1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* rocks/1of2.c
*
* 1 connection from 2 symmetric connection attempts.
*
* Copyright (C) 2001 Victor Zandy
* See COPYING for distribution terms.
*/
/*
Each end simultaneously attempts to establish a new connection with
its peer. The problem is getting both ends to agree on one
connection. The protocol is as follows:
Each end sends its peer the address of a socket on which it is
listening for an incoming connection. Then it performs a
non-blocking connect to its peer's listening socket and polls this
active socket and the passive listening socket, waiting for an
connection to be established.
The remaining behavior depends on whether the role of the end in the
original connection was CLIENT or SERVER.
SERVERs send an ack byte on the first established connection. If
two connections are ready at the same time (i.e., select returns
them both being ready), then the server first tries the active one.
CLIENTs wait for an ack byte on established connections. If both
are ready, they check the passive one before the active one.
The first connection on which the read or write is successful is
chosen as the connection; the other, if established, is closed.
I am quite interested in making this protocol role independent. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <sys/time.h>
#include <unistd.h>
#include "rs.h"
#include "log.h"
/* return -1 if A is a smaller time value than B,
0 if they are equal, or
1 if A is a bigger time value than B. */
static int
tv_cmp(const struct timeval *a, const struct timeval *b)
{
if (a->tv_sec < b->tv_sec)
return -1;
if (a->tv_sec > b->tv_sec)
return 1;
if (a->tv_usec < b->tv_usec)
return -1;
if (a->tv_usec > b->tv_usec)
return 1;
return 0;
}
static int
timeout_expired(struct timeval *tout)
{
struct timeval tv;
int rv;
rv = gettimeofday(&tv, NULL);
assert(!rv);
return tv_cmp(&tv, tout) >= 0;
}
/* IF *PASSIVEP or *ACTIVEP is non-negative, then
it must a socket for an established connection */
static int
_1of2_client(int *passivep, int *activep)
{
int pick = -1;
char byte;
int passive = *passivep;
int active = *activep;
int max;
fd_set fds;
struct timeval tv;
retry:
rs_log("1of2: clients's pick: p=%d, a=%d", *passivep, *activep);
max = 0;
FD_ZERO(&fds);
if (passive >= 0) {
FD_SET(passive, &fds);
max = MAX(max, passive);
}
if (active >= 0) {
FD_SET(active, &fds);
max = MAX(max, active);
}
tv.tv_sec = tv.tv_usec = 0;
if (0 > select(max+1, &fds, NULL, NULL, &tv)) {
if (EINTR == errno)
goto retry;
else {
rs_log("1of2: client error");
return -1;
}
}
if (active >= 0 && FD_ISSET(active, &fds)) {
if (0 >= rs_xread(active, &byte, sizeof(byte), 0)) {
close(active);
*activep = -1;
} else {
pick = active;
close(passive);
}
}
if (pick < 0 && passive >= 0 && FD_ISSET(passive, &fds)) {
if (0 >= rs_xread(passive, &byte, sizeof(byte), 0)) {
close(passive);
*passivep = -1;
} else {
pick = passive;
close(active);
}
}
rs_log("1of2: client picked %d", pick);
return pick;
}
/* IF *PASSIVEP or *ACTIVEP is non-negative, then
it must a socket for an established connection */
static int
_1of2_server(int *passivep, int *activep)
{
int pick = -1;
char byte;
int passive = *passivep;
int active = *activep;
rs_log("1of2: server picking: p=%d, a=%d", *passivep, *activep);
if (active >= 0) {
if (0 > rs_xwrite(active, &byte, sizeof(byte))) {
close(active);
*activep = -1;
} else {
pick = active;
close(passive);
}
}
if (pick < 0 && passive >= 0) {
if (0 > rs_xwrite(passive, &byte, sizeof(byte))) {
close(passive);
*passivep = -1;
} else {
pick = passive;
close(active);
}
}
rs_log("1of2: server picked %d", pick);
return pick;
}
/* Bind and return a new socket to ADDR */
static int
xbind(struct sockaddr_in *addr)
{
int fd, rv;
fd = socket(AF_INET, SOCK_STREAM, 0);
if (0 > fd)
return -1;
if (0 > rs_reuseaddr(fd)) {
close(fd);
fd = -1;
}
