File: Lowess.java

package info (click to toggle)
rockhopper 2.0.3%2Bdfsg2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 33,140 kB
  • sloc: java: 10,831; sh: 31; xml: 29; makefile: 14
file content (293 lines) | stat: -rw-r--r-- 8,498 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
 * Copyright 2013 Brian Tjaden
 *
 * This file is part of Rockhopper.
 *
 * Rockhopper is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * Rockhopper is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * (in the file gpl.txt) along with Rockhopper.  
 * If not, see <http://www.gnu.org/licenses/>.
 */

import java.util.ArrayList;
import java.util.Collections;

public class Lowess {

    /**
     * Lowess smoother. Robust locally weighted regression.
     * The lowess function fits a nonparametric regression curve to a 
     * scatterplot. x and y must be of equal length. Returns the
     * estimatad smooth values of y.
     */
    public static ArrayList<Long> lowess(ArrayList<Long> x, ArrayList<Long> y) {
	return lowess(x, y, 0.1, 1);  // Default parameters
    }

    /**
     * Lowess smoother. Robust locally weighted regression.
     * The lowess function fits a nonparametric regression curve to a 
     * scatterplot. x and y must be of equal length. Returns the
     * estimatad smooth values of y.
     *
     * A larger smoothing span results in a smoother curve.
     * The number of iterations can be increased to improve robustness
     * at a cost to running time.
     */
    public static ArrayList<Long> lowess(ArrayList<Long> x, ArrayList<Long> y, double smoothingSpan, int iterations) {
	if (x.size() != y.size()) {
	    Rockhopper.output("Error - cannot compute lowess of two matrices with differing sizes.\n");
	    return new ArrayList<Long>();
	}

	// Create lists of nonzero elements
	ArrayList<Long> X1 = new ArrayList<Long>();
	ArrayList<Long> Y1 = new ArrayList<Long>();
	ArrayList<Long> X1_sorted = new ArrayList<Long>();
	for (int i=0; i<x.size(); i++) {
	    if (x.get(i) > 0) {
		X1.add(x.get(i));
		Y1.add(y.get(i));
		X1_sorted.add(x.get(i));
	    }
	}

	// "process" method creates a 2D array based on the size of X1.
	// If X1 is too large, then we run out of memory and crash.
	// Here we attempt to limit the size of the dimensions, i.e., the X1 array.
	int power = 0;
	int threshold = 0;
	while ((X1.size() >= 10000) && (Runtime.getRuntime().maxMemory() < 1300000000) && (power < 31)) {
	    threshold = (int)Math.pow(2, power);
	    X1.clear();
	    Y1.clear();
	    X1_sorted.clear();
	    for (int i=0; i<x.size(); i++) {
		if (x.get(i) > threshold) {
		    X1.add(x.get(i));
		    Y1.add(y.get(i));
		    X1_sorted.add(x.get(i));
		}
	    }
	    power++;
	}

	// Sort X1 in reverse order
	Collections.sort(X1_sorted);
	Collections.reverse(X1_sorted);

	ArrayList<Long> h = new ArrayList<Long>();
	ArrayList<Long> dist = new ArrayList<Long>();
	for (int i=0; i<X1.size(); i++) {
	    Long p = X1.get(i);
	    dist.clear();
	    double fraction = (X1_sorted.size() - X1_sorted.indexOf(p)) / (double)(X1_sorted.size());
	    int r = (int)(Math.ceil(Math.min(2.0*fraction, 0.4)*X1.size()));
	    for (int j=0; j<X1.size(); j++) dist.add(Math.abs(p.longValue() - X1.get(j).longValue()));
	    Collections.sort(dist);
	    if (r < dist.size()) h.add(dist.get(r));
	    else h.add(dist.get(dist.size()-1));
	}

	double[][] w = process(X1, h);
	cube(w);
	oneMinus(w);
	cube(w);

	double[] yest = new double[X1.size()];
	double[] delta = new double[X1.size()];

	for (int z=0; z<iterations; z++) {
	    for (int i=0; i<X1.size(); i++) {
		ArrayList<Double> weights = new ArrayList<Double>();
		for (int j=0; j<w.length; j++) weights.add(w[j][i]);
		double b1 = sum(product(weights, Y1));
		double b2 = sum(product(product(weights, Y1), X1));
		double A1 = sum(weights);
		double A2 = sum(product(weights, X1));
		double A3 = A2;
		double A4 = sum(product(product(weights, X1), X1));
		double[][] b = {{b1}, {b2}};
		double[][] A = {{A1, A2}, {A3, A4}};
		Matrix b_Matrix = new Matrix(b);
		Matrix A_Matrix = new Matrix(A);
		double[][] beta = A_Matrix.solve(b_Matrix).getArray();  // Linear algebra solver
		yest[i] = beta[0][0] + (beta[1][0] * X1.get(i));
	    }
	    double[] residuals = new double[Y1.size()];
	    ArrayList<Double> residuals_absValue = new ArrayList<Double>();
	    for (int i=0; i<Y1.size(); i++) {
		residuals[i] = Y1.get(i) - yest[i];
		residuals_absValue.add(Math.abs(Y1.get(i) - yest[i]));
	    }
	    double s = 1.0;
	    if (residuals.length > 0) s = Misc.select_Double(residuals_absValue, 1+(residuals.length/2));

