File: cache_test.cc

package info (click to toggle)
rocksdb 5.17.2-3
  • links: PTS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 21,164 kB
  • sloc: cpp: 253,035; java: 24,114; perl: 5,769; python: 4,093; ansic: 4,092; sh: 3,861; makefile: 1,754; asm: 547; php: 254; xml: 30
file content (703 lines) | stat: -rw-r--r-- 20,411 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "rocksdb/cache.h"

#include <forward_list>
#include <functional>
#include <iostream>
#include <string>
#include <vector>
#include "cache/clock_cache.h"
#include "cache/lru_cache.h"
#include "util/coding.h"
#include "util/string_util.h"
#include "util/testharness.h"

namespace rocksdb {

// Conversions between numeric keys/values and the types expected by Cache.
static std::string EncodeKey(int k) {
  std::string result;
  PutFixed32(&result, k);
  return result;
}
static int DecodeKey(const Slice& k) {
  assert(k.size() == 4);
  return DecodeFixed32(k.data());
}
static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); }
static int DecodeValue(void* v) {
  return static_cast<int>(reinterpret_cast<uintptr_t>(v));
}

const std::string kLRU = "lru";
const std::string kClock = "clock";

void dumbDeleter(const Slice& /*key*/, void* /*value*/) {}

void eraseDeleter(const Slice& /*key*/, void* value) {
  Cache* cache = reinterpret_cast<Cache*>(value);
  cache->Erase("foo");
}

class CacheTest : public testing::TestWithParam<std::string> {
 public:
  static CacheTest* current_;

  static void Deleter(const Slice& key, void* v) {
    current_->deleted_keys_.push_back(DecodeKey(key));
    current_->deleted_values_.push_back(DecodeValue(v));
  }

  static const int kCacheSize = 1000;
  static const int kNumShardBits = 4;

  static const int kCacheSize2 = 100;
  static const int kNumShardBits2 = 2;

  std::vector<int> deleted_keys_;
  std::vector<int> deleted_values_;
  shared_ptr<Cache> cache_;
  shared_ptr<Cache> cache2_;

  CacheTest()
      : cache_(NewCache(kCacheSize, kNumShardBits, false)),
        cache2_(NewCache(kCacheSize2, kNumShardBits2, false)) {
    current_ = this;
  }

  ~CacheTest() {
  }

  std::shared_ptr<Cache> NewCache(size_t capacity) {
    auto type = GetParam();
    if (type == kLRU) {
      return NewLRUCache(capacity);
    }
    if (type == kClock) {
      return NewClockCache(capacity);
    }
    return nullptr;
  }

  std::shared_ptr<Cache> NewCache(size_t capacity, int num_shard_bits,
                                  bool strict_capacity_limit) {
    auto type = GetParam();
    if (type == kLRU) {
      return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit);
    }
    if (type == kClock) {
      return NewClockCache(capacity, num_shard_bits, strict_capacity_limit);
    }
    return nullptr;
  }

  int Lookup(shared_ptr<Cache> cache, int key) {
    Cache::Handle* handle = cache->Lookup(EncodeKey(key));
    const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle));
    if (handle != nullptr) {
      cache->Release(handle);
    }
    return r;
  }

  void Insert(shared_ptr<Cache> cache, int key, int value, int charge = 1) {
    cache->Insert(EncodeKey(key), EncodeValue(value), charge,
                  &CacheTest::Deleter);
  }

  void Erase(shared_ptr<Cache> cache, int key) {
    cache->Erase(EncodeKey(key));
  }


  int Lookup(int key) {
    return Lookup(cache_, key);
  }

  void Insert(int key, int value, int charge = 1) {
    Insert(cache_, key, value, charge);
  }

  void Erase(int key) {
    Erase(cache_, key);
  }

  int Lookup2(int key) {
    return Lookup(cache2_, key);
  }

  void Insert2(int key, int value, int charge = 1) {
    Insert(cache2_, key, value, charge);
  }

  void Erase2(int key) {
    Erase(cache2_, key);
  }
};
CacheTest* CacheTest::current_;

