File: write_batch.cc

package info (click to toggle)
rocksdb 5.17.2-3
  • links: PTS
  • area: main
  • in suites: buster
  • size: 21,164 kB
  • sloc: cpp: 253,035; java: 24,114; perl: 5,769; python: 4,093; ansic: 4,092; sh: 3,861; makefile: 1,754; asm: 547; php: 254; xml: 30
file content (1873 lines) | stat: -rw-r--r-- 68,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// WriteBatch::rep_ :=
//    sequence: fixed64
//    count: fixed32
//    data: record[count]
// record :=
//    kTypeValue varstring varstring
//    kTypeDeletion varstring
//    kTypeSingleDeletion varstring
//    kTypeRangeDeletion varstring varstring
//    kTypeMerge varstring varstring
//    kTypeColumnFamilyValue varint32 varstring varstring
//    kTypeColumnFamilyDeletion varint32 varstring
//    kTypeColumnFamilySingleDeletion varint32 varstring
//    kTypeColumnFamilyRangeDeletion varint32 varstring varstring
//    kTypeColumnFamilyMerge varint32 varstring varstring
//    kTypeBeginPrepareXID varstring
//    kTypeEndPrepareXID
//    kTypeCommitXID varstring
//    kTypeRollbackXID varstring
//    kTypeBeginPersistedPrepareXID varstring
//    kTypeBeginUnprepareXID varstring
//    kTypeNoop
// varstring :=
//    len: varint32
//    data: uint8[len]

#include "rocksdb/write_batch.h"

#include <map>
#include <stack>
#include <stdexcept>
#include <type_traits>
#include <vector>

#include "db/column_family.h"
#include "db/db_impl.h"
#include "db/dbformat.h"
#include "db/flush_scheduler.h"
#include "db/memtable.h"
#include "db/merge_context.h"
#include "db/snapshot_impl.h"
#include "db/write_batch_internal.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/statistics.h"
#include "rocksdb/merge_operator.h"
#include "util/coding.h"
#include "util/duplicate_detector.h"
#include "util/string_util.h"
#include "util/util.h"

namespace rocksdb {

// anon namespace for file-local types
namespace {

enum ContentFlags : uint32_t {
  DEFERRED = 1 << 0,
  HAS_PUT = 1 << 1,
  HAS_DELETE = 1 << 2,
  HAS_SINGLE_DELETE = 1 << 3,
  HAS_MERGE = 1 << 4,
  HAS_BEGIN_PREPARE = 1 << 5,
  HAS_END_PREPARE = 1 << 6,
  HAS_COMMIT = 1 << 7,
  HAS_ROLLBACK = 1 << 8,
  HAS_DELETE_RANGE = 1 << 9,
  HAS_BLOB_INDEX = 1 << 10,
  HAS_BEGIN_UNPREPARE = 1 << 11,
};

struct BatchContentClassifier : public WriteBatch::Handler {
  uint32_t content_flags = 0;

  Status PutCF(uint32_t, const Slice&, const Slice&) override {
    content_flags |= ContentFlags::HAS_PUT;
    return Status::OK();
  }

  Status DeleteCF(uint32_t, const Slice&) override {
    content_flags |= ContentFlags::HAS_DELETE;
    return Status::OK();
  }

  Status SingleDeleteCF(uint32_t, const Slice&) override {
    content_flags |= ContentFlags::HAS_SINGLE_DELETE;
    return Status::OK();
  }

  Status DeleteRangeCF(uint32_t, const Slice&, const Slice&) override {
    content_flags |= ContentFlags::HAS_DELETE_RANGE;
    return Status::OK();
  }

  Status MergeCF(uint32_t, const Slice&, const Slice&) override {
    content_flags |= ContentFlags::HAS_MERGE;
    return Status::OK();
  }

  Status PutBlobIndexCF(uint32_t, const Slice&, const Slice&) override {
    content_flags |= ContentFlags::HAS_BLOB_INDEX;
    return Status::OK();
  }

  Status MarkBeginPrepare(bool unprepare) override {
    content_flags |= ContentFlags::HAS_BEGIN_PREPARE;
    if (unprepare) {
      content_flags |= ContentFlags::HAS_BEGIN_UNPREPARE;
    }
    return Status::OK();
  }

  Status MarkEndPrepare(const Slice&) override {
    content_flags |= ContentFlags::HAS_END_PREPARE;
    return Status::OK();
  }

  Status MarkCommit(const Slice&) override {
    content_flags |= ContentFlags::HAS_COMMIT;
    return Status::OK();
  }

  Status MarkRollback(const Slice&) override {
    content_flags |= ContentFlags::HAS_ROLLBACK;
    return Status::OK();
  }
};

}  // anon namespace

struct SavePoints {
  std::stack<SavePoint> stack;
};

WriteBatch::WriteBatch(size_t reserved_bytes, size_t max_bytes)
    : save_points_(nullptr), content_flags_(0), max_bytes_(max_bytes), rep_() {
  rep_.reserve((reserved_bytes > WriteBatchInternal::kHeader) ?
    reserved_bytes : WriteBatchInternal::kHeader);
  rep_.resize(WriteBatchInternal::kHeader);
}

WriteBatch::WriteBatch(const std::string& rep)
    : save_points_(nullptr),
      content_flags_(ContentFlags::DEFERRED),
      max_bytes_(0),
      rep_(rep) {}

WriteBatch::WriteBatch(std::string&& rep)
    : save_points_(nullptr),
      content_flags_(ContentFlags::DEFERRED),
      max_bytes_(0),
      rep_(std::move(rep)) {}

