File: Transcripts.java

package info (click to toggle)
rockhopper 2.0.3%2Bdfsg2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 33,136 kB
  • sloc: java: 10,831; sh: 31; xml: 29; makefile: 14
file content (1005 lines) | stat: -rw-r----- 37,774 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
/*
 * Copyright 2013 Brian Tjaden
 *
 * This file is part of Rockhopper.
 *
 * Rockhopper is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * Rockhopper is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * (in the file gpl.txt) along with Rockhopper.  
 * If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.ArrayList;
import java.util.HashMap;
import java.io.File;
import java.io.PrintWriter;
import java.io.FileNotFoundException;

/**
 * The Transcript class identifies UTRs of genes as well
 * ncRNA transcripts based on RNA-seq data.
 */
public class Transcripts {

    /*****************************************
     **********   CLASS VARIABLES   **********
     *****************************************/

    //private static int WINDOW = 10;  // Number of nucleotides in sliding window



    /********************************************
     **********   INSTANCE VARIABLES   **********
     ********************************************/

    private Genome genome;
    private int z;  // Index of genome in list of all genomes
    private ArrayList<Condition> conditions;
    private boolean unstranded;        // Is RNA-seq data strand specific or ambiguous?
    private int num5UTRs = 0;          // Number of 5'UTRs
    private int num3UTRs = 0;          // Number of 3'UTRs
    private int numSenseRNAs = 0;      // Number of sense ncRNAs
    private int numAntisenseRNAs = 0;  // Number of antisense ncRNAs
    //public long[] distribution = new long[201];  // Distribution of expressed gene reads



    /**************************************
     **********   CONSTRUCTORS   **********
     **************************************/

    public Transcripts(int z, Genome genome, ArrayList<Condition> conditions, boolean unstranded) {
	this.z = z;
	this.genome = genome;
	this.conditions = conditions;
	this.unstranded = unstranded;
    }



    /*************************************************
     **********   PUBLIC INSTANCE METHODS   **********
     *************************************************/

    /**
     * Returns the number of 5'UTRs.
     */ 
    public int getNum5UTRs() {
	return this.num5UTRs;
    }

    /**
     * Returns the number of 3'UTRs.
     */ 
    public int getNum3UTRs() {
	return this.num3UTRs;
    }

    /**
     * Returns the number of sense ncRNAs.
     */ 
    public int getNumSenseRNAs() {
	return this.numSenseRNAs;
    }

    /**
     * Returns the number of antisense ncRNAs.
     */ 
    public int getNumAntisenseRNAs() {
	return this.numAntisenseRNAs;
    }

    /**
     * For each gene, identify its 5'UTR and 3'UTR based on
     * the expression data.
     */
    public void identifyUTRs() {
	for (int x=0; x<genome.numGenes()+1; x++) {  // For each IG region
	    Gene g1 = null;
	    Gene g2 = null;

	    // Identify downstream gene and IG stop coordinate
	    if (x == genome.numGenes()) g2 = new Gene((genome.size()-1) + ".." + (genome.size()-1) + "\t" + genome.getGene(x-1).getStrand() + "\t" + "0" + "\t" + "-" + "\t" + "???" + "\t" + "???" + "\t" + "-" + "\t" + "-" + "\t" + "???", "ORF");
	    else g2 = genome.getGene(x);
	    int stop = Math.min(g2.getStart(), g2.getStop()) - 1;
	    if (!g2.isORF()) stop = g2.getMinCoordinate() - 1;

	    // Identify upstream gene and IG start coordinate
	    int start = 1;
	    int upstreamGeneIndex = x-1;
	    while (upstreamGeneIndex >= 0) {
		if (unstranded) {  // Strand ambiguous
		    start = Math.max(genome.getGene(upstreamGeneIndex).getStart(), genome.getGene(upstreamGeneIndex).getStop()) + 1;
		    if (!genome.getGene(upstreamGeneIndex).isORF()) start = genome.getGene(upstreamGeneIndex).getMaxCoordinate() + 1;
		    break;
		} else {  // Strand specific
		    if (g2.getStrand() == genome.getGene(upstreamGeneIndex).getStrand()) {
			start = Math.max(genome.getGene(upstreamGeneIndex).getStart(), genome.getGene(upstreamGeneIndex).getStop()) + 1;
			if (!genome.getGene(upstreamGeneIndex).isORF()) start = genome.getGene(upstreamGeneIndex).getMaxCoordinate() + 1;
			break;
		    }
		    upstreamGeneIndex--;
		}
	    }
	    if (upstreamGeneIndex < 0) g1 = new Gene(1 + ".." + 1 + "\t" + g2.getStrand() + "\t" + "0" + "\t" + "-" + "\t" + "???" + "\t" + "???" + "\t" + "-" + "\t" + "-" + "\t" + "???", "ORF");
	    else g1 = genome.getGene(upstreamGeneIndex);

	    int IG_length = stop - start + 1;
	    if (IG_length <= 0) continue;  // No action necessary if there is no IG region.

	    int frontUTR_length_merged = -1;
	    int backUTR_length_merged = -1;
	    for (int i=0; i<conditions.size(); i++) {
		for (int j=0; j<conditions.get(i).numReplicates(); j++) {

		    Replicate r = conditions.get(i).getReplicate(j);

		    // Get UTR lengths
		    int frontUTR_length = getUTR_length(g1, start, stop, r, true);
		    int backUTR_length = getUTR_length(g2, start, stop, r, false);

		    // Distinguish overlapping UTRs
		    if ((frontUTR_length > 0) && (backUTR_length > 0) &&
			(Math.max(g1.getStart(), g1.getStop()) + frontUTR_length >= Math.min(g2.getStart(), g2.getStop()) - backUTR_length)) {