TEST_P(CacheTest, UsageTest) {
  // cache is shared_ptr and will be automatically cleaned up.
  const uint64_t kCapacity = 100000;
  auto cache = NewCache(kCapacity, 8, false);

  size_t usage = 0;
  char value[10] = "abcdef";
  // make sure everything will be cached
  for (int i = 1; i < 100; ++i) {
    std::string key(i, 'a');
    auto kv_size = key.size() + 5;
    cache->Insert(key, reinterpret_cast<void*>(value), kv_size, dumbDeleter);
    usage += kv_size;
    ASSERT_EQ(usage, cache->GetUsage());
  }

  // make sure the cache will be overloaded
  for (uint64_t i = 1; i < kCapacity; ++i) {
    auto key = ToString(i);
    cache->Insert(key, reinterpret_cast<void*>(value), key.size() + 5,
                  dumbDeleter);
  }

  // the usage should be close to the capacity
  ASSERT_GT(kCapacity, cache->GetUsage());
  ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
}

TEST_P(CacheTest, PinnedUsageTest) {
  // cache is shared_ptr and will be automatically cleaned up.
  const uint64_t kCapacity = 100000;
  auto cache = NewCache(kCapacity, 8, false);

  size_t pinned_usage = 0;
  char value[10] = "abcdef";

  std::forward_list<Cache::Handle*> unreleased_handles;

  // Add entries. Unpin some of them after insertion. Then, pin some of them
  // again. Check GetPinnedUsage().
  for (int i = 1; i < 100; ++i) {
    std::string key(i, 'a');
    auto kv_size = key.size() + 5;
    Cache::Handle* handle;
    cache->Insert(key, reinterpret_cast<void*>(value), kv_size, dumbDeleter,
                  &handle);
    pinned_usage += kv_size;
    ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
    if (i % 2 == 0) {
      cache->Release(handle);
      pinned_usage -= kv_size;
      ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
    } else {
      unreleased_handles.push_front(handle);
    }
    if (i % 3 == 0) {
      unreleased_handles.push_front(cache->Lookup(key));
      // If i % 2 == 0, then the entry was unpinned before Lookup, so pinned
      // usage increased
      if (i % 2 == 0) {
        pinned_usage += kv_size;
      }
      ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());
    }
  }

  // check that overloading the cache does not change the pinned usage
  for (uint64_t i = 1; i < 2 * kCapacity; ++i) {
    auto key = ToString(i);
    cache->Insert(key, reinterpret_cast<void*>(value), key.size() + 5,
                  dumbDeleter);
  }
  ASSERT_EQ(pinned_usage, cache->GetPinnedUsage());

  // release handles for pinned entries to prevent memory leaks
  for (auto handle : unreleased_handles) {
    cache->Release(handle);
  }
}

TEST_P(CacheTest, HitAndMiss) {
  ASSERT_EQ(-1, Lookup(100));

  Insert(100, 101);
  ASSERT_EQ(101, Lookup(100));
  ASSERT_EQ(-1,  Lookup(200));
  ASSERT_EQ(-1,  Lookup(300));

  Insert(200, 201);
  ASSERT_EQ(101, Lookup(100));
  ASSERT_EQ(201, Lookup(200));
  ASSERT_EQ(-1,  Lookup(300));

  Insert(100, 102);
  ASSERT_EQ(102, Lookup(100));
  ASSERT_EQ(201, Lookup(200));
  ASSERT_EQ(-1,  Lookup(300));

  ASSERT_EQ(1U, deleted_keys_.size());
  ASSERT_EQ(100, deleted_keys_[0]);
  ASSERT_EQ(101, deleted_values_[0]);
}

TEST_P(CacheTest, InsertSameKey) {
  Insert(1, 1);
  Insert(1, 2);
  ASSERT_EQ(2, Lookup(1));
}

TEST_P(CacheTest, Erase) {
  Erase(200);
  ASSERT_EQ(0U, deleted_keys_.size());