WriteBatch::WriteBatch(const WriteBatch& src)
    : save_points_(src.save_points_),
      wal_term_point_(src.wal_term_point_),
      content_flags_(src.content_flags_.load(std::memory_order_relaxed)),
      max_bytes_(src.max_bytes_),
      rep_(src.rep_) {}

WriteBatch::WriteBatch(WriteBatch&& src) noexcept
    : save_points_(std::move(src.save_points_)),
      wal_term_point_(std::move(src.wal_term_point_)),
      content_flags_(src.content_flags_.load(std::memory_order_relaxed)),
      max_bytes_(src.max_bytes_),
      rep_(std::move(src.rep_)) {}

WriteBatch& WriteBatch::operator=(const WriteBatch& src) {
  if (&src != this) {
    this->~WriteBatch();
    new (this) WriteBatch(src);
  }
  return *this;
}

WriteBatch& WriteBatch::operator=(WriteBatch&& src) {
  if (&src != this) {
    this->~WriteBatch();
    new (this) WriteBatch(std::move(src));
  }
  return *this;
}

WriteBatch::~WriteBatch() { delete save_points_; }

WriteBatch::Handler::~Handler() { }

void WriteBatch::Handler::LogData(const Slice& /*blob*/) {
  // If the user has not specified something to do with blobs, then we ignore
  // them.
}

bool WriteBatch::Handler::Continue() {
  return true;
}

void WriteBatch::Clear() {
  rep_.clear();
  rep_.resize(WriteBatchInternal::kHeader);

  content_flags_.store(0, std::memory_order_relaxed);

  if (save_points_ != nullptr) {
    while (!save_points_->stack.empty()) {
      save_points_->stack.pop();
    }
  }

  wal_term_point_.clear();
}

int WriteBatch::Count() const {
  return WriteBatchInternal::Count(this);
}

uint32_t WriteBatch::ComputeContentFlags() const {
  auto rv = content_flags_.load(std::memory_order_relaxed);
  if ((rv & ContentFlags::DEFERRED) != 0) {
    BatchContentClassifier classifier;
    Iterate(&classifier);
    rv = classifier.content_flags;

    // this method is conceptually const, because it is performing a lazy
    // computation that doesn't affect the abstract state of the batch.
    // content_flags_ is marked mutable so that we can perform the
    // following assignment
    content_flags_.store(rv, std::memory_order_relaxed);
  }
  return rv;
}

void WriteBatch::MarkWalTerminationPoint() {
  wal_term_point_.size = GetDataSize();
  wal_term_point_.count = Count();
  wal_term_point_.content_flags = content_flags_;
}

bool WriteBatch::HasPut() const {
  return (ComputeContentFlags() & ContentFlags::HAS_PUT) != 0;
}

bool WriteBatch::HasDelete() const {
  return (ComputeContentFlags() & ContentFlags::HAS_DELETE) != 0;
}

bool WriteBatch::HasSingleDelete() const {
  return (ComputeContentFlags() & ContentFlags::HAS_SINGLE_DELETE) != 0;
}

bool WriteBatch::HasDeleteRange() const {
  return (ComputeContentFlags() & ContentFlags::HAS_DELETE_RANGE) != 0;
}

bool WriteBatch::HasMerge() const {
  return (ComputeContentFlags() & ContentFlags::HAS_MERGE) != 0;
}

bool ReadKeyFromWriteBatchEntry(Slice* input, Slice* key, bool cf_record) {
  assert(input != nullptr && key != nullptr);
  // Skip tag byte
  input->remove_prefix(1);

  if (cf_record) {
    // Skip column_family bytes
    uint32_t cf;
    if (!GetVarint32(input, &cf)) {
      return false;
    }
  }

  // Extract key
  return GetLengthPrefixedSlice(input, key);
}

bool WriteBatch::HasBeginPrepare() const {
  return (ComputeContentFlags() & ContentFlags::HAS_BEGIN_PREPARE) != 0;
}

bool WriteBatch::HasEndPrepare() const {
  return (ComputeContentFlags() & ContentFlags::HAS_END_PREPARE) != 0;
}

bool WriteBatch::HasCommit() const {
  return (ComputeContentFlags() & ContentFlags::HAS_COMMIT) != 0;
}

bool WriteBatch::HasRollback() const {
  return (ComputeContentFlags() & ContentFlags::HAS_ROLLBACK) != 0;
}

