1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/*
* Copyright 2013 Brian Tjaden
*
* This file is part of Rockhopper.
*
* Rockhopper is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Rockhopper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* (in the file gpl.txt) along with Rockhopper.
* If not, see <http://www.gnu.org/licenses/>.
*/
import java.util.Collections;
import java.util.ArrayList;
import java.util.Random;
public class Index {
/********************************************
********** Instance Variables **********
********************************************/
private int numReplicons; // Number of indexed replicons
private ArrayList<Replicon> replicons; // Index for each replicon
private boolean stopAfterOneHit; // Terminate the search when the first hit is found
/*****************************************
********** Class Variables **********
*****************************************/
public static Random rand = new Random(); // Random number generator
/**************************************
********** Constructors **********
**************************************/
public Index(String[] sequenceFiles) {
replicons = new ArrayList<Replicon>(sequenceFiles.length);
for (int i=0; i<sequenceFiles.length; i++)
replicons.add(new Replicon(sequenceFiles[i]));
this.numReplicons = replicons.size();
this.stopAfterOneHit = true;
}
/*************************************************
********** Public Instance Methods **********
*************************************************/
/**
* Set whether the search should terminate after finding the first hit,
* even if there are other hits with the same score.
*/
public void setStopAfterOneHit(boolean stopAfterOneHit) {
this.stopAfterOneHit = stopAfterOneHit;
}
/**
* Return the number of indexed replicons.
*/
public int getNumReplicons() {
return this.numReplicons;
}
/**
* Returns the ith Replicon index.
*/
public Replicon getReplicon(int i) {
return this.replicons.get(i);
}
/**
* Return all hits of s to the genome sequence.
*/
public void exactMatch(String s, ArrayList<Hit> hits) {
hits.clear();
if (!stopAfterOneHit) { // Find all optimal hits
for (int i=0; i<numReplicons; i++) {
exactMatch(s, '+', i, 0, hits); // Align to plus strand
exactMatch(reverseComplement(s), '-', i, 0, hits); // Align to minus strand
}
Collections.sort(hits);
return;
} else { // Find only one hit
for (int i=0; i<numReplicons; i++) {
if (rand.nextBoolean()) { // Randomly align first to plus strand
exactMatch(s, '+', i, 0, hits);
if (hits.isEmpty()) exactMatch(reverseComplement(s), '-', i, 0, hits);
return;
} else { // Randomly align first to minus strand
exactMatch(reverseComplement(s), '-', i, 0, hits);
if (hits.isEmpty()) exactMatch(s, '+', i, 0, hits);
return;
}
}
}
return; // This line should never be executed.
}
/**
* Return all hits of s to the genome sequence.
*/
public void inexactMatch(String s, int[] qualities, Alignment a, ArrayList<Hit> hits, ArrayList<Hit> seedHits) {
hits.clear();
seedHits.clear();
inexactMatch(s, qualities, 0, a, hits, seedHits);
Collections.sort(hits);
return;
}
/**************************************************
********** Private Instance Methods **********
**************************************************/
// Find indices of all occurrences of s in the sequence.
private void exactMatch(String s, char strand, int repliconIndex, int errors, ArrayList<Hit> hits) {
exactMatch(s, strand, repliconIndex, errors, hits, this.stopAfterOneHit);
}
// Find indices of all occurrences of s in the sequence.
private void exactMatch(String s, char strand, int repliconIndex, int errors, ArrayList<Hit> hits, boolean stopAfterOneHit_local) {
Replicon r = replicons.get(repliconIndex);
int i = s.length() - 1;
char c = s.charAt(i);
int sp = r.getC(charToInt(c));
int ep = -1;
if (charToInt(c) < 4) ep = r.getC(charToInt(c)+1);
else ep = r.getLength();
i--;
while ((sp < ep) && (i >= 0)) {
int index = charToInt(s.charAt(i));
sp = r.getC(index) + r.getOcc(index, sp);
ep = r.getC(index) + r.getOcc(index, ep);
i--;
}
if (!stopAfterOneHit_local) { // Find all optimal hits
for (int z=sp; z<ep; z++) hits.add(new Hit(r.getRotations(z)+1, r.getRotations(z)+1+s.length()-1, strand, errors, repliconIndex)); // 1-indexed
} else { // Find only one hit
if (ep > sp) {
int randIndex = sp + rand.nextInt(ep-sp);
hits.add(new Hit(r.getRotations(randIndex)+1, r.getRotations(randIndex)+1+s.length()-1, strand, errors, repliconIndex)); // 1-indexed
}
}
}
/**
* Find all indices in the sequence (with the same
* best score) that match the specified query String
* with errors that sum to a value at or below the threshold.