  Insert(100, 101);
  Insert(200, 201);
  Erase(100);
  ASSERT_EQ(-1,  Lookup(100));
  ASSERT_EQ(201, Lookup(200));
  ASSERT_EQ(1U, deleted_keys_.size());
  ASSERT_EQ(100, deleted_keys_[0]);
  ASSERT_EQ(101, deleted_values_[0]);

  Erase(100);
  ASSERT_EQ(-1,  Lookup(100));
  ASSERT_EQ(201, Lookup(200));
  ASSERT_EQ(1U, deleted_keys_.size());
}

TEST_P(CacheTest, EntriesArePinned) {
  Insert(100, 101);
  Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
  ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
  ASSERT_EQ(1U, cache_->GetUsage());

  Insert(100, 102);
  Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
  ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
  ASSERT_EQ(0U, deleted_keys_.size());
  ASSERT_EQ(2U, cache_->GetUsage());

  cache_->Release(h1);
  ASSERT_EQ(1U, deleted_keys_.size());
  ASSERT_EQ(100, deleted_keys_[0]);
  ASSERT_EQ(101, deleted_values_[0]);
  ASSERT_EQ(1U, cache_->GetUsage());

  Erase(100);
  ASSERT_EQ(-1, Lookup(100));
  ASSERT_EQ(1U, deleted_keys_.size());
  ASSERT_EQ(1U, cache_->GetUsage());

  cache_->Release(h2);
  ASSERT_EQ(2U, deleted_keys_.size());
  ASSERT_EQ(100, deleted_keys_[1]);
  ASSERT_EQ(102, deleted_values_[1]);
  ASSERT_EQ(0U, cache_->GetUsage());
}

TEST_P(CacheTest, EvictionPolicy) {
  Insert(100, 101);
  Insert(200, 201);

  // Frequently used entry must be kept around
  for (int i = 0; i < kCacheSize + 100; i++) {
    Insert(1000+i, 2000+i);
    ASSERT_EQ(101, Lookup(100));
  }
  ASSERT_EQ(101, Lookup(100));
  ASSERT_EQ(-1, Lookup(200));
}

TEST_P(CacheTest, ExternalRefPinsEntries) {
  Insert(100, 101);
  Cache::Handle* h = cache_->Lookup(EncodeKey(100));
  ASSERT_TRUE(cache_->Ref(h));
  ASSERT_EQ(101, DecodeValue(cache_->Value(h)));
  ASSERT_EQ(1U, cache_->GetUsage());

  for (int i = 0; i < 3; ++i) {
    if (i > 0) {
      // First release (i == 1) corresponds to Ref(), second release (i == 2)
      // corresponds to Lookup(). Then, since all external refs are released,
      // the below insertions should push out the cache entry.
      cache_->Release(h);
    }
    // double cache size because the usage bit in block cache prevents 100 from
    // being evicted in the first kCacheSize iterations
    for (int j = 0; j < 2 * kCacheSize + 100; j++) {
      Insert(1000 + j, 2000 + j);
    }
    if (i < 2) {
      ASSERT_EQ(101, Lookup(100));
    }
  }
  ASSERT_EQ(-1, Lookup(100));
}

TEST_P(CacheTest, EvictionPolicyRef) {
  Insert(100, 101);
  Insert(101, 102);
  Insert(102, 103);
  Insert(103, 104);
  Insert(200, 101);
  Insert(201, 102);
  Insert(202, 103);
  Insert(203, 104);
  Cache::Handle* h201 = cache_->Lookup(EncodeKey(200));
  Cache::Handle* h202 = cache_->Lookup(EncodeKey(201));
  Cache::Handle* h203 = cache_->Lookup(EncodeKey(202));
  Cache::Handle* h204 = cache_->Lookup(EncodeKey(203));
  Insert(300, 101);
  Insert(301, 102);
  Insert(302, 103);
  Insert(303, 104);

  // Insert entries much more than Cache capacity
  for (int i = 0; i < kCacheSize + 100; i++) {
    Insert(1000 + i, 2000 + i);
  }

  // Check whether the entries inserted in the beginning
  // are evicted. Ones without extra ref are evicted and
  // those with are not.
  ASSERT_EQ(-1, Lookup(100));
  ASSERT_EQ(-1, Lookup(101));
  ASSERT_EQ(-1, Lookup(102));
  ASSERT_EQ(-1, Lookup(103));