Status ReadRecordFromWriteBatch(Slice* input, char* tag,
                                uint32_t* column_family, Slice* key,
                                Slice* value, Slice* blob, Slice* xid) {
  assert(key != nullptr && value != nullptr);
  *tag = (*input)[0];
  input->remove_prefix(1);
  *column_family = 0;  // default
  switch (*tag) {
    case kTypeColumnFamilyValue:
      if (!GetVarint32(input, column_family)) {
        return Status::Corruption("bad WriteBatch Put");
      }
      FALLTHROUGH_INTENDED;
    case kTypeValue:
      if (!GetLengthPrefixedSlice(input, key) ||
          !GetLengthPrefixedSlice(input, value)) {
        return Status::Corruption("bad WriteBatch Put");
      }
      break;
    case kTypeColumnFamilyDeletion:
    case kTypeColumnFamilySingleDeletion:
      if (!GetVarint32(input, column_family)) {
        return Status::Corruption("bad WriteBatch Delete");
      }
      FALLTHROUGH_INTENDED;
    case kTypeDeletion:
    case kTypeSingleDeletion:
      if (!GetLengthPrefixedSlice(input, key)) {
        return Status::Corruption("bad WriteBatch Delete");
      }
      break;
    case kTypeColumnFamilyRangeDeletion:
      if (!GetVarint32(input, column_family)) {
        return Status::Corruption("bad WriteBatch DeleteRange");
      }
      FALLTHROUGH_INTENDED;
    case kTypeRangeDeletion:
      // for range delete, "key" is begin_key, "value" is end_key
      if (!GetLengthPrefixedSlice(input, key) ||
          !GetLengthPrefixedSlice(input, value)) {
        return Status::Corruption("bad WriteBatch DeleteRange");
      }
      break;
    case kTypeColumnFamilyMerge:
      if (!GetVarint32(input, column_family)) {
        return Status::Corruption("bad WriteBatch Merge");
      }
      FALLTHROUGH_INTENDED;
    case kTypeMerge:
      if (!GetLengthPrefixedSlice(input, key) ||
          !GetLengthPrefixedSlice(input, value)) {
        return Status::Corruption("bad WriteBatch Merge");
      }
      break;
    case kTypeColumnFamilyBlobIndex:
      if (!GetVarint32(input, column_family)) {
        return Status::Corruption("bad WriteBatch BlobIndex");
      }
      FALLTHROUGH_INTENDED;
    case kTypeBlobIndex:
      if (!GetLengthPrefixedSlice(input, key) ||
          !GetLengthPrefixedSlice(input, value)) {
        return Status::Corruption("bad WriteBatch BlobIndex");
      }
      break;
    case kTypeLogData:
      assert(blob != nullptr);
      if (!GetLengthPrefixedSlice(input, blob)) {
        return Status::Corruption("bad WriteBatch Blob");
      }
      break;
    case kTypeNoop:
    case kTypeBeginPrepareXID:
      // This indicates that the prepared batch is also persisted in the db.
      // This is used in WritePreparedTxn
    case kTypeBeginPersistedPrepareXID:
      // This is used in WriteUnpreparedTxn
    case kTypeBeginUnprepareXID:
      break;
    case kTypeEndPrepareXID:
      if (!GetLengthPrefixedSlice(input, xid)) {
        return Status::Corruption("bad EndPrepare XID");
      }
      break;
    case kTypeCommitXID:
      if (!GetLengthPrefixedSlice(input, xid)) {
        return Status::Corruption("bad Commit XID");
      }
      break;
    case kTypeRollbackXID:
      if (!GetLengthPrefixedSlice(input, xid)) {
        return Status::Corruption("bad Rollback XID");
      }
      break;
    default:
      return Status::Corruption("unknown WriteBatch tag");
  }
  return Status::OK();
}

Status WriteBatch::Iterate(Handler* handler) const {
  Slice input(rep_);
  if (input.size() < WriteBatchInternal::kHeader) {
    return Status::Corruption("malformed WriteBatch (too small)");
  }

  input.remove_prefix(WriteBatchInternal::kHeader);
  Slice key, value, blob, xid;
  // Sometimes a sub-batch starts with a Noop. We want to exclude such Noops as
  // the batch boundary symbols otherwise we would mis-count the number of
  // batches. We do that by checking whether the accumulated batch is empty
  // before seeing the next Noop.
  bool empty_batch = true;
  int found = 0;
  Status s;
  char tag = 0;
  uint32_t column_family = 0;  // default
  bool last_was_try_again = false;
  while (((s.ok() && !input.empty()) || UNLIKELY(s.IsTryAgain())) &&
         handler->Continue()) {
    if (LIKELY(!s.IsTryAgain())) {
      last_was_try_again = false;
      tag = 0;
      column_family = 0;  // default

      s = ReadRecordFromWriteBatch(&input, &tag, &column_family, &key, &value,
                                   &blob, &xid);
      if (!s.ok()) {
        return s;
      }
    } else {
      assert(s.IsTryAgain());
      assert(!last_was_try_again); // to detect infinite loop bugs
      if (UNLIKELY(last_was_try_again)) {
        return Status::Corruption(
            "two consecutive TryAgain in WriteBatch handler; this is either a "
            "software bug or data corruption.");
      }
      last_was_try_again = true;
      s = Status::OK();
    }

