1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Copyright 2013 Brian Tjaden
*
* This file is part of Rockhopper.
*
* Rockhopper is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Rockhopper is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* (in the file gpl.txt) along with Rockhopper.
* If not, see <http://www.gnu.org/licenses/>.
*/
import java.util.ArrayList;
import java.util.Collections;
public class SmoothDistribution {
/********************************************
********** INSTANCE VARIABLES **********
********************************************/
private ArrayList<Integer> data;
private double bandwidth;
private int BIN_SIZE;
private int minimum;
private int maximum;
private double pseudocount;
private ArrayList<Integer> histogram;
private ArrayList<Double> histogramNormalized;
private ArrayList<Integer> values;
private ArrayList<Double> smoothed;
private ArrayList<Double> smoothedNormalized;
/**************************************
********** CONSTRUCTORS **********
**************************************/
public SmoothDistribution(ArrayList<Integer> data) {
this(data, 1.0, 1);
}
public SmoothDistribution(ArrayList<Integer> data, double bandwidth, int BIN_SIZE) {
this(data, bandwidth, BIN_SIZE, Collections.min(data), Collections.max(data));
}
public SmoothDistribution(ArrayList<Integer> data, double bandwidth, int BIN_SIZE, int minimum, int maximum) {
this.data = data;
this.minimum = minimum;
this.maximum = maximum;
this.bandwidth = bandwidth;
this.BIN_SIZE = BIN_SIZE;
this.pseudocount = 0.0;
generateHistogram();
smoothData();
normalize();
}
/*************************************************
********** PUBLIC INSTANCE METHODS **********
*************************************************/
/**
* Get smoothed value at point "x".
*/
public double getSmoothedValue(double x) {
if (x < this.minimum) return this.pseudocount;
if (x > this.maximum) return this.pseudocount;
int index = binarySearch(values, x, 0, values.size()-1);
// If "x" is not in our discrete distribution, the index may be off by 1.
// For example, if our distribution includes 4,5,6,7 and x=5.3, we
// may return index 1 (corresponding to 5) or index 2 (corresponding to 6).
if (index > 0) {
if (Math.abs(x - values.get(index)) > Math.abs(x - values.get(index-1)))
return Math.max(smoothedNormalized.get(index-1), this.pseudocount);
}
if (index < smoothedNormalized.size()-1) {
if (Math.abs(x - values.get(index)) > Math.abs(x - values.get(index+1)))
return Math.max(smoothedNormalized.get(index+1), this.pseudocount);
}
return Math.max(smoothedNormalized.get(index), this.pseudocount);
}
/**
* Set the pseudocount for this distribution.
*/
public void setPseudocount(double pseudocount) {
this.pseudocount = pseudocount;
}
/**
* Returns a String representation of this smoothed distribution.
*/
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("VALUES" + "\t" + "SMOOTHED" + "\t" + "NORMALIZED" + "\n");
for (int i=0; i<smoothedNormalized.size(); i++) {
sb.append(values.get(i) + "\t" + histogram.get(i) + "\t" + histogramNormalized.get(i) + "\t" + smoothedNormalized.get(i) + "\n");
}
return sb.toString();
}
/**************************************************
********** PRIVATE INSTANCE METHODS **********
**************************************************/
/**
* Generate histogram of data.
*/
private void generateHistogram() {
this.histogram = new ArrayList<Integer>();
this.histogramNormalized = new ArrayList<Double>();
for (int i=this.minimum; i<=maximum; i+=BIN_SIZE) {
histogram.add(0);
histogramNormalized.add(0.0);
}
for (int i=0; i<data.size(); i++) {
if (data.get(i) < minimum) histogram.set(0, histogram.get(0) + 1);
else if (data.get(i) > maximum) histogram.set(histogram.size()-1, histogram.get(histogram.size()-1) + 1);
else histogram.set((data.get(i)-minimum)/BIN_SIZE, histogram.get((data.get(i)-minimum)/BIN_SIZE) + 1);
}
for (int i=0; i<histogram.size(); i++) histogramNormalized.set(i, histogram.get(i) / (double)data.size());
}
/**
* Generate smooth distibution of data (based on Epanechnikov kernel).
*/
private void smoothData() {
values = new ArrayList<Integer>();
smoothed = new ArrayList<Double>();
int i = this.minimum;
while (i <= this.maximum) { // Compute weighted value for index i
double sum = 0.0;
for (int j=0; j<data.size(); j++) {
if (Math.abs(i - data.get(j)) <= this.bandwidth) {
double u = (i - data.get(j)) / this.bandwidth;
sum += (3.0/4.0) * (1.0 - u*u);
}
}
values.add(i);
smoothed.add(sum / (data.size() * this.bandwidth));
i += this.BIN_SIZE;
}
}
/**
* Determine pseudocounts and normalize distribution so it sums to 1.0.
*/
private void normalize() {
smoothedNormalized = new ArrayList<Double>();
double sum = 0.0;
for (int i=0; i<smoothed.size(); i++) sum += smoothed.get(i);
double min = Double.MAX_VALUE;
for (int i=0; i<smoothed.size(); i++) {
double normalizedValue = smoothed.get(i) / sum;
smoothedNormalized.add(normalizedValue);
if ((normalizedValue > 0) && (normalizedValue < min)) min = normalizedValue;
}
this.pseudocount = min / 10.0;
}
/**
* Perform a binary search for the specified value.
*/
private int binarySearch(ArrayList<Integer> a, double value, int lo, int hi) {
if (hi <= lo) return lo;
int mid = lo + (hi-lo)/2;
if (a.get(mid) > value) return binarySearch(a, value, lo, mid-1);
if (a.get(mid) < value) return binarySearch(a, value, mid+1, hi);
return mid;
}
/*************************************
********** MAIN METHOD **********
*************************************/
public static void main(String[] args) {
System.err.println("\nThe SmoothDistribution application cannot be executed from the command line. It must be instantiated from another Java application. It takes a set of data and generates a smoothed version of the data distribution based on the Epanechnikov kernel. Smoothing occurs at each point over an interval [-bandwidth,bandwidth]. The BIN_SIZE indicates how big each BIN_SIZE should be.\n");
}
}
|