1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/*
* Copyright 2014 Brian Tjaden
*
* This file is part of Rockhopper.
*
* Rockhopper is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Rockhopper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* (in the file gpl.txt) along with Rockhopper.
* If not, see <http://www.gnu.org/licenses/>.
*/
import java.util.ArrayList;
import java.util.Random;
import java.util.concurrent.atomic.AtomicIntegerArray;
/**
* An instance of the DeNovoTranscripts class represents
* a collection of de novo assembled transcripts.
*/
public class DeNovoTranscripts {
/********************************************
********** Instance Variables **********
********************************************/
private ArrayList<DeNovoTranscript> transcripts;
private ArrayList<ArrayList<Long>> upperQuartiles;
private ArrayList<Integer> minDiffExpressionLevels; // Min diff expression level per condition
/*****************************************
********** Class Variables **********
*****************************************/
public static int[] avgLengthOfReads; // Avg length of mapping reads in each file
public static int[] numReads; // Total reads in each file
public static int[] numMappingReads; // Reads mapping to transcripts in each file
public static ArrayList<ArrayList<Long>> totalReads; // Total number of nt reads in each replicate
private static Random rand = new Random(); // Random number generator
/**************************************
********** CONSTRUCTORS **********
**************************************/
public DeNovoTranscripts(DeNovoIndex bwtIndex) {
DeNovoTranscripts.avgLengthOfReads = bwtIndex.getAvgLengthOfReads();
DeNovoTranscripts.numReads = bwtIndex.getNumReads();
DeNovoTranscripts.numMappingReads = bwtIndex.getNumMappingReads();
DeNovoTranscripts.totalReads = bwtIndex.getTotalReads();
transcripts = determineTranscripts(bwtIndex.sequence, bwtIndex.readCounts);
computeExpression();
}
/**
* Used when reading transcripts in from compressed file.
*/
public DeNovoTranscripts(ArrayList<DeNovoTranscript> transcripts) {
this.transcripts = transcripts;
}
/*************************************************
********** Public Instance Methods **********
*************************************************/
public int getNumTranscripts() {
return transcripts.size();
}
public DeNovoTranscript getTranscript(int i) {
return transcripts.get(i);
}
/**
* Returns the average transcript length.
*/
public int getAverageTranscriptLength() {
long length = 0;
if (transcripts.size() == 0) return 0;
for (DeNovoTranscript transcript : transcripts) length += transcript.length();
return (int)(length/transcripts.size());
}
/**
* Returns the median transcript length.
*/
public int getMedianTranscriptLength() {
ArrayList<Long> a = new ArrayList<Long>(transcripts.size());
for (DeNovoTranscript transcript : transcripts) a.add((long)transcript.length());
return (int)Misc.select_Long(a, a.size()/2);
}
/**
* Returns the sum of all transcript lengths.
*/
public long getTotalAssembledBases() {
long sum = 0;
for (DeNovoTranscript transcript : transcripts) sum += transcript.length();
return sum;
}
public String getTranscriptSequences() {
StringBuilder sb = new StringBuilder();
for (int z=0; z<transcripts.size(); z++) sb.append(transcripts.get(z).sequence() + "\n");
return sb.toString();
}
public void computeDifferentialExpression() {
computeVarianceAndLowess();
for (DeNovoTranscript transcript : transcripts) transcript.computeDifferentialExpression();
correctPvalues();
}
/**
* The background probabilty decreases as the number of reads increases.
* We use this fact to estimate a minimum level of expression necessary
* for us to be able to compute a p-value of differential expression.
* For a given Condition, we ensure that all Replicates meet the
* expression threshold.
* Currently, the expression threshold is set (based on anecdote and
* experience) to 0.005.