    switch (tag) {
      case kTypeColumnFamilyValue:
      case kTypeValue:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_PUT));
        s = handler->PutCF(column_family, key, value);
        if (LIKELY(s.ok())) {
          empty_batch = false;
          found++;
        }
        break;
      case kTypeColumnFamilyDeletion:
      case kTypeDeletion:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_DELETE));
        s = handler->DeleteCF(column_family, key);
        if (LIKELY(s.ok())) {
          empty_batch = false;
          found++;
        }
        break;
      case kTypeColumnFamilySingleDeletion:
      case kTypeSingleDeletion:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_SINGLE_DELETE));
        s = handler->SingleDeleteCF(column_family, key);
        if (LIKELY(s.ok())) {
          empty_batch = false;
          found++;
        }
        break;
      case kTypeColumnFamilyRangeDeletion:
      case kTypeRangeDeletion:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_DELETE_RANGE));
        s = handler->DeleteRangeCF(column_family, key, value);
        if (LIKELY(s.ok())) {
          empty_batch = false;
          found++;
        }
        break;
      case kTypeColumnFamilyMerge:
      case kTypeMerge:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_MERGE));
        s = handler->MergeCF(column_family, key, value);
        if (LIKELY(s.ok())) {
          empty_batch = false;
          found++;
        }
        break;
      case kTypeColumnFamilyBlobIndex:
      case kTypeBlobIndex:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_BLOB_INDEX));
        s = handler->PutBlobIndexCF(column_family, key, value);
        if (LIKELY(s.ok())) {
          found++;
        }
        break;
      case kTypeLogData:
        handler->LogData(blob);
        // A batch might have nothing but LogData. It is still a batch.
        empty_batch = false;
        break;
      case kTypeBeginPrepareXID:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_BEGIN_PREPARE));
        handler->MarkBeginPrepare();
        empty_batch = false;
        if (!handler->WriteAfterCommit()) {
          s = Status::NotSupported(
              "WriteCommitted txn tag when write_after_commit_ is disabled (in "
              "WritePrepared/WriteUnprepared mode). If it is not due to "
              "corruption, the WAL must be emptied before changing the "
              "WritePolicy.");
        }
        if (handler->WriteBeforePrepare()) {
          s = Status::NotSupported(
              "WriteCommitted txn tag when write_before_prepare_ is enabled "
              "(in WriteUnprepared mode). If it is not due to corruption, the "
              "WAL must be emptied before changing the WritePolicy.");
        }
        break;
      case kTypeBeginPersistedPrepareXID:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_BEGIN_PREPARE));
        handler->MarkBeginPrepare();
        empty_batch = false;
        if (handler->WriteAfterCommit()) {
          s = Status::NotSupported(
              "WritePrepared/WriteUnprepared txn tag when write_after_commit_ "
              "is enabled (in default WriteCommitted mode). If it is not due "
              "to corruption, the WAL must be emptied before changing the "
              "WritePolicy.");
        }
        break;
      case kTypeBeginUnprepareXID:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_BEGIN_UNPREPARE));
        handler->MarkBeginPrepare(true /* unprepared */);
        empty_batch = false;
        if (handler->WriteAfterCommit()) {
          s = Status::NotSupported(
              "WriteUnprepared txn tag when write_after_commit_ is enabled (in "
              "default WriteCommitted mode). If it is not due to corruption, "
              "the WAL must be emptied before changing the WritePolicy.");
        }
        if (!handler->WriteBeforePrepare()) {
          s = Status::NotSupported(
              "WriteUnprepared txn tag when write_before_prepare_ is disabled "
              "(in WriteCommitted/WritePrepared mode). If it is not due to "
              "corruption, the WAL must be emptied before changing the "
              "WritePolicy.");
        }
        break;
      case kTypeEndPrepareXID:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_END_PREPARE));
        handler->MarkEndPrepare(xid);
        empty_batch = true;
        break;
      case kTypeCommitXID:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_COMMIT));
        handler->MarkCommit(xid);
        empty_batch = true;
        break;
      case kTypeRollbackXID:
        assert(content_flags_.load(std::memory_order_relaxed) &
               (ContentFlags::DEFERRED | ContentFlags::HAS_ROLLBACK));
        handler->MarkRollback(xid);
        empty_batch = true;
        break;
      case kTypeNoop:
        handler->MarkNoop(empty_batch);
        empty_batch = true;
        break;
      default:
        return Status::Corruption("unknown WriteBatch tag");
    }
  }
  if (!s.ok()) {
    return s;
  }
  if (found != WriteBatchInternal::Count(this)) {
    return Status::Corruption("WriteBatch has wrong count");
  } else {
    return Status::OK();
  }
}

bool WriteBatchInternal::IsLatestPersistentState(const WriteBatch* b) {
  return b->is_latest_persistent_state_;
}

void WriteBatchInternal::SetAsLastestPersistentState(WriteBatch* b) {
  b->is_latest_persistent_state_ = true;
}

int WriteBatchInternal::Count(const WriteBatch* b) {
  return DecodeFixed32(b->rep_.data() + 8);
}

void WriteBatchInternal::SetCount(WriteBatch* b, int n) {
  EncodeFixed32(&b->rep_[8], n);
}

SequenceNumber WriteBatchInternal::Sequence(const WriteBatch* b) {
  return SequenceNumber(DecodeFixed64(b->rep_.data()));
}

void WriteBatchInternal::SetSequence(WriteBatch* b, SequenceNumber seq) {
  EncodeFixed64(&b->rep_[0], seq);
}

size_t WriteBatchInternal::GetFirstOffset(WriteBatch* /*b*/) {
  return WriteBatchInternal::kHeader;
}

Status WriteBatchInternal::Put(WriteBatch* b, uint32_t column_family_id,
                               const Slice& key, const Slice& value) {
  if (key.size() > size_t{port::kMaxUint32}) {
    return Status::InvalidArgument("key is too large");
  }
  if (value.size() > size_t{port::kMaxUint32}) {
    return Status::InvalidArgument("value is too large");
  }

  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeValue));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyValue));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSlice(&b->rep_, key);
  PutLengthPrefixedSlice(&b->rep_, value);
  b->content_flags_.store(
      b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_PUT,
      std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::Put(ColumnFamilyHandle* column_family, const Slice& key,
                       const Slice& value) {
  return WriteBatchInternal::Put(this, GetColumnFamilyID(column_family), key,
                                 value);
}

Status WriteBatchInternal::CheckSlicePartsLength(const SliceParts& key,
                                                 const SliceParts& value) {
  size_t total_key_bytes = 0;
  for (int i = 0; i < key.num_parts; ++i) {
    total_key_bytes += key.parts[i].size();
  }
  if (total_key_bytes >= size_t{port::kMaxUint32}) {
    return Status::InvalidArgument("key is too large");
  }

  size_t total_value_bytes = 0;
  for (int i = 0; i < value.num_parts; ++i) {
    total_value_bytes += value.parts[i].size();
  }
  if (total_value_bytes >= size_t{port::kMaxUint32}) {
    return Status::InvalidArgument("value is too large");
  }
  return Status::OK();
}

