1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*
* Copyright 2013 Brian Tjaden
*
* This file is part of Rockhopper.
*
* Rockhopper is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Rockhopper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* (in the file gpl.txt) along with Rockhopper.
* If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Probability mass function of negative binomial distribution.
* Based on saddle point algorithm found in "Fast and Accurate
* Computation of Binomial Probabilities" by Catherine Loader, 2000.
*/
public class NegativeBinomial {
/*****************************************
********** CLASS VARIABLES **********
*****************************************/
private static double S0 = 0.08333333333333333333;
private static double S1 = 0.00277777777777777778;
private static double S2 = 0.00079365079365079365;
private static double S3 = 0.00059523809523809524;
private static double S4 = 0.00084175084175084175;
private static double[] sfe = {0.0, 0.081061466795327258219670264, 0.041340695955409294093822081, 0.0276779256849983391487892927, 0.020790672103765093111522771, 0.0166446911898211921631948653, 0.013876128823070747998945727, 0.0118967099458917700950557241, 0.010411265261972096497478567, 0.0092554621827127329177286366, 0.008330563433362871256469318, 0.0075736754879518407949720242, 0.006942840107209529865664152, 0.0064089941880042070684396370, 0.005951370112758847735624416, 0.0055547335519628013710386899};
/**********************************************
********** PUBLIC CLASS METHODS **********
**********************************************/
public static double pmf(double k, double n, double p, boolean b) {
if (p == 0.0) {
if (k == 0) return 1.0;
else return 0.0;
} else if (p == 1.0) {
if (k == n) return 1.0;
else return 0.0;
} else if (k == 0) {
return Math.exp(n * Math.log(1.0 - p));
} else if (k == n) {
return Math.exp(n * Math.log(p));
} else {
double lc = stirlerr(n) - stirlerr(k) - stirlerr(n - k) - bd0(k, n*p) - bd0(n-k, n*(1.0-p));
return p * Math.exp(lc) * Math.sqrt(n / (2.0*Math.PI*k*(n-k))); // We multiply by "p" here
}
}
public static double pmf(double k, double n, double p) {
if (p == 0.0) {
if (k == 0) return 1.0;
else return 0.0;
} else if (p == 1.0) {
if (k == n) return 1.0;
else return 0.0;
} else if (k == 0) {
return Math.exp(n * Math.log(1.0 - p));
} else if (k == n) {
return Math.exp(n * Math.log(p));
} else {
double lc = stirlerr(n) - stirlerr(k) - stirlerr(n - k) - bd0(k, n*p) - bd0(n-k, n*(1.0-p));
return p * Math.exp(lc) * Math.sqrt(n / (2.0*Math.PI*k*(n-k))); // We multiply by "p" here
}
}
/***********************************************
********** PRIVATE CLASS METHODS **********
***********************************************/
/**
* log(n!) - log(sqrt(2*pi*n)*(n/e)^n)
*/
private static double stirlerr(double n) {
if (n < 16) return sfe[(int)n];
double nn = n*n;
if (n > 500) return (S0 - S1/nn)/n;
if (n > 80) return (S0 - (S1/S2/nn)/nn)/n;
if (n > 35) return (S0 - (S1 - (S2-S3/nn)/nn)/nn)/n;
return (S0 - (S1 - (S2 - (S3 - S4/nn)/nn)/nn)/nn)/n;
}
/**
* Deviance term: k*lg(k/np) + np - k
*/
private static double bd0(double k, double np) {
if (Math.abs(k-np) < 0.1*(k+np)) {
double s = (k-np)*(k-np)/(k+np);
double v = (k-np)/(k+np);
double ej = 2*k*v;
int j = 1;
while (true) {
ej = ej*v*v;
double s1 = s+ej/(2*j+1);
if (s1 == s) return s;
s = s1;
j += 1;
}
}
return (k*Math.log(k/np)+np-k);
}
/*************************************
********** MAIN METHOD **********
*************************************/
public static void main(String[] args) {
if (args.length < 3) {
System.err.println("\nUSAGE: java NegativeBinomial <k> <r> <p>" + "\n");
System.err.println("NegativeBinomial computes the probability mass function for the negative binomial distribution with parameters (r,p) at value k.\n");
System.exit(0);
}
int k = Integer.parseInt(args[0]);
int r = Integer.parseInt(args[1]);
double p = Double.parseDouble(args[2]);
System.out.println(pmf(r-1, k+r-1, p));
}
}
|