*/
public void setMinDiffExpressionLevels(DeNovoIndex bwtIndex) {
double THRESHOLD = 0.005;
String allSequences = bwtIndex.sequence;
AtomicIntegerArray[] readCounts = bwtIndex.readCounts;
int backgroundLength = 2;
int linearIndex = 0;
minDiffExpressionLevels = new ArrayList<Integer>(Assembler.conditionFiles.size());
for (int i=0; i<Assembler.conditionFiles.size(); i++) { // For each condition
String[] files = Assembler.conditionFiles.get(i).split(",");
int[][] background = new int[files.length][backgroundLength];
double[] backgroundParameter = new double[files.length]; // Parameter of geometric distribution of background reads. One per replicate in current condition.
for (int j=0; j<files.length; j++) { // For each replicate
// Populate background for current replicate
for (int z=0; z<allSequences.length()-1; z++) { // We go to length-1 to ignore final '$'
if (readCounts[linearIndex].get(z) < background[j].length) background[j][readCounts[linearIndex].get(z)]++;
else background[j][background[j].length-1]++;
}
// Compute background parameter for current replicate
for (int k=0; k<backgroundLength-1; k++) backgroundParameter[j] += background[j][k];
backgroundParameter[j] /= (3.0*1.0*allSequences.length()); // We use 3.0*1.0 since there is only one strand
linearIndex++;
}
// Compute minDiffExpressionLevel for current condition
int minDiffExpressionLevel = 0;
while (true) {
boolean foundThreshold = true;
for (int j=0; j<files.length; j++) {
double backgroundProb = Math.pow(1.0 - backgroundParameter[j], minDiffExpressionLevel) * backgroundParameter[j]; // Based on geometric distribution
if (backgroundProb >= THRESHOLD)
foundThreshold = false;
}
if (foundThreshold) break;
minDiffExpressionLevel++;
}
minDiffExpressionLevels.add(minDiffExpressionLevel);
}
}
public String toString(String[] labels) {
// Include Header
StringBuilder sb = new StringBuilder();
sb.append("Sequence" + "\t" + "Length");
for (int i=0; i<Assembler.conditionFiles.size(); i++) {
String conditionName = "" + (i+1);
if ((labels != null) && (labels.length == Assembler.conditionFiles.size())) conditionName = labels[i];
if (Assembler.verbose) { // Verbose output
String[] files = Assembler.conditionFiles.get(i).split(",");
if (files.length == 1) {
sb.append("\t" + "Raw Counts " + conditionName);
sb.append("\t" + "Normalized Counts " + conditionName);
} else {
for (int j=0; j<files.length; j++) sb.append("\t" + "Raw Counts " + conditionName + " Replicate " + (j+1));
for (int j=0; j<files.length; j++) sb.append("\t" + "Normalized Counts " + conditionName + " Replicate " + (j+1));
}
sb.append("\t" + "RPKM " + conditionName);
}
sb.append("\t" + "Expression " + conditionName);
}
for (int x=0; x<Assembler.conditionFiles.size()-1; x++) { // First in pair
String conditionName1 = "" + (x+1);
if ((labels != null) && (labels.length == Assembler.conditionFiles.size())) conditionName1 = labels[x];
for (int y=x+1; y<Assembler.conditionFiles.size(); y++) { // Second in pair
String conditionName2 = "" + (y+1);
if ((labels != null) && (labels.length == Assembler.conditionFiles.size())) conditionName2 = labels[y];
if (Assembler.verbose) // Verbose output
sb.append("\t" + "pValue " + conditionName1 + " vs " + conditionName2);
sb.append("\t" + "qValue " + conditionName1 + " vs " + conditionName2);
}
}
sb.append("\n");
// Output each transcript
for (int z=0; z<transcripts.size(); z++) sb.append(transcripts.get(z) + "\n");
return sb.toString();
}
/**************************************************
********** Private Instance Methods **********
**************************************************/
/**
* Determine transcripts based on DeNovoIndex.
*/
private ArrayList<DeNovoTranscript> determineTranscripts(String allSequences, AtomicIntegerArray[] readCounts) {
ArrayList<DeNovoTranscript> transcripts = new ArrayList<DeNovoTranscript>();
int start = -1; // -1 is sentinel indicating no transcript
int end = -1; // inclusive
long[] readCounts_nts = new long[readCounts.length];
for (int i=0; i<allSequences.length()-1; i++) { // We go to length-1 to ignore final '$'
if (allSequences.charAt(i) == '^') { // End of transcript.