			// Determine mean of genes' expression
			double mean1 = r.getMeanOfRange(z, g1.getStart(), g1.getStop(), g1.getStrand());
			double mean2 = r.getMeanOfRange(z, g2.getStart(), g2.getStop(), g2.getStrand());
			if (unstranded) {
			    mean1 = r.getMeanOfRange(z, g1.getStart(), g1.getStop(), '?');
			    mean2 = r.getMeanOfRange(z, g2.getStart(), g2.getStop(), '?');
			}

			int overlapStart = Math.min(g2.getStart(), g2.getStop()) - backUTR_length;
			int overlapStop = Math.max(g1.getStart(), g1.getStop()) + frontUTR_length;
			//while ((overlapStart < Math.min(g2.getStart(), g2.getStop())) && (getPoissonPDF(r.getReads(overlapStart, g1.getStrand()), mean1) > getPoissonPDF(r.getReads(overlapStart, g2.getStrand()), mean2))) overlapStart++;
			if (!unstranded) {  // Strand specific
			    while ((overlapStart <= overlapStop) && (Math.abs(r.getReads(z, overlapStart, g1.getStrand()) - mean1) < Math.abs(r.getReads(z, overlapStart, g2.getStrand()) - mean2))) overlapStart++;
			    //while ((overlapStop > Math.max(g1.getStart(), g1.getStop())) && (getPoissonPDF(r.getReads(overlapStop, g1.getStrand()), mean1) < getPoissonPDF(r.getReads(overlapStop, g2.getStrand()), mean2))) overlapStop--;
			    while ((overlapStop >= overlapStart) && (Math.abs(r.getReads(z, overlapStop, g1.getStrand()) - mean1) > Math.abs(r.getReads(z, overlapStop, g2.getStrand()) - mean2))) overlapStop--;
			} else {  // Strand ambiguous
			    while ((overlapStart <= overlapStop) && (Math.abs(r.getReads(z, overlapStart, '?') - mean1) < Math.abs(r.getReads(z, overlapStart, '?') - mean2))) overlapStart++;
			    while ((overlapStop >= overlapStart) && (Math.abs(r.getReads(z, overlapStop, '?') - mean1) > Math.abs(r.getReads(z, overlapStop, '?') - mean2))) overlapStop--;
			}
			if (overlapStop - overlapStart < -1)
			    Rockhopper.output("Error - overlapping UTR region has invalid size.\n");
			else if (overlapStop - overlapStart == -1) {
			    // Do nothing. There is no overlap.
			} else {  // We still have overlapping UTR regions
			    double mean_of_overlap = r.getMeanOfRange(z, overlapStart, overlapStop, g1.getStrand());
			    if (unstranded) mean_of_overlap = r.getMeanOfRange(z, overlapStart, overlapStop, '?');
			    if (Math.abs(mean_of_overlap - mean1) <= Math.abs(mean_of_overlap - mean2))
				overlapStart = overlapStop + 1;
			    else overlapStop = overlapStart - 1;
			    //double prob1 = 1.0;
			    //double prob2 = 1.0;
			    //for (int y=overlapStart; y<=overlapStop; y++) {
			    //prob1 *= getPoissonPDF(r.getReads(y, g1.getStrand()), mean1);
			    //prob2 *= getPoissonPDF(r.getReads(y, g2.getStrand()), mean2);
			    //}
			    //if (prob1 >= prob2) overlapStart = overlapStop + 1;
			    //else overlapStop = overlapStart - 1;
			}
			frontUTR_length = overlapStart - (Math.max(g1.getStart(), g1.getStop()) + 1);
			backUTR_length = Math.min(g2.getStart(), g2.getStop()) - 1 - overlapStop;
		    }

		    // Merge UTRs from different experiments
		    //frontUTR_length_merged = Math.max(frontUTR_length_merged, frontUTR_length);
		    if (frontUTR_length_merged == -1) frontUTR_length_merged = frontUTR_length;
		    else if (frontUTR_length_merged == 0) frontUTR_length_merged = Math.max(frontUTR_length_merged, frontUTR_length);
		    else frontUTR_length_merged = Math.min(frontUTR_length_merged, frontUTR_length);
		    //backUTR_length_merged = Math.max(backUTR_length_merged, backUTR_length);
		    if (backUTR_length_merged == -1) backUTR_length_merged = backUTR_length;
		    else if (backUTR_length_merged == 0) backUTR_length_merged = Math.max(backUTR_length_merged, backUTR_length);
		    else backUTR_length_merged = Math.min(backUTR_length_merged, backUTR_length);
		}
	    }

	    //  Update transcription start/stop of genes (if genes are expressed)
	    if (frontUTR_length_merged >= 0) {  // Gene is expressed and has flanking IG region
		if (g1.getStrand() == '+') g1.setStopT(g1.getStop() + frontUTR_length_merged);
		if (g1.getStrand() == '-') g1.setStartT(g1.getStart() + frontUTR_length_merged);
	    }
	    if (backUTR_length_merged >= 0) {  // Gene is expressed and has flanking IG region
		if (g2.getStrand() == '+') g2.setStartT(g2.getStart() - backUTR_length_merged);
		if (g2.getStrand() == '-') g2.setStopT(g2.getStop() - backUTR_length_merged);
	    }
	}

	// Keep track of the number of 5'UTRs and 3'UTRs
	for (int x=0; x<genome.numGenes(); x++) {
	    Gene g = genome.getGene(x);
	    if (g.isORF() && (g.getStartT() > 0) && (g.getStrand() == '+') && (g.getStart()-g.getStartT() > 0))
		num5UTRs++;
	    if (g.isORF() && (g.getStartT() > 0) && (g.getStrand() == '-') && (g.getStartT()-g.getStart() > 0))
		num5UTRs++;
	    if (g.isORF() && (g.getStopT() > 0) && (g.getStrand() == '+') && (g.getStopT()-g.getStop() > 0))
		num3UTRs++;
	    if (g.isORF() && (g.getStopT() > 0) && (g.getStrand() == '-') && (g.getStop()-g.getStopT() > 0))
		num3UTRs++;
	}
    }