Status WriteBatchInternal::Put(WriteBatch* b, uint32_t column_family_id,
                               const SliceParts& key, const SliceParts& value) {
  Status s = CheckSlicePartsLength(key, value);
  if (!s.ok()) {
    return s;
  }

  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeValue));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyValue));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSliceParts(&b->rep_, key);
  PutLengthPrefixedSliceParts(&b->rep_, value);
  b->content_flags_.store(
      b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_PUT,
      std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::Put(ColumnFamilyHandle* column_family, const SliceParts& key,
                       const SliceParts& value) {
  return WriteBatchInternal::Put(this, GetColumnFamilyID(column_family), key,
                                 value);
}

Status WriteBatchInternal::InsertNoop(WriteBatch* b) {
  b->rep_.push_back(static_cast<char>(kTypeNoop));
  return Status::OK();
}

Status WriteBatchInternal::MarkEndPrepare(WriteBatch* b, const Slice& xid,
                                          bool write_after_commit,
                                          bool unprepared_batch) {
  // a manually constructed batch can only contain one prepare section
  assert(b->rep_[12] == static_cast<char>(kTypeNoop));

  // all savepoints up to this point are cleared
  if (b->save_points_ != nullptr) {
    while (!b->save_points_->stack.empty()) {
      b->save_points_->stack.pop();
    }
  }

  // rewrite noop as begin marker
  b->rep_[12] = static_cast<char>(
      write_after_commit ? kTypeBeginPrepareXID
                         : (unprepared_batch ? kTypeBeginUnprepareXID
                                             : kTypeBeginPersistedPrepareXID));
  b->rep_.push_back(static_cast<char>(kTypeEndPrepareXID));
  PutLengthPrefixedSlice(&b->rep_, xid);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_END_PREPARE |
                              ContentFlags::HAS_BEGIN_PREPARE,
                          std::memory_order_relaxed);
  if (unprepared_batch) {
    b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                                ContentFlags::HAS_BEGIN_UNPREPARE,
                            std::memory_order_relaxed);
  }
  return Status::OK();
}

Status WriteBatchInternal::MarkCommit(WriteBatch* b, const Slice& xid) {
  b->rep_.push_back(static_cast<char>(kTypeCommitXID));
  PutLengthPrefixedSlice(&b->rep_, xid);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_COMMIT,
                          std::memory_order_relaxed);
  return Status::OK();
}

Status WriteBatchInternal::MarkRollback(WriteBatch* b, const Slice& xid) {
  b->rep_.push_back(static_cast<char>(kTypeRollbackXID));
  PutLengthPrefixedSlice(&b->rep_, xid);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_ROLLBACK,
                          std::memory_order_relaxed);
  return Status::OK();
}

Status WriteBatchInternal::Delete(WriteBatch* b, uint32_t column_family_id,
                                  const Slice& key) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeDeletion));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyDeletion));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSlice(&b->rep_, key);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_DELETE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::Delete(ColumnFamilyHandle* column_family, const Slice& key) {
  return WriteBatchInternal::Delete(this, GetColumnFamilyID(column_family),
                                    key);
}

Status WriteBatchInternal::Delete(WriteBatch* b, uint32_t column_family_id,
                                  const SliceParts& key) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeDeletion));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyDeletion));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSliceParts(&b->rep_, key);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_DELETE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::Delete(ColumnFamilyHandle* column_family,
                          const SliceParts& key) {
  return WriteBatchInternal::Delete(this, GetColumnFamilyID(column_family),
                                    key);
}

Status WriteBatchInternal::SingleDelete(WriteBatch* b,
                                        uint32_t column_family_id,
                                        const Slice& key) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeSingleDeletion));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilySingleDeletion));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSlice(&b->rep_, key);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_SINGLE_DELETE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::SingleDelete(ColumnFamilyHandle* column_family,
                                const Slice& key) {
  return WriteBatchInternal::SingleDelete(
      this, GetColumnFamilyID(column_family), key);
}

Status WriteBatchInternal::SingleDelete(WriteBatch* b,
                                        uint32_t column_family_id,
                                        const SliceParts& key) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeSingleDeletion));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilySingleDeletion));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSliceParts(&b->rep_, key);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_SINGLE_DELETE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::SingleDelete(ColumnFamilyHandle* column_family,
                                const SliceParts& key) {
  return WriteBatchInternal::SingleDelete(
      this, GetColumnFamilyID(column_family), key);
}

Status WriteBatchInternal::DeleteRange(WriteBatch* b, uint32_t column_family_id,
                                       const Slice& begin_key,
                                       const Slice& end_key) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeRangeDeletion));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyRangeDeletion));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSlice(&b->rep_, begin_key);
  PutLengthPrefixedSlice(&b->rep_, end_key);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_DELETE_RANGE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::DeleteRange(ColumnFamilyHandle* column_family,
                               const Slice& begin_key, const Slice& end_key) {
  return WriteBatchInternal::DeleteRange(this, GetColumnFamilyID(column_family),
                                         begin_key, end_key);
}

Status WriteBatchInternal::DeleteRange(WriteBatch* b, uint32_t column_family_id,
                                       const SliceParts& begin_key,
                                       const SliceParts& end_key) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeRangeDeletion));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyRangeDeletion));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSliceParts(&b->rep_, begin_key);
  PutLengthPrefixedSliceParts(&b->rep_, end_key);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_DELETE_RANGE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::DeleteRange(ColumnFamilyHandle* column_family,
                               const SliceParts& begin_key,
                               const SliceParts& end_key) {
  return WriteBatchInternal::DeleteRange(this, GetColumnFamilyID(column_family),
                                         begin_key, end_key);
}