if ((start >= 0) && (end-start+1 >= Assembler.minTranscriptLength)) transcripts.add(new DeNovoTranscript(allSequences.substring(start, end+1), readCounts_nts));
start = -1;
end = -1;
for (int j=0; j<readCounts.length; j++) readCounts_nts[j] = 0;
} else { // Within transcript
if ((start < 0) && (getReadCountAtIndex(readCounts, i) >= Assembler.MIN_READS_MAPPING)) { // Start of new expressed transcript
start = i;
for (int j=0; j<readCounts.length; j++) readCounts_nts[j] += readCounts[j].get(i);
}
if (getReadCountAtIndex(readCounts, i) >= Assembler.MIN_READS_MAPPING) { // Within expressed transcript
end = i;
for (int j=0; j<readCounts.length; j++) readCounts_nts[j] += readCounts[j].get(i);
} else { // It is possible expressed transcript just ended
if ((start >= 0) && (end-start+1 >= Assembler.minTranscriptLength)) transcripts.add(new DeNovoTranscript(allSequences.substring(start, end+1), readCounts_nts));
start = -1;
end = -1;
for (int j=0; j<readCounts.length; j++) readCounts_nts[j] = 0;
}
}
}
return transcripts;
}
/**
* For each transcript, compute its normalized expression, RPKM, and
* mean expression in each condition and/or replicate.
*/
private void computeExpression() {
upperQuartiles = new ArrayList<ArrayList<Long>>(Assembler.conditionFiles.size());
for (int i=0; i<Assembler.conditionFiles.size(); i++) {
String[] files = Assembler.conditionFiles.get(i).split(",");
upperQuartiles.add(new ArrayList<Long>(files.length));
for (int j=0; j<files.length; j++) {
ArrayList<Long> expressions = new ArrayList<Long>(transcripts.size());
for (int k=0; k<transcripts.size(); k++) expressions.add(transcripts.get(k).getRawCountNTs(i, j));
long upperQuartile = Misc.select_Long(expressions, (int)(0.75*transcripts.size()));
upperQuartiles.get(i).add(upperQuartile);
for (int k=0; k<transcripts.size(); k++) transcripts.get(k).setNormalizedCount(i, j, 100000.0, upperQuartile);
}
for (int k=0; k<transcripts.size(); k++) transcripts.get(k).computeExpression(i);
}
}
/**
* For each transcripts, compute its expression variance and lowess
* in each condition.
*/
private void computeVarianceAndLowess() {
// Compute variance
for (int k=0; k<transcripts.size(); k++) transcripts.get(k).computeVariance(Assembler.conditionFiles.size());
// Compute Lowess
for (int x=0; x<Assembler.conditionFiles.size(); x++) { // First of pair
String[] files = Assembler.conditionFiles.get(x).split(",");
for (int y=0; y<Assembler.conditionFiles.size(); y++) { // Second of pair
if (x == y) continue; // No need to compute lowess for self
/*
if ((x > 0) && (files.length > 1)) { // We have replicates
for (DeNovoTranscript transcript : transcripts)
transcript.lowess[x][y] = transcript.lowess[0][y];
continue;
}
*/
/* (x,y) lowess is NOT the same as (y,x) lowess
String[] files2 = Assembler.conditionFiles.get(y).split(",");
if ((x > y) && (files.length == 1) && (files2.length == 1)) { // Already computed lowess[y][x], which is same as lowess[x][y]
for (DeNovoTranscript transcript : transcripts)
transcript.lowess[x][y] = transcript.lowess[y][x];
continue;
}
*/
double b = 0.0; // Bias correction term
for (int j=0; j<files.length; j++) {
b += 100000.0 / (double)upperQuartiles.get(x).get(j);
}
b /= files.length;
// Create list of gene expressions and list of gene variances
ArrayList<Long> expression = new ArrayList<Long>();
ArrayList<Long> variance = new ArrayList<Long>();
for (DeNovoTranscript transcript : transcripts) {
expression.add(transcript.getMean(x));
variance.add(transcript.variances[x][y]);
}
// Perform Lowess computation
ArrayList<Long> lowessVariance = Lowess.lowess(expression, variance);
// Uncomment to output data for Lowess graph to StdOut
//System.out.println("Mean" + "\t" + "Variance" + "\t" + "Lowess");
//for (int k=0; k<lowessVariance.size(); k++) System.out.println(expression.get(k) + "\t" + variance.get(k) + "\t" + ((long)(lowessVariance.get(k) - expression.get(k)*b)));
// Assign each gene its lowess variances (after subtracting bias correction term)
for (int k=0; k<transcripts.size(); k++) {
transcripts.get(k).lowess[x][y] = (long)(lowessVariance.get(k) - transcripts.get(k).getMean(x) * b);
}
}
}
}
/**
* Computes q-values for each transcript, i.e., corrected p-values,
* using Benjamini Hochberg correction.