    /**
     * For each IG, identify ncRNAs based on
     * the expression data.
     */
    public void identifyRNAs() {

	// Generate coordinate map of genes
	String[] genesPlus = new String[genome.size()+1];
	String[] genesMinus = new String[genome.size()+1];
	for (int i=0; i<genesPlus.length; i++) {
	    genesPlus[i] = "";
	    genesMinus[i] = "";
	}
	for (int i=0; i<genome.numGenes(); i++) {
	    Gene g = genome.getGene(i);
	    int geneStart = Math.min(g.getStart(), g.getStop());
	    int geneStop = Math.max(g.getStart(), g.getStop());
	    if (!g.isORF()) {
		geneStart = g.getMinCoordinate();
		geneStop = g.getMaxCoordinate();
	    }
	    String[] genes = genesPlus;  // Plus strand
	    if (g.getStrand() == '-') genes = genesMinus;  // Minus strand
	    for (int j=geneStart; j<=geneStop; j++) genes[j] = g.getName();
	}

	ArrayList<Gene> rnaGenes = new ArrayList<Gene>();  // List of new predicted RNAs
	for (int x=0; x<genome.numGenes()+1; x++) {  // For each IG region
	    Gene g1 = null;
	    Gene g2 = null;

	    // Identify downstream gene and IG stop coordinate
	    if (x == genome.numGenes()) g2 = new Gene((genome.size()-1) + ".." + (genome.size()-1) + "\t" + genome.getGene(x-1).getStrand() + "\t" + "0" + "\t" + "-" + "\t" + "???" + "\t" + "???" + "\t" + "-" + "\t" + "-" + "\t" + "???", "ORF");
	    else g2 = genome.getGene(x);
	    if (!g2.isORF()) continue;  // Do not predict novel ncRNAs near known RNA genes
	    int stop = g2.getMinCoordinate() - 1;

	    // Identify upstream gene and IG start coordinate
	    int start = 1;
	    int upstreamGeneIndex = x-1;
	    while (upstreamGeneIndex >= 0) {
		if (unstranded) {  // Strand ambiguous
		    start = genome.getGene(upstreamGeneIndex).getMaxCoordinate() + 1;
		    break;
		} else {  // Strand specific
		    if (g2.getStrand() == genome.getGene(upstreamGeneIndex).getStrand()) {
			start = genome.getGene(upstreamGeneIndex).getMaxCoordinate() + 1;
			break;
		    }
		    upstreamGeneIndex--;
		}
	    }
	    if (upstreamGeneIndex < 0) g1 = new Gene(1 + ".." + 1 + "\t" + g2.getStrand() + "\t" + "0" + "\t" + "-" + "\t" + "???" + "\t" + "???" + "\t" + "-" + "\t" + "-" + "\t" + "???", "ORF");
	    else g1 = genome.getGene(upstreamGeneIndex);
	    if (!g1.isORF()) continue;  // Do not predict novel ncRNAs near known RNA genes

	    // Determine strand
	    char strand = '?';
	    if (unstranded) strand = '?';  // Strand ambiguous
	    else if ((g1.getStrand() == '+') || (g2.getStrand() == '+')) strand = '+';  // Plus strand
	    else if ((g1.getStrand() == '-') || (g2.getStrand() == '-')) strand = '-';  // Minus strand
	    else strand = '?';

	    // No action necessary if there is no IG region.
	    if (stop - start + 1 <= 0) {
		//output_IG_to_file(g1, g2, strand, new ArrayList<RNA>(), "IGs/Strep/");
		continue;
	    }

	    ArrayList<RNA> rnas = new ArrayList<RNA>();
	    for (int i=0; i<conditions.size(); i++) {
		for (int j=0; j<conditions.get(i).numReplicates(); j++) {
		    // Find novel transcripts on both strands separately
		    identifyNovelTranscriptsInIG(rnas, conditions.get(i).getReplicate(j), start, stop, strand);
		}
	    }

	    // Merge novel RNA transcripts (from different experiments and nearby novel RNAs)
	    ArrayList<RNA> merged_RNAs = new ArrayList<RNA>();
	    if (unstranded) {  // Strand ambiguous
		merge_RNAs(g1, g2, '?', rnas, merged_RNAs);
	    } else {  // Strand specific
		merge_RNAs(g1, g2, '+', rnas, merged_RNAs);
		merge_RNAs(g1, g2, '-', rnas, merged_RNAs);
	    }
	    //output_IG_to_file(g1, g2, strand, merged_RNAs, "IGs/Strep/");

	    /*
	    if (merged_RNAs.size() > 0) {
		int IG_start = Math.max(g1.getStart(), g1.getStop()) + 1;
		int IG_stop = Math.min(g2.getStart(), g2.getStop()) - 1;
		if (!g1.isORF()) IG_start = g1.getMaxCoordinate() + 1;
		if (!g2.isORF()) IG_stop = g2.getMinCoordinate() - 1;
		Rockhopper.output(IG_start + "_" + IG_stop + "\t" + g1.getName() + "\t" + g1.getStrand() + "\t" + g2.getName() + "\t" + g2.getStrand() + "\t" + rnas.size() + "\t" + merged_RNAs.size() + "\n");
	    }
	    */