*/
private void inexactMatch(String s, int[] qualities, int threshold, Alignment a, ArrayList<Hit> hits, ArrayList<Hit> seedHits) {
// Exact match search
if (!stopAfterOneHit) { // Find all optimal hits
for (int i=0; i<numReplicons; i++) {
exactMatch(s, '+', i, 0, hits); // Align to plus strand
exactMatch(reverseComplement(s), '-', i, 0, hits); // Align to minus strand
}
} else { // Find only one hit
for (int i=0; i<numReplicons; i++) {
if (rand.nextBoolean()) { // Randomly align first to plus strand
exactMatch(s, '+', i, 0, hits);
if (hits.isEmpty()) exactMatch(reverseComplement(s), '-', i, 0, hits);
} else { // Randomly align first to minus strand
exactMatch(reverseComplement(s), '-', i, 0, hits);
if (hits.isEmpty()) exactMatch(s, '+', i, 0, hits);
}
if (!hits.isEmpty()) return;
}
}
if (!hits.isEmpty()) return;
// Inexact search via alignment
int qualityThreshold = (int)(40 * s.length() * Peregrine.percentMismatches);
int mismatches = (int)(s.length() * Peregrine.percentMismatches);
int minSeedLength = Math.max((int)(s.length() * Peregrine.percentSeedLength), Peregrine.minReadLength);
a.setNumErrors(mismatches);
a.setThreshold(qualityThreshold);
if ((mismatches == 0) || (s.length() < minSeedLength)) return;
int minScore = Integer.MAX_VALUE;
int numSeeds = Math.min(mismatches+1, (int)Math.ceil((s.length()+1)/(double)minSeedLength));
int increment = s.length()/numSeeds;
int seedLength = Math.max(increment, minSeedLength);
int[] reverseQualities = new int[qualities.length];
for (int q=0; q<qualities.length; q++) reverseQualities[qualities.length-1-q] = qualities[q];
for (int i=0; i<numReplicons; i++) { // Find seed in each replicon
// Determine all seeds from read
int x = 0;
int count = 0;
while (count < numSeeds) { // Try each seed from read
int start = x;
int stop = x+seedLength-1;
if (count == numSeeds-1) { // Final read
start = s.length()-seedLength;
stop = s.length()-1;
}
x += increment;
count++;
seedHits.clear();
exactMatch(s.substring(start, stop+1), '+', i, 0, seedHits, false);
exactMatch(reverseComplement(s.substring(start, stop+1)), '-', i, 0, seedHits, false); // Align to minus strand
// Align read to replicon sequence based on seedHits
for (int j=0; j<seedHits.size(); j++) {
if (seedHits.get(j).getStrand() == '+') // Plus strand
a.align(replicons.get(i).getSequence(), seedHits.get(j).getStart()-2, seedHits.get(j).getStop(), s, start-1, stop+1, qualities);
else // Minus strand
a.align(replicons.get(i).getSequence(), seedHits.get(j).getStart()-2, seedHits.get(j).getStop(), reverseComplement(s), s.length()-1-stop-1, s.length()-1-start+1, reverseQualities);
// Add alignment (if found and if among *best* scoring hits found so far) to "hits"
if ((a.getScore() >= 0) && (a.getScore() <= qualityThreshold) && (a.getErrors() <= mismatches)) { // Valid alignment
if (a.getScore() < minScore) { // This is the new best scoring alignment
hits.clear();
hits.add(new Hit(a.getStart(), a.getStop(), seedHits.get(j).getStrand(), a.getErrors(), i));
minScore = a.getScore();
} else if (a.getScore() == minScore) { // This is another best scoring alignment
hits.add(new Hit(a.getStart(), a.getStop(), seedHits.get(j).getStrand(), a.getErrors(), i));
} else { // We have previously found a better scoring alignment
// Do nothing.
}
}
}
}
// Remove neighboring Hits
Collections.sort(hits);
int j=1;
while (j < hits.size()) {
if (hits.get(j).getStart() - hits.get(j-1).getStop() < s.length()) hits.remove(j);
else j++;
}
}
// Randomly choose one best hit to return (as opposed to all best hits)
if ((hits.size() > 1) && stopAfterOneHit) { // Find only one hit (not all optimal hits)
Hit randomBest = hits.get(rand.nextInt(hits.size()));
hits.clear();
hits.add(randomBest);
}
}
/**********************************************
********** Public Class Methods **********
**********************************************/
/**
* Set seed for pseudorandom number generator.
*/
public static void setRandomSeed(long seed) {
rand = new Random(seed);
}
// Convert a nucleotide character to an integer
public static int charToInt(char c) {
if (c == 'A') return 0;
if (c == 'C') return 1;
if (c == 'G') return 2;
if (c == 'T') return 3;
if (c == '^') return 4;
if (c == '$') return 5;
return -1;
}
/**
* Return the reverse complement of the input sequence.
*/
public static String reverseComplement(String s) {
StringBuilder sb = new StringBuilder(s.length());
for (int i=s.length()-1; i>=0; i--) {
if (s.charAt(i) == 'A') sb.append('T');
else if (s.charAt(i) == 'C') sb.append('G');
else if (s.charAt(i) == 'G') sb.append('C');
else if (s.charAt(i) == 'T') sb.append('A');
else if (s.charAt(i) == '^') sb.append('^');
else Peregrine.output("Invalid DNA nucleotide character: " + s.charAt(i) + "\n");
}
return sb.toString();
}
/***********************************************
********** Private Class Methods **********
***********************************************/
/*************************************
********** Main Method **********
*************************************/
public static void main(String[] args) {
if (args.length < 1) {
System.err.println("\nUSAGE: java Index <index1.fna,index2.fna,index3.fna>" + "\n");
System.err.println("Index takes a comma-separated set of sequence files (such as FASTA genome files) to be indexed and it computes the Burrows-Wheeler transformed index for each sequence. If run from the command line, it simply outputs the size of each index to STDOUT. The Index class is meant to be instantiated from another application. \n");
System.exit(0);
}
Index index = new Index(args[0].split(","));
for (int i=0; i<index.getNumReplicons(); i++)
System.out.println(index.getReplicon(i).getName() + " has size " + index.getReplicon(i).getLength());
}
}
|