1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
/*
* Copyright 2013 Brian Tjaden
*
* This file is part of Rockhopper.
*
* Rockhopper is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Rockhopper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* (in the file gpl.txt) along with Rockhopper.
* If not, see <http://www.gnu.org/licenses/>.
*/
public class Matrix {
/********************************************
********** INSTANCE VARIABLES **********
********************************************/
private double[][] M;
private int rows, cols; // Number or rows and columns
/**************************************
********** CONSTRUCTORS **********
**************************************/
public Matrix (int rows, int cols) {
M = new double[rows][cols];
this.rows = rows;
this.cols = cols;
}
public Matrix (double[][] M) {
this.M = M;
rows = M.length;
cols = M[0].length;
}
/*************************************************
********** PUBLIC INSTANCE METHODS **********
*************************************************/
/**
* Returns the number of rows in this Matrix.
*/
public int getRows () {
return rows;
}
/**
* Returns the number of columns in this Matrix.
*/
public int getCols () {
return cols;
}
/**
* Returns the 2D array representing this Matrix.
*/
public double[][] getArray () {
return M;
}
/**
* Returns a copy of the 2D array representing this Matrix.
*/
public double[][] getArrayCopy () {
double[][] M2 = new double[rows][cols];
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
M2[i][j] = M[i][j];
return M2;
}
/**
* Return a submatrix of this Matrix.
*/
public Matrix getMatrix (int[] r, int x, int y) {
Matrix mtrx = new Matrix(r.length,y-x+1);
double[][] M2 = mtrx.getArray();
for (int i = 0; i < r.length; i++)
for (int j = x; j <= y; j++)
M2[i][j-x] = M[r[i]][j];
return mtrx;
}
/**
* Return a submatrix of this Matrix.
*/
public Matrix getMatrix (int x1, int x2, int y1, int y2) {
Matrix mtrx = new Matrix(x2-x1+1,y2-y1+1);
double[][] M2 = mtrx.getArray();
for (int i = x1; i <= x2; i++)
for (int j = y1; j <= y2; j++)
M2[i-x1][j-y1] = M[i][j];
return mtrx;
}
public Matrix solve (Matrix B) {
if (rows == cols) return (new LUDecomposition(this)).solve(B);
else return (new QRDecomposition(this)).solve(B);
}
/***************************************
********** CLASS METHODS **********
***************************************/
public static double hypot(double x, double y) {
double r;
if (Math.abs(x) > Math.abs(y)) {
r = y/x;
r = Math.abs(x)*Math.sqrt(1+r*r);
} else if (y != 0) {
r = x/y;
r = Math.abs(y)*Math.sqrt(1+r*r);
} else {
r = 0.0;
}
return r;
}
}
/*****************************************
********** LU MATRIX CLASS **********
*****************************************/
class LUDecomposition {
/********************************************
********** INSTANCE VARIABLES **********
********************************************/
private double[][] LU;
private int rows;
private int cols;
private int signOfPivot;
private int[] pivot;
/**************************************
********** CONSTRUCTORS **********
**************************************/
public LUDecomposition (Matrix A) {
LU = A.getArrayCopy();
rows = A.getRows();
cols = A.getCols();
pivot = new int[rows];
for (int i = 0; i < rows; i++) pivot[i] = i;
signOfPivot = 1;
double[] LUrowi;
double[] LUcolj = new double[rows];
for (int j = 0; j < cols; j++) {
for (int i = 0; i < rows; i++) LUcolj[i] = LU[i][j];
for (int i = 0; i < rows; i++) {
LUrowi = LU[i];
int kmax = Math.min(i,j);
double s = 0.0;
for (int k = 0; k < kmax; k++) s += LUrowi[k]*LUcolj[k];
LUrowi[j] = LUcolj[i] -= s;
}
int p = j;
for (int i = j+1; i < rows; i++) {
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) p = i;
}
if (p != j) {
for (int k = 0; k < cols; k++) {
double t = LU[p][k];
LU[p][k] = LU[j][k];
LU[j][k] = t;
}
int k = pivot[p]; pivot[p] = pivot[j]; pivot[j] = k;
signOfPivot = -signOfPivot;
}
if (j < rows & LU[j][j] != 0.0) {
for (int i = j+1; i < rows; i++) LU[i][j] /= LU[j][j];
}
}
}
/*************************************************
********** PUBLIC INSTANCE METHODS **********
*************************************************/
public Matrix solve (Matrix B) {
int cols2 = B.getCols();
Matrix mtrx = B.getMatrix(pivot,0,cols2-1);
double[][] M2 = mtrx.getArray();
for (int k = 0; k < cols; k++)
for (int i = k+1; i < cols; i++)
for (int j = 0; j < cols2; j++)
M2[i][j] -= M2[k][j]*LU[i][k];
for (int k = cols-1; k >= 0; k--) {
for (int j = 0; j < cols2; j++)
M2[k][j] /= LU[k][k];
for (int i = 0; i < k; i++)
for (int j = 0; j < cols2; j++)
M2[i][j] -= M2[k][j]*LU[i][k];
}
return mtrx;
}
}
/*****************************************
********** QR MATRIX CLASS **********
*****************************************/
class QRDecomposition {
/********************************************
********** INSTANCE VARIABLES **********
********************************************/
private double[][] QR;
private int rows;
private int cols;
private double[] Rdiag;
/**************************************
********** CONSTRUCTORS **********
**************************************/
public QRDecomposition (Matrix A) {
QR = A.getArrayCopy();
rows = A.getRows();
cols = A.getCols();
Rdiag = new double[cols];
for (int k = 0; k < cols; k++) {
double nrm = 0;
for (int i = k; i < rows; i++) nrm = Matrix.hypot(nrm,QR[i][k]);
if (nrm != 0.0) {
if (QR[k][k] < 0) nrm = -nrm;
for (int i = k; i < rows; i++) QR[i][k] /= nrm;
QR[k][k] += 1.0;
for (int j = k+1; j < cols; j++) {
double s = 0.0;
for (int i = k; i < rows; i++) s += QR[i][k]*QR[i][j];
s = -s/QR[k][k];
for (int i = k; i < rows; i++) QR[i][j] += s*QR[i][k];
}
}
Rdiag[k] = -nrm;
}
}
/*************************************************
********** PUBLIC INSTANCE METHODS **********
*************************************************/
public boolean isFullRank () {
for (int j = 0; j < cols; j++) {
if (Rdiag[j] == 0) return false;
}
return true;
}
public Matrix solve (Matrix B) {
int cols2 = B.getCols();
double[][] M2 = B.getArrayCopy();
for (int k = 0; k < cols; k++) {
for (int j = 0; j < cols2; j++) {
double s = 0.0;
for (int i = k; i < rows; i++) s += QR[i][k]*M2[i][j];
s = -s/QR[k][k];
for (int i = k; i < rows; i++) M2[i][j] += s*QR[i][k];
}
}
for (int k = cols-1; k >= 0; k--) {
for (int j = 0; j < cols2; j++) M2[k][j] /= Rdiag[k];
for (int i = 0; i < k; i++)
for (int j = 0; j < cols2; j++)
M2[i][j] -= M2[k][j]*QR[i][k];
}
return (new Matrix(M2).getMatrix(0,cols-1,0,cols2-1));
}
}
|