	    // Convert RNAs to Genes
	    for (int i=0; i<merged_RNAs.size(); i++) {
		String product = getAntisenseAnnotation(merged_RNAs.get(i), genesPlus, genesMinus);
		if (product.indexOf("antisense") >= 0) this.numAntisenseRNAs++;
		rnaGenes.add(new Gene(merged_RNAs.get(i).start + ".." + merged_RNAs.get(i).stop + "\t" + merged_RNAs.get(i).strand + "\t" + "0" + "\t" + "-" + "\t" + "-" + "\t" + "predicted RNA" + "\t" + "-" + "\t" + "-" + "\t" + getAntisenseAnnotation(merged_RNAs.get(i), genesPlus, genesMinus), "RNA"));
	    }
	}
	this.numSenseRNAs = rnaGenes.size() - this.numAntisenseRNAs;

	// Compute expression of each predicted RNA
	for (int i=0; i<rnaGenes.size(); i++) {
	    Gene g = rnaGenes.get(i);
	    for (int j=0; j<conditions.size(); j++) {
		for (int k=0; k<conditions.get(j).numReplicates(); k++) {
		    Replicate r = conditions.get(j).getReplicate(k);
		    long readsForGene = r.getReadsInRange(z, g.getMinCoordinate(), g.getMaxCoordinate(), g.getStrand());
		    g.setRawCount(j, k, readsForGene);  // Set raw counts for gene
		    if (r.getAvgLengthReads() == 0) g.setRawCount_reads(j, k, 0);
		    else g.setRawCount_reads(j, k, readsForGene/r.getAvgLengthReads());
		    //g.setNormalizedCount(j, k, Condition.getAvgUpperQuartile(), r.getUpperQuartile());
		    g.setNormalizedCount(j, k, 100000.0, r.getUpperQuartile());
		}
	    }

	    // Compute mean and RPKM for each gene in each condition
	    g.computeExpression(conditions);

	    // Compute variance for each gene in each condition
	    g.computeVariance(conditions);
	}

	// Add transcripts to list of genes
	genome.addPredictedRNAs(rnaGenes);
    }



    /**************************************************
     **********   PRIVATE INSTANCE METHODS   **********
     **************************************************/

    private int getUTR_length(Gene g, int start, int stop, Replicate r, boolean isFront) {

	// If we do not have a real gene but merely a place holder, do not compute UTR.
	if (g.getStart() == g.getStop()) return -1;

	// If we have an RNA gene rather than an ORF, do not compute UTR.
	if (!g.isORF()) return -1;

	// Determine strand
	char strand = g.getStrand();
	if (unstranded) strand = '?';

	// Determine mean of gene's expression
	double mean = r.getMeanOfRange(z, g.getStart(), g.getStop(), strand);
	if (mean < r.getMinExpressionUTR()) return -1;  // Gene is not expressed

	// Compute expression distribution
	/*
	double thresh = 1.0;
	if (mean >= thresh * r.getMinExpressionUTR()) {
	    int start2 = g.getStart();
	    int stop2 = g.getStop();
	    if (stop2 < start2) {  // Swap
		int temp = start2;
		start2 = stop2;
		stop2 = temp;
	    }
	    for (int i=start2; i<=stop2; i++) {
		int x = (int)Math.round(20000*((r.getMeanOfRange(z, i, i, strand) - mean) / stdev));
		if (Math.abs(x) >= distribution.length/2) x = (distribution.length/2)*(x/Math.abs(x));
		distribution[x+distribution.length/2]++;
	    }
	}
	*/
	
	//int[] IG = new int[stop-start+1+WINDOW];
	//if (isFront) {  // Front UTR
	//   for (int i=start-WINDOW/2; i<=Math.min(stop+WINDOW/2, genome.size()-1); i++) IG[i-start+WINDOW/2] = r.getReads(i, g.getStrand());
	//} else {  // Back UTR
	//    for (int i=stop+WINDOW/2; i>=Math.max(start-WINDOW/2,1); i--) IG[stop+WINDOW/2-i] = r.getReads(i, g.getStrand());
	//}
	int[] IG = new int[stop-start+1];
	if (isFront) {  // Front UTR
	    for (int i=start; i<=Math.min(stop, genome.size()-1); i++) IG[i-start] = r.getReads(z, i, strand);
	} else {  // Back UTR
	    for (int i=stop; i>=Math.max(start, 1); i--) IG[stop-i] = r.getReads(z, i, strand);
	}

	//for (int i=0; i<IG.length-WINDOW; i++) {
	for (int i=0; i<IG.length; i++) {

	    double SCALE = 1.5;
	    if (IG[i] == 0) return i;
	    if (IG[i] >= SCALE*mean) continue;
	    if (IG[i] >= SCALE*r.getMinExpressionUTR()) continue;
	    if (SCALE*r.getBackgroundProb(IG[i]) > getPoissonPDF(IG[i], mean)) return i;
	    else continue;
	    /*
	    // Quick check to see if we can easily classify the window as IG or UTR
	    int numZeros = 0;
	    int numExpressed = 0;
	    for (int j=i; j<i+WINDOW; j++) {
		if (IG[j] == 0) numZeros++;
		if (IG[j] >= mean) numExpressed++;
	    }
	    if (numZeros >= WINDOW/2) return i;
	    if (numExpressed >= WINDOW/2) continue;

	    // More extensive check if probability is closer to IG or UTR
	    double probIG = 1.0;
	    double probUTR = 1.0;
	    for (int j=i; j<i+WINDOW; j++) {
		probIG *= r.getBackgroundProb(IG[j]);
		probUTR *= getPoissonPDF(IG[j], mean);
	    }
	    if (probIG >= probUTR) return i;
	    */
	}
	//return IG.length-WINDOW;
	return IG.length;
    }