  ASSERT_EQ(-1, Lookup(300));
  ASSERT_EQ(-1, Lookup(301));
  ASSERT_EQ(-1, Lookup(302));
  ASSERT_EQ(-1, Lookup(303));

  ASSERT_EQ(101, Lookup(200));
  ASSERT_EQ(102, Lookup(201));
  ASSERT_EQ(103, Lookup(202));
  ASSERT_EQ(104, Lookup(203));

  // Cleaning up all the handles
  cache_->Release(h201);
  cache_->Release(h202);
  cache_->Release(h203);
  cache_->Release(h204);
}

TEST_P(CacheTest, EvictEmptyCache) {
  // Insert item large than capacity to trigger eviction on empty cache.
  auto cache = NewCache(1, 0, false);
  ASSERT_OK(cache->Insert("foo", nullptr, 10, dumbDeleter));
}

TEST_P(CacheTest, EraseFromDeleter) {
  // Have deleter which will erase item from cache, which will re-enter
  // the cache at that point.
  std::shared_ptr<Cache> cache = NewCache(10, 0, false);
  ASSERT_OK(cache->Insert("foo", nullptr, 1, dumbDeleter));
  ASSERT_OK(cache->Insert("bar", cache.get(), 1, eraseDeleter));
  cache->Erase("bar");
  ASSERT_EQ(nullptr, cache->Lookup("foo"));
  ASSERT_EQ(nullptr, cache->Lookup("bar"));
}

TEST_P(CacheTest, ErasedHandleState) {
  // insert a key and get two handles
  Insert(100, 1000);
  Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
  Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
  ASSERT_EQ(h1, h2);
  ASSERT_EQ(DecodeValue(cache_->Value(h1)), 1000);
  ASSERT_EQ(DecodeValue(cache_->Value(h2)), 1000);

  // delete the key from the cache
  Erase(100);
  // can no longer find in the cache
  ASSERT_EQ(-1, Lookup(100));

  // release one handle
  cache_->Release(h1);
  // still can't find in cache
  ASSERT_EQ(-1, Lookup(100));

  cache_->Release(h2);
}

TEST_P(CacheTest, HeavyEntries) {
  // Add a bunch of light and heavy entries and then count the combined
  // size of items still in the cache, which must be approximately the
  // same as the total capacity.
  const int kLight = 1;
  const int kHeavy = 10;
  int added = 0;
  int index = 0;
  while (added < 2*kCacheSize) {
    const int weight = (index & 1) ? kLight : kHeavy;
    Insert(index, 1000+index, weight);
    added += weight;
    index++;
  }

  int cached_weight = 0;
  for (int i = 0; i < index; i++) {
    const int weight = (i & 1 ? kLight : kHeavy);
    int r = Lookup(i);
    if (r >= 0) {
      cached_weight += weight;
      ASSERT_EQ(1000+i, r);
    }
  }
  ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10);
}

TEST_P(CacheTest, NewId) {
  uint64_t a = cache_->NewId();
  uint64_t b = cache_->NewId();
  ASSERT_NE(a, b);
}


class Value {
 public:
  explicit Value(size_t v) : v_(v) { }

  size_t v_;
};

namespace {
void deleter(const Slice& /*key*/, void* value) {
  delete static_cast<Value *>(value);
}
}  // namespace

TEST_P(CacheTest, ReleaseAndErase) {
  std::shared_ptr<Cache> cache = NewCache(5, 0, false);
  Cache::Handle* handle;
  Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1,
                           &CacheTest::Deleter, &handle);
  ASSERT_TRUE(s.ok());
  ASSERT_EQ(5U, cache->GetCapacity());
  ASSERT_EQ(1U, cache->GetUsage());
  ASSERT_EQ(0U, deleted_keys_.size());
  auto erased = cache->Release(handle, true);
  ASSERT_TRUE(erased);
  // This tests that deleter has been called
  ASSERT_EQ(1U, deleted_keys_.size());
}