Status WriteBatchInternal::Merge(WriteBatch* b, uint32_t column_family_id,
                                 const Slice& key, const Slice& value) {
  if (key.size() > size_t{port::kMaxUint32}) {
    return Status::InvalidArgument("key is too large");
  }
  if (value.size() > size_t{port::kMaxUint32}) {
    return Status::InvalidArgument("value is too large");
  }

  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeMerge));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyMerge));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSlice(&b->rep_, key);
  PutLengthPrefixedSlice(&b->rep_, value);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_MERGE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::Merge(ColumnFamilyHandle* column_family, const Slice& key,
                         const Slice& value) {
  return WriteBatchInternal::Merge(this, GetColumnFamilyID(column_family), key,
                                   value);
}

Status WriteBatchInternal::Merge(WriteBatch* b, uint32_t column_family_id,
                                 const SliceParts& key,
                                 const SliceParts& value) {
  Status s = CheckSlicePartsLength(key, value);
  if (!s.ok()) {
    return s;
  }

  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeMerge));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyMerge));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSliceParts(&b->rep_, key);
  PutLengthPrefixedSliceParts(&b->rep_, value);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_MERGE,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::Merge(ColumnFamilyHandle* column_family,
                         const SliceParts& key, const SliceParts& value) {
  return WriteBatchInternal::Merge(this, GetColumnFamilyID(column_family), key,
                                   value);
}

Status WriteBatchInternal::PutBlobIndex(WriteBatch* b,
                                        uint32_t column_family_id,
                                        const Slice& key, const Slice& value) {
  LocalSavePoint save(b);
  WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1);
  if (column_family_id == 0) {
    b->rep_.push_back(static_cast<char>(kTypeBlobIndex));
  } else {
    b->rep_.push_back(static_cast<char>(kTypeColumnFamilyBlobIndex));
    PutVarint32(&b->rep_, column_family_id);
  }
  PutLengthPrefixedSlice(&b->rep_, key);
  PutLengthPrefixedSlice(&b->rep_, value);
  b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) |
                              ContentFlags::HAS_BLOB_INDEX,
                          std::memory_order_relaxed);
  return save.commit();
}

Status WriteBatch::PutLogData(const Slice& blob) {
  LocalSavePoint save(this);
  rep_.push_back(static_cast<char>(kTypeLogData));
  PutLengthPrefixedSlice(&rep_, blob);
  return save.commit();
}

void WriteBatch::SetSavePoint() {
  if (save_points_ == nullptr) {
    save_points_ = new SavePoints();
  }
  // Record length and count of current batch of writes.
  save_points_->stack.push(SavePoint(
      GetDataSize(), Count(), content_flags_.load(std::memory_order_relaxed)));
}

Status WriteBatch::RollbackToSavePoint() {
  if (save_points_ == nullptr || save_points_->stack.size() == 0) {
    return Status::NotFound();
  }

  // Pop the most recent savepoint off the stack
  SavePoint savepoint = save_points_->stack.top();
  save_points_->stack.pop();

  assert(savepoint.size <= rep_.size());
  assert(savepoint.count <= Count());

  if (savepoint.size == rep_.size()) {
    // No changes to rollback
  } else if (savepoint.size == 0) {
    // Rollback everything
    Clear();
  } else {
    rep_.resize(savepoint.size);
    WriteBatchInternal::SetCount(this, savepoint.count);
    content_flags_.store(savepoint.content_flags, std::memory_order_relaxed);
  }

  return Status::OK();
}

Status WriteBatch::PopSavePoint() {
  if (save_points_ == nullptr || save_points_->stack.size() == 0) {
    return Status::NotFound();
  }

  // Pop the most recent savepoint off the stack
  save_points_->stack.pop();

  return Status::OK();
}

class MemTableInserter : public WriteBatch::Handler {

  SequenceNumber sequence_;
  ColumnFamilyMemTables* const cf_mems_;
  FlushScheduler* const flush_scheduler_;
  const bool ignore_missing_column_families_;
  const uint64_t recovering_log_number_;
  // log number that all Memtables inserted into should reference
  uint64_t log_number_ref_;
  DBImpl* db_;
  const bool concurrent_memtable_writes_;
  bool       post_info_created_;

  bool* has_valid_writes_;
  // On some (!) platforms just default creating
  // a map is too expensive in the Write() path as they
  // cause memory allocations though unused.
  // Make creation optional but do not incur
  // unique_ptr additional allocation
  using MemPostInfoMap = std::map<MemTable*, MemTablePostProcessInfo>;
  using PostMapType = std::aligned_storage<sizeof(MemPostInfoMap)>::type;
  PostMapType mem_post_info_map_;
  // current recovered transaction we are rebuilding (recovery)
  WriteBatch* rebuilding_trx_;
  SequenceNumber rebuilding_trx_seq_;
  // Increase seq number once per each write batch. Otherwise increase it once
  // per key.
  bool seq_per_batch_;
  // Whether the memtable write will be done only after the commit
  bool write_after_commit_;
  // Whether memtable write can be done before prepare
  bool write_before_prepare_;
  // Whether this batch was unprepared or not
  bool unprepared_batch_;
  using DupDetector = std::aligned_storage<sizeof(DuplicateDetector)>::type;
  DupDetector       duplicate_detector_;
  bool              dup_dectector_on_;