    /**
     * For a given IG region, identifies novel transcripts on the specified strand.
     * Each novel transcript is added to the list of "rnas".
     */
    private void identifyNovelTranscriptsInIG(ArrayList<RNA> rnas, Replicate r, int start, int stop, char strand) {

	// Search for a transcript seed, i.e., n consecutive nucleotides above some threshold.
	// Then we extend this seed in both directions.
	//int n = WINDOW/2;
	double THRESHOLD = r.getMinExpressionRNA() * 2.0;
	int MIN_RNA_LENGTH = 10;

	//int[] IG = new int[stop-start+1+WINDOW];
	//int startReadsForIG = Math.max(start-WINDOW/2, 1);
	//for (int i=startReadsForIG; i<=Math.min(stop+WINDOW/2, genome.size()-1); i++) IG[i-startReadsForIG] = r.getReads(i, strand);
	int[] IG = new int[stop-start+1];
	int startReadsForIG = Math.max(start, 1);
	for (int i=startReadsForIG; i<=Math.min(stop, genome.size()-1); i++) IG[i-startReadsForIG] = r.getReads(z, i, strand);

	//int i = WINDOW/2;
	int i = 0;
	int startT = -1;
	int stopT = -1;
	//while (i < IG.length-WINDOW-n+1) {
	while (i < IG.length) {
	    if ((IG[i] >= THRESHOLD) && (startT == -1)) {  // Start of new possible seed
		startT = i;
		stopT = i;
	    } else if ((IG[i] >= THRESHOLD) && (startT >= 0)) {  // Within possible seed
		stopT = i;
	    } else if ((IG[i] < THRESHOLD) && (startT == -1)) {  // Within non-seed
		// Do nothing
	    } else if ((IG[i] < THRESHOLD) && (startT >= 0)) {  // Just ended possible seed
		//if (stopT - startT + 1 >= n) {  // We have a seed
		if (stopT - startT + 1 >= MIN_RNA_LENGTH) {  // We have a seed

		    // Extend the seed downstream
		    //boolean done = (stopT == IG.length-WINDOW);
		    boolean done = (stopT == IG.length-1);
		    while (!done) {
			double mean = r.getMeanOfRange(z, startT, stopT, strand);
			if (mean < THRESHOLD) break;

			if ((IG[stopT+1] >= THRESHOLD) || (r.getBackgroundProb(IG[stopT+1]) <= getPoissonPDF(IG[stopT+1], mean))) stopT++;
			else break;
			done = (stopT == IG.length-1);
			/*
			double probIG = 1.0;
			double probRNA = 1.0;
			for (int j=stopT+1-WINDOW/2+1; j<Math.min(stopT+1+WINDOW/2+1,IG.length); j++) {
			    probIG *= r.getBackgroundProb(IG[j]);
			    probRNA *= getPoissonPDF(IG[j], mean);
			}
			if (probIG >= probRNA) break;
			stopT++;
			if (stopT == IG.length-1-WINDOW) done = true;
			*/
		    }

		    // Extend the seed upstream
		    //done = (startT == WINDOW/2);
		    done = (startT == 0);
		    while (!done) {
			double mean = r.getMeanOfRange(z, startT, stopT, strand);
			if (mean < THRESHOLD) break;

			if ((IG[startT-1] >= THRESHOLD) || (r.getBackgroundProb(IG[startT-1]) <= getPoissonPDF(IG[startT-1], mean))) startT--;
			else break;
			done = (startT == 0);
			/*
			double probIG = 1.0;
			double probRNA = 1.0;
			for (int j=startT-1+WINDOW/2-1; j>Math.max(startT-1-WINDOW/2-1,-1); j--) {
			    probIG *= r.getBackgroundProb(IG[j]);
			    probRNA *= getPoissonPDF(IG[j], mean);
			}
			if (probIG >= probRNA) break;
			startT--;
			if (startT == WINDOW/2) done = true;
			*/
		    }

		    // Add transcript to list
		    rnas.add(new RNA(start + startT, start + stopT, strand));

		    i = stopT;
		    startT = -1;
		} else {  // Seed is too short, so it is not a seed.
		    startT = -1;
		}
	    } else {
		// Impossible to reach this case.
	    }
	    i++;
	}

	// Handle case where seed extends all the way to end of IG region
	if (startT >= 0) {  // Ended possible seed
	    //if (stopT - startT + 1 >= n) {  // We have a seed
	    if (stopT - startT + 1 >= MIN_RNA_LENGTH) {  // We have a seed

		// Extend the seed downstream
		//boolean done = (stopT == IG.length-WINDOW);
		boolean done = (stopT == IG.length-1);
		while (!done) {
		    double mean = r.getMeanOfRange(z, startT, stopT, strand);
		    if (mean < THRESHOLD) break;

		    if ((IG[stopT+1] >= THRESHOLD) || (r.getBackgroundProb(IG[stopT+1]) <= getPoissonPDF(IG[stopT+1], mean))) stopT++;
		    else break;
		    done = (stopT == IG.length-1);
		    /*
		    double probIG = 1.0;
		    double probRNA = 1.0;
		    for (int j=stopT+1-WINDOW/2+1; j<Math.min(stopT+1+WINDOW/2+1,IG.length); j++) {
			probIG *= r.getBackgroundProb(IG[j]);
			probRNA *= getPoissonPDF(IG[j], mean);
		    }
		    if (probIG >= probRNA) break;
		    stopT++;
		    if (stopT == IG.length-1-WINDOW) done = true;
		    */
		}