TEST_P(CacheTest, ReleaseWithoutErase) {
  std::shared_ptr<Cache> cache = NewCache(5, 0, false);
  Cache::Handle* handle;
  Status s = cache->Insert(EncodeKey(100), EncodeValue(100), 1,
                           &CacheTest::Deleter, &handle);
  ASSERT_TRUE(s.ok());
  ASSERT_EQ(5U, cache->GetCapacity());
  ASSERT_EQ(1U, cache->GetUsage());
  ASSERT_EQ(0U, deleted_keys_.size());
  auto erased = cache->Release(handle);
  ASSERT_FALSE(erased);
  // This tests that deleter is not called. When cache has free capacity it is
  // not expected to immediately erase the released items.
  ASSERT_EQ(0U, deleted_keys_.size());
}

TEST_P(CacheTest, SetCapacity) {
  // test1: increase capacity
  // lets create a cache with capacity 5,
  // then, insert 5 elements, then increase capacity
  // to 10, returned capacity should be 10, usage=5
  std::shared_ptr<Cache> cache = NewCache(5, 0, false);
  std::vector<Cache::Handle*> handles(10);
  // Insert 5 entries, but not releasing.
  for (size_t i = 0; i < 5; i++) {
    std::string key = ToString(i+1);
    Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
    ASSERT_TRUE(s.ok());
  }
  ASSERT_EQ(5U, cache->GetCapacity());
  ASSERT_EQ(5U, cache->GetUsage());
  cache->SetCapacity(10);
  ASSERT_EQ(10U, cache->GetCapacity());
  ASSERT_EQ(5U, cache->GetUsage());

  // test2: decrease capacity
  // insert 5 more elements to cache, then release 5,
  // then decrease capacity to 7, final capacity should be 7
  // and usage should be 7
  for (size_t i = 5; i < 10; i++) {
    std::string key = ToString(i+1);
    Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
    ASSERT_TRUE(s.ok());
  }
  ASSERT_EQ(10U, cache->GetCapacity());
  ASSERT_EQ(10U, cache->GetUsage());
  for (size_t i = 0; i < 5; i++) {
    cache->Release(handles[i]);
  }
  ASSERT_EQ(10U, cache->GetCapacity());
  ASSERT_EQ(10U, cache->GetUsage());
  cache->SetCapacity(7);
  ASSERT_EQ(7, cache->GetCapacity());
  ASSERT_EQ(7, cache->GetUsage());

  // release remaining 5 to keep valgrind happy
  for (size_t i = 5; i < 10; i++) {
    cache->Release(handles[i]);
  }
}

TEST_P(CacheTest, SetStrictCapacityLimit) {
  // test1: set the flag to false. Insert more keys than capacity. See if they
  // all go through.
  std::shared_ptr<Cache> cache = NewLRUCache(5, 0, false);
  std::vector<Cache::Handle*> handles(10);
  Status s;
  for (size_t i = 0; i < 10; i++) {
    std::string key = ToString(i + 1);
    s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
    ASSERT_OK(s);
    ASSERT_NE(nullptr, handles[i]);
  }

  // test2: set the flag to true. Insert and check if it fails.
  std::string extra_key = "extra";
  Value* extra_value = new Value(0);
  cache->SetStrictCapacityLimit(true);
  Cache::Handle* handle;
  s = cache->Insert(extra_key, extra_value, 1, &deleter, &handle);
  ASSERT_TRUE(s.IsIncomplete());
  ASSERT_EQ(nullptr, handle);

  for (size_t i = 0; i < 10; i++) {
    cache->Release(handles[i]);
  }

  // test3: init with flag being true.
  std::shared_ptr<Cache> cache2 = NewLRUCache(5, 0, true);
  for (size_t i = 0; i < 5; i++) {
    std::string key = ToString(i + 1);
    s = cache2->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
    ASSERT_OK(s);
    ASSERT_NE(nullptr, handles[i]);
  }
  s = cache2->Insert(extra_key, extra_value, 1, &deleter, &handle);
  ASSERT_TRUE(s.IsIncomplete());
  ASSERT_EQ(nullptr, handle);
  // test insert without handle
  s = cache2->Insert(extra_key, extra_value, 1, &deleter);
  // AS if the key have been inserted into cache but get evicted immediately.
  ASSERT_OK(s);
  ASSERT_EQ(5, cache->GetUsage());
  ASSERT_EQ(nullptr, cache2->Lookup(extra_key));

  for (size_t i = 0; i < 5; i++) {
    cache2->Release(handles[i]);
  }
}

TEST_P(CacheTest, OverCapacity) {
  size_t n = 10;