  MemPostInfoMap& GetPostMap() {
    assert(concurrent_memtable_writes_);
    if(!post_info_created_) {
      new (&mem_post_info_map_) MemPostInfoMap();
      post_info_created_ = true;
    }
    return *reinterpret_cast<MemPostInfoMap*>(&mem_post_info_map_);
  }

  bool IsDuplicateKeySeq(uint32_t column_family_id, const Slice& key) {
    assert(!write_after_commit_);
    assert(rebuilding_trx_ != nullptr);
    if (!dup_dectector_on_) {
      new (&duplicate_detector_) DuplicateDetector(db_);
      dup_dectector_on_ = true;
    }
    return reinterpret_cast<DuplicateDetector*>
      (&duplicate_detector_)->IsDuplicateKeySeq(column_family_id, key, sequence_);
  }

 protected:
  virtual bool WriteBeforePrepare() const override {
    return write_before_prepare_;
  }
  virtual bool WriteAfterCommit() const override { return write_after_commit_; }

 public:
  // cf_mems should not be shared with concurrent inserters
  MemTableInserter(SequenceNumber _sequence, ColumnFamilyMemTables* cf_mems,
                   FlushScheduler* flush_scheduler,
                   bool ignore_missing_column_families,
                   uint64_t recovering_log_number, DB* db,
                   bool concurrent_memtable_writes,
                   bool* has_valid_writes = nullptr, bool seq_per_batch = false,
                   bool batch_per_txn = true)
      : sequence_(_sequence),
        cf_mems_(cf_mems),
        flush_scheduler_(flush_scheduler),
        ignore_missing_column_families_(ignore_missing_column_families),
        recovering_log_number_(recovering_log_number),
        log_number_ref_(0),
        db_(reinterpret_cast<DBImpl*>(db)),
        concurrent_memtable_writes_(concurrent_memtable_writes),
        post_info_created_(false),
        has_valid_writes_(has_valid_writes),
        rebuilding_trx_(nullptr),
        rebuilding_trx_seq_(0),
        seq_per_batch_(seq_per_batch),
        // Write after commit currently uses one seq per key (instead of per
        // batch). So seq_per_batch being false indicates write_after_commit
        // approach.
        write_after_commit_(!seq_per_batch),
        // WriteUnprepared can write WriteBatches per transaction, so
        // batch_per_txn being false indicates write_before_prepare.
        write_before_prepare_(!batch_per_txn),
        unprepared_batch_(false),
        duplicate_detector_(),
        dup_dectector_on_(false) {
    assert(cf_mems_);
  }

  ~MemTableInserter() {
    if (dup_dectector_on_) {
      reinterpret_cast<DuplicateDetector*>
        (&duplicate_detector_)->~DuplicateDetector();
    }
    if (post_info_created_) {
      reinterpret_cast<MemPostInfoMap*>
        (&mem_post_info_map_)->~MemPostInfoMap();
    }
    delete rebuilding_trx_;
  }

  MemTableInserter(const MemTableInserter&) = delete;
  MemTableInserter& operator=(const MemTableInserter&) = delete;

  // The batch seq is regularly restarted; In normal mode it is set when
  // MemTableInserter is constructed in the write thread and in recovery mode it
  // is set when a batch, which is tagged with seq, is read from the WAL.
  // Within a sequenced batch, which could be a merge of multiple batches, we
  // have two policies to advance the seq: i) seq_per_key (default) and ii)
  // seq_per_batch. To implement the latter we need to mark the boundary between
  // the individual batches. The approach is this: 1) Use the terminating
  // markers to indicate the boundary (kTypeEndPrepareXID, kTypeCommitXID,
  // kTypeRollbackXID) 2) Terminate a batch with kTypeNoop in the absence of a
  // natural boundary marker.
  void MaybeAdvanceSeq(bool batch_boundry = false) {
    if (batch_boundry == seq_per_batch_) {
      sequence_++;
    }
  }

  void set_log_number_ref(uint64_t log) { log_number_ref_ = log; }

  SequenceNumber sequence() const { return sequence_; }

  void PostProcess() {
    assert(concurrent_memtable_writes_);
    // If post info was not created there is nothing
    // to process and no need to create on demand
    if(post_info_created_) {
      for (auto& pair : GetPostMap()) {
        pair.first->BatchPostProcess(pair.second);
      }
    }
  }

  bool SeekToColumnFamily(uint32_t column_family_id, Status* s) {
    // If we are in a concurrent mode, it is the caller's responsibility
    // to clone the original ColumnFamilyMemTables so that each thread
    // has its own instance.  Otherwise, it must be guaranteed that there
    // is no concurrent access
    bool found = cf_mems_->Seek(column_family_id);
    if (!found) {
      if (ignore_missing_column_families_) {
        *s = Status::OK();
      } else {
        *s = Status::InvalidArgument(
            "Invalid column family specified in write batch");
      }
      return false;
    }
    if (recovering_log_number_ != 0 &&
        recovering_log_number_ < cf_mems_->GetLogNumber()) {
      // This is true only in recovery environment (recovering_log_number_ is
      // always 0 in
      // non-recovery, regular write code-path)
      // * If recovering_log_number_ < cf_mems_->GetLogNumber(), this means that
      // column
      // family already contains updates from this log. We can't apply updates
      // twice because of update-in-place or merge workloads -- ignore the
      // update
      *s = Status::OK();
      return false;
    }

    if (has_valid_writes_ != nullptr) {
      *has_valid_writes_ = true;
    }

    if (log_number_ref_ > 0) {
      cf_mems_->GetMemTable()->RefLogContainingPrepSection(log_number_ref_);
    }

    return true;
  }

  Status PutCFImpl(uint32_t column_family_id, const Slice& key,
                   const Slice& value, ValueType value_type) {
    // optimize for non-recovery mode
    if (UNLIKELY(write_after_commit_ && rebuilding_trx_ != nullptr)) {
      WriteBatchInternal::Put(rebuilding_trx_, column_family_id, key, value);
      return Status::OK();
      // else insert the values to the memtable right away
    }