		// Extend the seed upstream
		//done = (startT == WINDOW/2);
		done = (startT == 0);
		while (!done) {
		    double mean = r.getMeanOfRange(z, startT, stopT, strand);
		    if (mean < THRESHOLD) break;

		    if ((IG[startT-1] >= THRESHOLD) || (r.getBackgroundProb(IG[startT-1]) <= getPoissonPDF(IG[startT-1], mean))) startT--;
		    else break;
		    done = (startT == 0);
		    /*		    
		    double probIG = 1.0;
		    double probRNA = 1.0;
		    for (int j=startT-1+WINDOW/2-1; j>Math.max(startT-1-WINDOW/2-1,-1); j--) {
			probIG *= r.getBackgroundProb(IG[j]);
			probRNA *= getPoissonPDF(IG[j], mean);
		    }
		    if (probIG >= probRNA) break;
		    startT--;
		    if (startT == WINDOW/2) done = true;
		    */
		}

		// Add transcript to list
		rnas.add(new RNA(start + startT, start + stopT, strand));
	    }
	}
    }

    /**
     * Given a list of RNAs, merges overlapping RNAs from different experiments
     * and RNAs that are close in proximity. Adds the merged RNAs to the 
     * list "merged_RNAs".
     */ 
    private void merge_RNAs(Gene g1, Gene g2, char strand, ArrayList<RNA> rnas, ArrayList<RNA> merged_RNAs) {
	if (rnas.size() == 0) return;

	// Get coordinates of genes flanking the IG region
	int start1 = g1.getStart();
	int stop1 = g1.getStop();
	if (!g1.isORF()) {
	    start1 = g1.getStartT();
	    stop1 = g1.getStopT();
	}
	if (start1 > stop1) {  // Swap
	    int temp = start1;
	    start1 = stop1;
	    stop1 = temp;
	}
	int start2 = g2.getStart();
	int stop2 = g2.getStop();
	if (!g2.isORF()) {
	    start2 = g2.getStartT();
	    stop2 = g2.getStopT();
	}
	if (start2 > stop2) {  // Swap
	    int temp = start2;
	    start2 = stop2;
	    stop2 = temp;
	}

	int IG_start = stop1 + 1;
	int IG_stop = start2 - 1;
	int IG_length = IG_stop - IG_start + 1;
	if (IG_length <= 0) return;  // IG region has length 0. Do not output it.

	// For each nucleotide in an IG region, indicates if a RNA is predicted
	// for the nucleotide or not.
	boolean[] IG = new boolean[IG_length];
	for (int i=0; i<rnas.size(); i++) {
	    if ((rnas.get(i).strand == strand) || unstranded) {
		for (int j=rnas.get(i).start; j<=rnas.get(i).stop; j++) {
		    if (j < IG_start) return;
		    IG[j-IG_start] = true;
		}
	    }
	}

	// Determine set of merged RNAs
	int PROXIMITY = 50;  // RNAs within this many NTs of each other are merged
	int start = -1;
	int stop = -1;
	for (int i=0; i<IG.length; i++) {
	    if (IG[i] && (start == -1)) {  // Start of RNA
		start = i;
		stop = i;
	    } else if (IG[i] && (start >= 0)) {  // Within RNA
		stop = i;
	    } else if (!IG[i] && (start == -1)) {  // Within non-RNA
		// do nothing
	    } else if (!IG[i] && (start >= 0)) {  // RNA just ended
		for (int j=i; j<Math.min(i+PROXIMITY, IG.length); j++) {
		    if (IG[j]) stop = j;
		}
		if (stop > i-1) i = stop;  // Continue the loop from the end of the RNA
		else {
		    // Ignore predicted RNAs that abut annotated RNAs
		    if (((g1.isORF()) || (start > 0)) && ((g2.isORF()) || (stop < IG.length-1)))
			merged_RNAs.add(new RNA(IG_start + start, IG_start + stop, strand));
		    start = -1;
		    stop = -1;
		}
	    } else {
		Rockhopper.output("Error - this case should be unreachable!\n");
	    }
	}
	// Check if IG region ends with RNA
	if (start >= 0) {
	    int previousStop = stop;
	    for (int j=previousStop+1; j<Math.min(previousStop+1+PROXIMITY, IG.length); j++) {
		if (IG[j]) stop = j;
	    }
	    // Ignore predicted RNAs that abut annotated RNAs
	    if (((g1.isORF()) || (start > 0)) && ((g2.isORF()) || (stop < IG.length-1)))
		merged_RNAs.add(new RNA(IG_start + start, IG_start + stop, strand));
	}
    }

    /**
     * Given a predicted RNA, determines if it is antisense to any annotated genes.
     * Returns "-" if it is not antisense to any genes.
     * Otherwise, returns "antisense" followed by a list of genes it is antisense to.
     */
    private String getAntisenseAnnotation(RNA rna, String[] genesPlus, String[] genesMinus) {
	HashMap<String, String> genes = new HashMap<String, String>();
	for (int i=rna.start; i<=rna.stop; i++) {
	    if (unstranded || (rna.strand == '+')) genes.put(genesMinus[i], "");
	    if (unstranded || (rna.strand == '-')) genes.put(genesPlus[i], "");
	}

	String s = "";
	for (String key : genes.keySet()) {
	    if (key.length() > 0) s += " " + key;
	}

	if (s.length() == 0) return "-";
	else return "antisense:" + s;
    }

    /**
     * Output reads in IG region along with UTR and RNA annotation of region.
     */
    private void output_IG_to_file(Gene g1, Gene g2, char strand, ArrayList<RNA> rnas, String DIR) {

	// Get coordinates of genes flanking the IG region
	int start1 = g1.getStart();
	int stop1 = g1.getStop();
	if (!g1.isORF()) {
	    start1 = g1.getStartT();
	    stop1 = g1.getStopT();
	}
	if (start1 > stop1) {  // Swap
	    int temp = start1;
	    start1 = stop1;
	    stop1 = temp;
	}
	int start2 = g2.getStart();
	int stop2 = g2.getStop();
	if (!g2.isORF()) {
	    start2 = g2.getStartT();
	    stop2 = g2.getStopT();
	}
	if (start2 > stop2) {  // Swap
	    int temp = start2;
	    start2 = stop2;
	    stop2 = temp;
	}

	int IG_start = stop1 + 1;
	int IG_stop = start2 - 1;
	int IG_length = IG_stop - IG_start + 1;
	if (IG_length <= 0) return;  // IG region has length 0. Do not output it.