	    for (int i=0; i<delta.length; i++) {
		delta[i] = residuals[i] / (6.0 * s);
		if (delta[i] < -1) delta[i] = -1.0;
		if (delta[i] > 1) delta[i] = 1.0;
	    }
	    oneMinus(product(delta, delta));
	    delta = product(delta, delta);
	}

	double minPositive = Double.MAX_VALUE;
	for (int i=0; i<yest.length; i++) {
	    if (yest[i] > threshold) {
		if (yest[i] < minPositive)
		    minPositive = yest[i];
	    }
	}

	ArrayList<Long> yest_Long = new ArrayList<Long>();
	int j=0;
	for (int i=0; i<x.size(); i++) {
	    if (x.get(i) <= threshold)
		yest_Long.add((long)minPositive);
	    else {
		yest_Long.add((long)yest[j]);
		j++;
	    }
	}
	return yest_Long;
    }



    /************************************************
     **********   PRIVATE STATIC METHODS   **********
     ************************************************/

    /**
     * clip(abs(([x]-transpose([x]))/h),0.0,1.0)
     */
    private static double[][] process(ArrayList<Long> x, ArrayList<Long> h) {
	double[][] w = new double[x.size()][x.size()];
	for (int i=0; i<x.size(); i++) {
	    for (int j=0; j<x.size(); j++) {
		double value = Math.abs(((double)(x.get(i) - x.get(j)))/h.get(i));
		if (value < 0.0) value = 0.0;
		if (value > 1.0) value = 1.0;
		w[j][i] = value;
	    }
	}
	return w;
    }

    /**
     * Cube every element in a 2D array.
     */
    private static void cube(double[][] w) {
	for (int i=0; i<w.length; i++)
	    for (int j=0; j<w[0].length; j++)
		w[i][j] = w[i][j] * w[i][j] * w[i][j];
    }

    /**
     * w = 1 - w
     */
    private static void oneMinus(double[][] w) {
	for (int i=0; i<w.length; i++)
	    for (int j=0; j<w[0].length; j++)
		w[i][j] = 1.0 - w[i][j];
    }

    /**
     * w = 1 - w
     */
    private static void oneMinus(double[] w) {
	for (int i=0; i<w.length; i++)
	    w[i] = 1.0 - w[i];
    }

    /**
     * Return a new ArrayList where each element is the product of the corresponding
     * elements in the two specified ArrayLists.
     */
    private static ArrayList<Double> product(ArrayList<Double> x, ArrayList<Long> y) {
	ArrayList<Double> result = new ArrayList<Double>();
	for (int i=0; i<x.size(); i++)
	    result.add(x.get(i) * y.get(i));
	return result;
    }

    /**
     * Returns a new array where each element is the product of the corresponding
     * elements in the two specified arrays.
     */
    private static double[] product(double[] x, double[] y) {
	double[] result = new double[x.length];
	for (int i=0; i<x.length; i++)
	    result[i] = x[i] * y[i];
	return result;
    }

    /**
     * Returns the sum of all elements in an ArrayList.
     */
    private static double sum(ArrayList<Double> x) {
	double sum = 0.0;
	for (int i=0; i<x.size(); i++) sum += x.get(i);
	return sum;
    }

    /**
     * Output to Stdout a 2D array.
     */
    private static void print(double[][] w) {
	Rockhopper.output("\n");
	for (int i=0; i<w.length; i++) {
	    for (int j=0; j<w[0].length; j++) {
		Rockhopper.output("\t" + w[i][j]);
	    }
	    Rockhopper.output("\n");
	}
	Rockhopper.output("\n");
    }



    /*************************************
     **********   MAIN METHOD   **********
     *************************************/
    /**
     * The main method is used to test the methods of this class.
     */
    public static void main(String[] args) {
	ArrayList<Long> a = new ArrayList<Long>();
	a.add((long)1);
	a.add((long)2);
	a.add((long)5);
	a.add((long)8);
	a.add((long)7);
	a.add((long)3);
	a.add((long)20);
	a.add((long)13);
	a.add((long)10);
	ArrayList<Long> b = new ArrayList<Long>();
	b.add((long)4);
	b.add((long)9);
	b.add((long)6);
	b.add((long)0);
	b.add((long)1);
	b.add((long)5);
	b.add((long)15);
	b.add((long)11);
	b.add((long)18);
	System.out.println("\n" + lowess(a, b) + "\n");


    }

}