  // a LRUCache with n entries and one shard only
  std::shared_ptr<Cache> cache = NewCache(n, 0, false);

  std::vector<Cache::Handle*> handles(n+1);

  // Insert n+1 entries, but not releasing.
  for (size_t i = 0; i < n + 1; i++) {
    std::string key = ToString(i+1);
    Status s = cache->Insert(key, new Value(i + 1), 1, &deleter, &handles[i]);
    ASSERT_TRUE(s.ok());
  }

  // Guess what's in the cache now?
  for (size_t i = 0; i < n + 1; i++) {
    std::string key = ToString(i+1);
    auto h = cache->Lookup(key);
    ASSERT_TRUE(h != nullptr);
    if (h) cache->Release(h);
  }

  // the cache is over capacity since nothing could be evicted
  ASSERT_EQ(n + 1U, cache->GetUsage());
  for (size_t i = 0; i < n + 1; i++) {
    cache->Release(handles[i]);
  }
  // Make sure eviction is triggered.
  cache->SetCapacity(n);

  // cache is under capacity now since elements were released
  ASSERT_EQ(n, cache->GetUsage());

  // element 0 is evicted and the rest is there
  // This is consistent with the LRU policy since the element 0
  // was released first
  for (size_t i = 0; i < n + 1; i++) {
    std::string key = ToString(i+1);
    auto h = cache->Lookup(key);
    if (h) {
      ASSERT_NE(i, 0U);
      cache->Release(h);
    } else {
      ASSERT_EQ(i, 0U);
    }
  }
}

namespace {
std::vector<std::pair<int, int>> callback_state;
void callback(void* entry, size_t charge) {
  callback_state.push_back({DecodeValue(entry), static_cast<int>(charge)});
}
};

TEST_P(CacheTest, ApplyToAllCacheEntiresTest) {
  std::vector<std::pair<int, int>> inserted;
  callback_state.clear();

  for (int i = 0; i < 10; ++i) {
    Insert(i, i * 2, i + 1);
    inserted.push_back({i * 2, i + 1});
  }
  cache_->ApplyToAllCacheEntries(callback, true);

  std::sort(inserted.begin(), inserted.end());
  std::sort(callback_state.begin(), callback_state.end());
  ASSERT_TRUE(inserted == callback_state);
}

TEST_P(CacheTest, DefaultShardBits) {
  // test1: set the flag to false. Insert more keys than capacity. See if they
  // all go through.
  std::shared_ptr<Cache> cache = NewCache(16 * 1024L * 1024L);
  ShardedCache* sc = dynamic_cast<ShardedCache*>(cache.get());
  ASSERT_EQ(5, sc->GetNumShardBits());

  cache = NewLRUCache(511 * 1024L, -1, true);
  sc = dynamic_cast<ShardedCache*>(cache.get());
  ASSERT_EQ(0, sc->GetNumShardBits());

  cache = NewLRUCache(1024L * 1024L * 1024L, -1, true);
  sc = dynamic_cast<ShardedCache*>(cache.get());
  ASSERT_EQ(6, sc->GetNumShardBits());
}

#ifdef SUPPORT_CLOCK_CACHE
shared_ptr<Cache> (*new_clock_cache_func)(size_t, int, bool) = NewClockCache;
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest,
                        testing::Values(kLRU, kClock));
#else
INSTANTIATE_TEST_CASE_P(CacheTestInstance, CacheTest, testing::Values(kLRU));
#endif  // SUPPORT_CLOCK_CACHE

}  // namespace rocksdb

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}