	int mean1 = 0;
	int mean2 = 0;
	for (int x=0; x<conditions.size(); x++)
	    for (int y=0; y<conditions.get(x).numReplicates(); y++) {
		if (!unstranded) {  // Strand specific
		    mean1 = Math.max(mean1, (int)conditions.get(x).getReplicate(y).getMeanOfRange(z, start1, stop1, g1.getStrand()));
		    mean2 = Math.max(mean2, (int)conditions.get(x).getReplicate(y).getMeanOfRange(z, start2, stop2, g2.getStrand()));
		} else {  // Starnd ambiguous
		    mean1 = Math.max(mean1, (int)conditions.get(x).getReplicate(y).getMeanOfRange(z, start1, stop1, '?'));
		    mean2 = Math.max(mean2, (int)conditions.get(x).getReplicate(y).getMeanOfRange(z, start2, stop2, '?'));
		}
	    }
	int[] IG = new int[IG_length];
	for (int i=IG_start; i<=IG_stop; i++) {
	    int maxRead = 0;
	    for (int x=0; x<conditions.size(); x++)
		for (int y=0; y<conditions.get(x).numReplicates(); y++)
		    maxRead = Math.max(maxRead, conditions.get(x).getReplicate(y).getReads(z, i, strand));
	    IG[i-IG_start] = maxRead;
	}
	StringBuilder annotation = getAnnotationOfIG(IG, g1, g2, strand, rnas);

	try {

	    // Create directory (if it doesn't exist) to write files to
	    if (DIR.charAt(DIR.length()-1) != '/') DIR += '/';
	    File dir = new File(DIR);
	    if (!dir.exists()) dir.mkdir();

	    String fileName = IG_start + "_" + IG_stop + ".txt";
	    PrintWriter writer = new PrintWriter(new File(DIR + fileName));
	    writer.println(g1.getName() + "\t" + g1.getStrand() + "\t" + mean1);
	    writer.println(g2.getName() + "\t" + g2.getStrand() + "\t" + mean2);
	    writer.println("\n");
	    writer.println(annotation.toString());
	    writer.close();
	} catch (FileNotFoundException ex) {
	    Rockhopper.output("Error - could not output file.\n");
	    System.exit(0);
	}
    }

    /**
     * Output reads in IG region and UTR of specified gene.
     */
    /*
    private void output_IG_to_file(Gene g1, Gene g2, int frontUTR_length, int backUTR_length, int start, int stop, Replicate r, String DIR) {

	int mean1 = (int)r.getMeanOfRange(g1.getStart(), g1.getStop(), g1.getStrand());
	int mean2 = (int)r.getMeanOfRange(g2.getStart(), g2.getStop(), g2.getStrand());
	int[] IG1 = new int[stop-start+1];
	int[] IG2 = null;
	if ((g1.getStrand() != '+') && (g1.getStrand() != '-')) {  // Placeholder gene
	    for (int i=start; i<=stop; i++) IG1[i-start] = r.getReads(i, g2.getStrand());
	} else if ((g2.getStrand() != '+') && (g2.getStrand() != '-')) {  // Placeholder gene
	    for (int i=start; i<=stop; i++) IG1[i-start] = r.getReads(i, g1.getStrand());
	} else if (g1.getStrand() == g2.getStrand()) {  // Same strand
	    for (int i=start; i<=stop; i++) IG1[i-start] = r.getReads(i, g1.getStrand());
	} else {  // Different strands
	    for (int i=start; i<=stop; i++) IG1[i-start] = r.getReads(i, g1.getStrand());
	    IG2 = new int[stop-start+1];
	    for (int i=start; i<=stop; i++) IG2[i-start] = r.getReads(i, g2.getStrand());
	}
	StringBuilder annotation1 = getAnnotationOfIG(IG1, g1, g2, frontUTR_length, backUTR_length);
	StringBuilder annotation2 = getAnnotationOfIG(IG2, g1, g2, frontUTR_length, backUTR_length);

	try {

	    // Create directory (if it doesn't exist) to write files to
	    if (DIR.charAt(DIR.length()-1) != '/') DIR += '/';
	    File dir = new File(DIR);
	    if (!dir.exists()) dir.mkdir();
	    dir = new File(DIR + r.getName() + "/");
	    if (!dir.exists()) dir.mkdir();
	    DIR += r.getName() + "/";

	    String fileName = start + "_" + stop + ".txt";
	    PrintWriter writer = new PrintWriter(new File(DIR + fileName));
	    writer.println(g1.getName() + "\t" + g1.getStrand() + "\t" + mean1);
	    writer.println(g2.getName() + "\t" + g2.getStrand() + "\t" + mean2);
	    writer.println("\n");
	    writer.println(annotation1.toString());
	    if (annotation2 != null) writer.println("\n" + annotation2.toString());
	    writer.close();
	} catch (FileNotFoundException ex) {
	    Rockhopper.output("Error - could not output file.\n");
	    System.exit(0);
	}
    }
    */

    /**
     * Return a StringBuilder representation of an IG region consisting 
     * of reads and an annotation (5'UTR and 3'UTR and RNA) of those reads.
     */
    private StringBuilder getAnnotationOfIG(int[] IG, Gene g1, Gene g2, char strand, ArrayList<RNA> rnas) {
	int FASTA = 25;
	StringBuilder annotation = new StringBuilder(IG.length);
	for (int i=0; i<IG.length; i++) annotation.append(".");

