matrix.
     */
    private String getTransform() {
	StringBuilder sb = new StringBuilder(length);
	for (int i=0; i<length; i++) {
	    sb.append(sequence.charAt((rotations[i]-1+length) % length));;
	}
	return sb.toString();
    }

    /**
     * Precompute information about how often each character occurs in BWT
     */
    private void precomputeCharacterInfo() {

	// Populate instance variable "C"
	this.C = new int[6];  // All characters in DNA sequence have
	                      // ASCII value less than 123.
	for (int i=0; i<length; i++) C[Dictionary.charToInt(BWT.charAt(i))] += 1;

	// Cumulative
	int[] temp = new int[6];
	temp[0] = C[0] + C[5];  // Number of characters <= 'A'
	temp[5] = C[5];         // Number of characters <= '$'
	for (int i=1; i<5; i++) temp[i] = C[i] + temp[i-1];

	// Strictly less than
	for (int i=0; i<6; i++) C[i] = temp[i] - C[i];

	// Populate instance variable "occ"
	this.occ = new int[5][length+1];
	for (int i=0; i<length; i++) {
	    for (int j=0; j<5; j++) {
		occ[j][i+1] = occ[j][i];
	    }
	    int index = Dictionary.charToInt(BWT.charAt(i));
	    if ((index >= 0) && (index < 5)) occ[index][i+1]++;
	}
    }

    /**
     * Helper method for Burrows-Wheeler transform.
     * Taken from appendix of Bowtie article.
     */
    private int stepLeft(int r) {
	int index = Dictionary.charToInt(BWT.charAt(r));
	return C[index] + occ[index][r];
    }

    /**
     * We quicksort the array. But we don't sort the values at
     * each array index, since each value is an index 
     * corresponding to a String. We sort the Strings specified
     * by each array index.
     */
    private void quicksort(int[] a, int p, int r) {
	if (p < r) {
	    int q = partition(a, p, r);
	    quicksort(a, p, q-1);
	    quicksort(a, q+1, r);
	}
    }

    /**
     * Quicksort helper method
     */
    private int partition(int[] a, int p, int r) {
	int x = rand.nextInt(r - p + 1) + p;
	swap(a, x, r);
	x = a[r];
	int i = p-1;
	for (int j=p; j<r; j++) {
	    if (lessThanOrEqualTo(a[j], x)) {  // a[j] <= x
		i++;
		swap(a, i, j);
	    }
	}
	swap(a, i+1, r);
	return i+1;
    }

    /**
     * Quicksort partition helper method
     */
    private void swap(int a[], int i, int j) {
	int temp = a[i];
	a[i] = a[j];
	a[j] = temp;
    }

    /**
     * Given two indices in "sequence", determine whether the
     * cyclic String corresponding to the first index is less 
     * than or equal to the cyclic String corresponding to
     * the second index.
     */
    private boolean lessThanOrEqualTo(int i, int j) {
	for (int z=0; z<length; z++) {
	    if (sequence.charAt((i+z)%length) < sequence.charAt((j+z)%length))
		return true;
	    if (sequence.charAt((i+z)%length) > sequence.charAt((j+z)%length))
		return false;

	}
	return true;  // We have equality of the two Strings
    }



    /**********************************************
     **********   Public Class Methods   **********
     **********************************************/



    /***********************************************
     **********   Private Class Methods   **********
     ***********************************************/

    /**
     * Combines two lists of exact matches, one for each read in a paired-end read,
     * into parallel lists of coordinates of paired-end matches. A combined match occurs when
     * there are matches from each of the two input lists that are
     * within the specified distance from each other.
     */
    private static void combinePairedEndHits(int length1, int length2, ArrayList<Integer> hits1, ArrayList<Integer> hits2, ArrayList<Integer> starts, ArrayList<Integer> ends) {
	for (Integer start1 : hits1) {
	    for (int z=0; z<hits2.size(); z++) {
		Integer start2 = hits2.get(z);
		if ((start1.compareTo(start2) <= 0) && (start2+length2-start1 <= Assembler.maxPairedEndLength)) {
		    starts.add(start1);
		    ends.add(start2+length2);
		    hits2.remove(z);
		    break;
		}
		if ((start2.compareTo(start1) <= 0) && (start1+length1-start2 <= Assembler.maxPairedEndLength)) {
		    starts.add(start2);
		    ends.add(start1+length1);
		    hits2.remove(z);
		    break;
		}
	    }
	}
    }



    /*************************************
     **********   Main Method   **********
     *************************************/

    public static void main(String[] args) {

	// Test DeNovoIndex class
	StringBuilder sb1 = new StringBuilder("AAAAACCCCCGGGGGTTTTT");
	StringBuilder sb2 = new StringBuilder("AAAAAAAAAAAAAAAAAAAA");
	StringBuilder sb3 = new StringBuilder("CCCCCCCCCCCCCCCCCCCC");
	StringBuilder sb4 = new StringBuilder("GTGTGTGTGTGTGTGTGTGT");
	ArrayList<StringBuilder> v = new ArrayList<StringBuilder>();
	v.add(sb1);
	v.add(sb2);
	v.add(sb3);
	v.add(sb4);
	Dictionary d = new Dictionary(25);  // Needed to populate alphabet_2
	DeNovoIndex index = new DeNovoIndex(v);
	System.out.println(index.sequence);
	System.out.println("Length:\t" + index.length);
	System.out.println();
	System.out.println(index.BWT);
	System.out.println();
	System.out.println(index.unpermute());
	System.out.println();

	String s1 = "AAAAA";
	System.out.println("Is exact match:\t" + s1 + "\t" + index.exactMatch(s1));
	String s2 = "TGTGT";
	System.out.println("Is exact match:\t" + s2 + "\t" + index.exactMatch(s2));
	String s3 = "CCGTG";
	System.out.println("Is exact match:\t" + s3 + "\t" + index.exactMatch(s3));
	String s4 = "ACAC";
	System.out.println("Is exact match:\t" + s4 + "\t" + index.exactMatch(s4));
	String s5 = "CCCCCCCCCCCCCCCCCCCC";
	System.out.println("Is exact match:\t" + s5 + "\t" + index.exactMatch(s5));
	String s6 = "CCCCCCCCCCCCCCCCCCCCC";
	System.out.println("Is exact match:\t" + s6 + "\t" + index.exactMatch(s6));
	String s7 = "AAAAAAAAAACCCCCCCCCC";
	System.out.println("Is exact match:\t" + s7 + "\t" + index.exactMatch(s7));
	String s8 = "GGGGGAAAAA";
	System.out.println("Is exact match:\t" + s8 + "\t" + index.exactMatch(s8));
    }

}