*/
private void correctPvalues() {
if (transcripts.size() == 0) return;
int pValue_index = 0;
for (int x=0; x<transcripts.get(0).variances.length-1; x++) { // First in pair
for (int y=x+1; y<transcripts.get(0).variances.length; y++) { // Second in pair
int[] indices = new int[transcripts.size()];
double[] pvalues = new double[transcripts.size()];
for (int j=0; j<transcripts.size(); j++) {
DeNovoTranscript transcript = transcripts.get(j);
pvalues[j] = transcript.getPvalue(pValue_index);
indices[j] = j;
// Check if there is too little expression to compute a p-value
double e1 = transcript.getMean(x);
double e2 = transcript.getMean(y);
e1 /= transcript.length();
e2 /= transcript.length();
if ((e1 < minDiffExpressionLevels.get(x)) && (e2 < minDiffExpressionLevels.get(y)))
pvalues[j] = 1.0;
}
mergesort(pvalues, indices, 0, transcripts.size()-1);
double previous_BH_value = 0.0;
for (int k=0; k<pvalues.length; k++) {
double BH_value = pvalues[k] * transcripts.size() / (k+1);
BH_value = Math.min(BH_value, 1.0); // Disallow values greater than 1
// To preserve monotonicity, we take maximum to ensure we don't
// generate a value less than the previous value.
BH_value = Math.max(BH_value, previous_BH_value);
previous_BH_value = BH_value;
transcripts.get(indices[k]).setQvalue(pValue_index, BH_value);
}
pValue_index++;
}
}
}
/**
* For each condition, determines the other condition that is most similar,
* i.e., its "partner". If there are no replicate experiments then the
* partner of each condition is used as a surrogate replicate.
* Similarity between two conditions is measured by Pearson correlation
* coefficient of normalized gene expression.
* This method sets the "partner" of each condition.
*/
private void identifySimilarConditions() {
// Unused.
}
/**
* Returns the number of reads mapping to nucleotide index i
* summed over all sequencing read files.
*/
private int getReadCountAtIndex(AtomicIntegerArray[] readCounts, int index) {
int sum = 0;
for (int i=0; i<readCounts.length; i++) sum += readCounts[i].get(index);
return sum;
}
/**
* Mergesort parallel arrays "a" and "b" based on values in "a"
*/
private static void mergesort(double[] a, int[] b, int lo, int hi) {
if (lo < hi) {
int q = (lo+hi)/2;
mergesort(a, b, lo, q);
mergesort(a, b, q+1, hi);
merge(a, b, lo, q, hi);
}
}
/**
* Mergesort helper method
*/
private static void merge(double[] a, int[] b, int lo, int q, int hi) {
double[] a1 = new double[q-lo+1];
double[] a2 = new double[hi-q];
int[] b1 = new int[q-lo+1];
int[] b2 = new int[hi-q];
for (int i=0; i<a1.length; i++) {
a1[i] = a[lo+i];
b1[i] = b[lo+i];
}
for (int j=0; j<a2.length; j++) {
a2[j] = a[q+1+j];
b2[j] = b[q+1+j];
}
int i=0; // Index for first half arrays
int j=0; // Index for second half arrays
for (int k=lo; k<=hi; k++) {
if (i >= a1.length) {
a[k] = a2[j];
b[k] = b2[j];
j++;
} else if (j >= a2.length) {
a[k] = a1[i];
b[k] = b1[i];
i++;
} else if (a1[i] <= a2[j]) {
a[k] = a1[i];
b[k] = b1[i];
i++;
} else {
a[k] = a2[j];
b[k] = b2[j];
j++;
}
}
}
}
|