	// Front UTR
	if ((g1.getStrand() == strand) || (this.unstranded)) {
	    int frontUTR_count = g1.getMaxCoordinate() - Math.max(g1.getStart(), g1.getStop());
	    if (!g1.isORF()) frontUTR_count = 0;
	    char UTR_char = '3';  // Plus strand
	    if (g1.getStrand() == '-') UTR_char = '5';  // Minus strand
	    for (int i=0; i<frontUTR_count; i++) annotation.setCharAt(i, UTR_char);
	}

	// Back UTR
	if ((g2.getStrand() == strand) || (this.unstranded)) {
	    int backUTR_count = Math.min(g2.getStart(), g2.getStop()) - g2.getMinCoordinate();
	    if (!g2.isORF()) backUTR_count = 0;
	    char UTR_char = '5';  // Plus strand
	    if (g2.getStrand() == '-') UTR_char = '3';  // Minus strand
	    for (int i=0; i<backUTR_count; i++) annotation.setCharAt(annotation.length()-1-i, UTR_char);
	}

	// RNAs
	int IG_start = Math.max(g1.getStart(), g1.getStop()) + 1;
	if (!g1.isORF()) IG_start = g1.getMaxCoordinate() + 1;
	int IG_stop = Math.min(g2.getStart(), g2.getStop()) - 1;
	if (!g2.isORF()) IG_stop = g2.getMinCoordinate() - 1;
	for (int i=0; i<rnas.size(); i++) {
	    RNA rna = rnas.get(i);
	    if ((rna.strand == strand) || (this.unstranded)) {
		for (int j=rna.start; j<=rna.stop; j++)
		    annotation.setCharAt(j - IG_start, 'R');
	    }
	}

	StringBuilder IG_annotation = new StringBuilder(IG.length);
	int i = 0;
	for (i=0; i<IG.length; i++) {
	    String num = "" + IG[i];
	    if (IG[i] < 10) num  = " " + num + " ";
	    else if (IG[i] < 100) num = num + " ";
	    else num = num.charAt(0) + "e" + (num.length()-1);
	    IG_annotation.append(" " + num);
	    if ((i+1) % FASTA == 0) {
		IG_annotation.append("\n");
		for (int j=0; j<FASTA; j++) {
		    IG_annotation.append(" " + " " + annotation.charAt((i+1) - FASTA + j) + " ");
		}
		IG_annotation.append("\n\n");
	    }
	}
	if (i % FASTA != 0) {
	    IG_annotation.append("\n");
	    for (int j=0; j<(i%FASTA); j++) {
		IG_annotation.append(" " + " " + annotation.charAt(i - (i%FASTA) + j) + " ");
	    }
	    IG_annotation.append("\n\n");
	}
	return IG_annotation;
    }

    /**
     * Return a StringBuilder representation of an IG region consisting 
     * of reads and an annotation (5'UTR and 3'UTR) of those reads.
     */
    /*
    private StringBuilder getAnnotationOfIG(int[] IG, Gene g1, Gene g2, int frontUTR_length, int backUTR_length) {
	int FASTA = 25;
	if (IG == null) return null;
	StringBuilder annotation = new StringBuilder();
	int frontUTR_count = 0;
	int backUTR_count = 0;
	int i = 0;
	for (i=0; i<IG.length; i++) {
	    String num = "" + IG[i];
	    if (IG[i] < 10) num  = " " + num + " ";
	    else if (IG[i] < 100) num = num + " ";
	    else num = num.charAt(0) + "e" + (num.length()-1);
	    annotation.append(" " + num);
	    if ((i+1) % FASTA == 0) {
		annotation.append("\n");
		for (int j=0; j<FASTA; j++) {
		    if (frontUTR_count < frontUTR_length) {
			if (g1.getStrand() == '+') annotation.append(" " + " 3 ");
			else annotation.append(" " + " 5 ");
			frontUTR_count++;
		    }
		    else if (i+1-FASTA+j >= IG.length - backUTR_length) {
			if (g2.getStrand() == '+') annotation.append(" " + " 5 ");
			else annotation.append(" " + " 3 ");
		    } else annotation.append(" " + " . ");
		}
		annotation.append("\n\n");
	    }
	}
	if ((i+1) % FASTA != 0) annotation.append("\n");
	for (int j=0; j<(IG.length%FASTA); j++) {
	    if (frontUTR_count < frontUTR_length) {
		if (g1.getStrand() == '+') annotation.append(" " + " 3 ");
		else annotation.append(" " + " 5 ");
		frontUTR_count++;
	    }
	    else if (IG.length - (IG.length%FASTA) + j >= IG.length - backUTR_length) {
		if (g2.getStrand() == '+') annotation.append(" " + " 5 ");
		else annotation.append(" " + " 3 ");
	    } else annotation.append(" " + " . ");
	}
	annotation.append("\n\n");
	return annotation;
    }
    */



    /***********************************************
     **********   PRIVATE CLASS METHODS   **********
     ***********************************************/

    /**
     * Returns the PDF value at x for the specified Poisson distribution.
     */
    private static double getPoissonPDF(int x, double lambda) {
	double result = Math.exp(-lambda);
	int k = x;
	while (k >= 1) {
	    result *= lambda/k;
	    k--;
	}
	return result;
    }

}





/***********************************
 **********   RNA CLASS   **********
 ***********************************/

class RNA {

    public int start;
    public int stop;
    public char strand;

    public RNA(int start, int stop, char strand) {
	this.start = start;
	this.stop = stop;
	this.strand = strand;
    }

    public String toString() {
	return start + "\t" + stop + "\t" + strand;
    }

}