rv = bind(fd, (struct sockaddr *) addr, sizeof(*addr));
if (0 > rv) {
close(fd);
rs_log("1of2 bind failed (%s)", strerror(errno));
return -1;
}
/* Non blocking avoids timing problem described in
Stevens, Network Programming 1, 15.6 */
if (0 > rs_nonblock(fd, 1)) {
close(fd);
return -1;
}
return fd;
}
/* Start listening on already bound socket FD */
static int
xlisten(int fd)
{
int rv;
rv = listen(fd, 1);
if (0 > rv) {
close(fd);
fd = -1;
}
return fd;
}
/* Return a new socket making a non-blocking connect to ADDR */
static int
xconnect(struct sockaddr_in *addr)
{
int fd, rv;
fd = socket(AF_INET, SOCK_STREAM, 0);
if (0 > fd)
return -1;
if (0 > rs_nonblock(fd, 1)) {
close(fd);
fd = -1;
}
rv = connect(fd, (struct sockaddr *) addr, sizeof(*addr));
if (0 > rv && EINPROGRESS != errno) {
close(fd);
fd = -1;
}
return fd;
}
static int
self_connected(int sd)
{
int rv;
struct sockaddr_in locl, peer;
socklen_t len;
len = sizeof(locl);
rv = getsockname(sd, (struct sockaddr *) &locl, &len);
if (0 > rv)
return -1;
rv = getpeername(sd, (struct sockaddr *) &peer, &len);
if (0 > rv)
return -1;
return (locl.sin_addr.s_addr == peer.sin_addr.s_addr
&& locl.sin_port == peer.sin_port);
}
/* LOCL: local address on which we listen for incoming
connections
PEER: peer's listening address
LS: if non-negative, TCP socket bound to LOCL (not listening)
LIM: maximum time to spend connection attempt; NULL for no timeout
ROLE: RS_ROLE_CLIENT or RS_ROLE_SERVER
Return fd of new connection or -1 on if timeout expires.
*/
int
rs_1of2(struct sockaddr_in *locl, struct sockaddr_in *peer,
int ls, struct timeval *lim, rs_role role)
{
int rv, len;
int ss; /* connected passive socket, obtained from ls */
int ns, cs; /* active sockets;
ns is attempting to connect,
cs is connected */
int pick; /* Selected connection descriptor */
struct sockaddr_in addr;
cs = ss = ns = -1;
pick = -1;
if (ls >= 0)
ls = xlisten(ls);
while (pick < 0) {
fd_set rfds, wfds;
struct timeval tv;
int max;
if (lim && timeout_expired(lim)) {
/* timeout */
close(ls);
close(ss);
close(ns);
return -1;
}
if (0 > ss && 0 > ls) {
ls = xbind(locl);
if (ls >= 0)
ls = xlisten(ls);
}
if (0 > cs && 0 > ns)
ns = xconnect(peer);
FD_ZERO(&rfds);
FD_ZERO(&wfds);
max = 0;
/* for clients or servers: poll for established connections */
if (0 > cs && ns >= 0) {
FD_SET(ns, &wfds);
FD_SET(ns, &rfds);
max = MAX(max, ns);
}
if (0 > ss && ls >= 0) {
FD_SET(ls, &rfds);
max = MAX(max, ls);
}
/* for clients: poll for data on connected sockets */
if (cs >= 0 && RS_ROLE_CLIENT == role) {
FD_SET(cs, &rfds);
max = MAX(max, cs);
}
if (ss >= 0 && RS_ROLE_CLIENT == role) {
FD_SET(ss, &rfds);
max = MAX(max, ss);
}
/* imprecise - we could exceed
reconnect timeout by the granularity
of this timeout; but the reconnect
timeout is usually on order of hours */
tv.tv_sec = 1;
tv.tv_usec = 0;
rv = select(1+max, &rfds, &wfds, NULL, &tv);
if (0 > rv && EINTR == errno)
continue; /* interrupt */
if (0 == rv) {
/* timeout */
/* retry connect; maybe we have a new IP address */
if (0 > cs && ns >= 0) {
close(ns);
ns = -1;
}
continue;
}
if (0 > rv) {
rs_log("select failure in 1of2");
assert(0);
}
len = sizeof(addr);
/* check for newly established connections */
if (0 > ss && ls >= 0 && FD_ISSET(ls, &rfds)) {
ss = accept(ls, (struct sockaddr *) &addr, &len);
if (ss >= 0 && RS_ROLE_SERVER == role)
pick = _1of2_server(&ss, &cs);
continue;
}
if (0 > cs && ns >= 0
&& (FD_ISSET(ns, &wfds) || FD_ISSET(ns, &rfds))) {
if (0 > getpeername(ns, (struct sockaddr *) &addr,
&len)) {
close(ns);
ns = -1; /* connect failed */
} else if (self_connected(ns)) {
close(ns);
ns = -1;
} else {
cs = ns;
ns = -1;
if (RS_ROLE_SERVER == role)
pick = _1of2_server(&ss, &cs);
}
}
/* One of CS or SS is ready for reading */
if (RS_ROLE_CLIENT == role && (ss >= 0 || cs >= 0))
pick = _1of2_client(&ss, &cs);
}
close(ls);
if (pick >= 0)
rs_nonblock(pick, 0);
return pick;
}
|