    Status seek_status;
    if (UNLIKELY(!SeekToColumnFamily(column_family_id, &seek_status))) {
      bool batch_boundry = false;
      if (rebuilding_trx_ != nullptr) {
        assert(!write_after_commit_);
        // The CF is probably flushed and hence no need for insert but we still
        // need to keep track of the keys for upcoming rollback/commit.
        WriteBatchInternal::Put(rebuilding_trx_, column_family_id, key, value);
        batch_boundry = IsDuplicateKeySeq(column_family_id, key);
      }
      MaybeAdvanceSeq(batch_boundry);
      return seek_status;
    }
    Status ret_status;

    MemTable* mem = cf_mems_->GetMemTable();
    auto* moptions = mem->GetImmutableMemTableOptions();
    // inplace_update_support is inconsistent with snapshots, and therefore with
    // any kind of transactions including the ones that use seq_per_batch
    assert(!seq_per_batch_ || !moptions->inplace_update_support);
    if (!moptions->inplace_update_support) {
      bool mem_res =
          mem->Add(sequence_, value_type, key, value,
                   concurrent_memtable_writes_, get_post_process_info(mem));
      if (UNLIKELY(!mem_res)) {
        assert(seq_per_batch_);
        ret_status = Status::TryAgain("key+seq exists");
        const bool BATCH_BOUNDRY = true;
        MaybeAdvanceSeq(BATCH_BOUNDRY);
      }
    } else if (moptions->inplace_callback == nullptr) {
      assert(!concurrent_memtable_writes_);
      mem->Update(sequence_, key, value);
    } else {
      assert(!concurrent_memtable_writes_);
      if (mem->UpdateCallback(sequence_, key, value)) {
      } else {
        // key not found in memtable. Do sst get, update, add
        SnapshotImpl read_from_snapshot;
        read_from_snapshot.number_ = sequence_;
        ReadOptions ropts;
        // it's going to be overwritten for sure, so no point caching data block
        // containing the old version
        ropts.fill_cache = false;
        ropts.snapshot = &read_from_snapshot;

        std::string prev_value;
        std::string merged_value;

        auto cf_handle = cf_mems_->GetColumnFamilyHandle();
        Status s = Status::NotSupported();
        if (db_ != nullptr && recovering_log_number_ == 0) {
          if (cf_handle == nullptr) {
            cf_handle = db_->DefaultColumnFamily();
          }
          s = db_->Get(ropts, cf_handle, key, &prev_value);
        }

        char* prev_buffer = const_cast<char*>(prev_value.c_str());
        uint32_t prev_size = static_cast<uint32_t>(prev_value.size());
        auto status = moptions->inplace_callback(s.ok() ? prev_buffer : nullptr,
                                                 s.ok() ? &prev_size : nullptr,
                                                 value, &merged_value);
        if (status == UpdateStatus::UPDATED_INPLACE) {
          // prev_value is updated in-place with final value.
          bool mem_res __attribute__((__unused__));
          mem_res = mem->Add(
              sequence_, value_type, key, Slice(prev_buffer, prev_size));
          assert(mem_res);
          RecordTick(moptions->statistics, NUMBER_KEYS_WRITTEN);
        } else if (status == UpdateStatus::UPDATED) {
          // merged_value contains the final value.
          bool mem_res __attribute__((__unused__));
          mem_res =
              mem->Add(sequence_, value_type, key, Slice(merged_value));
          assert(mem_res);
          RecordTick(moptions->statistics, NUMBER_KEYS_WRITTEN);
        }
      }
    }
    // optimize for non-recovery mode
    if (UNLIKELY(!ret_status.IsTryAgain() && rebuilding_trx_ != nullptr)) {
      assert(!write_after_commit_);
      // If the ret_status is TryAgain then let the next try to add the ky to
      // the rebuilding transaction object.
      WriteBatchInternal::Put(rebuilding_trx_, column_family_id, key, value);
    }
    // Since all Puts are logged in transaction logs (if enabled), always bump
    // sequence number. Even if the update eventually fails and does not result
    // in memtable add/update.
    MaybeAdvanceSeq();
    CheckMemtableFull();
    return ret_status;
  }

  virtual Status PutCF(uint32_t column_family_id, const Slice& key,
                       const Slice& value) override {
    return PutCFImpl(column_family_id, key, value, kTypeValue);
  }

  Status DeleteImpl(uint32_t /*column_family_id*/, const Slice& key,
                    const Slice& value, ValueType delete_type) {
    Status ret_status;
    MemTable* mem = cf_mems_->GetMemTable();
    bool mem_res =
        mem->Add(sequence_, delete_type, key, value,
                 concurrent_memtable_writes_, get_post_process_info(mem));
    if (UNLIKELY(!mem_res)) {
      assert(seq_per_batch_);
      ret_status = Status::TryAgain("key+seq exists");
      const bool BATCH_BOUNDRY = true;
      MaybeAdvanceSeq(BATCH_BOUNDRY);
    }
    MaybeAdvanceSeq();
    CheckMemtableFull();
    return ret_status;
  }

  virtual Status DeleteCF(uint32_t column_family_id,
                          const Slice& key) override {
    // optimize for non-recovery mode
    if (UNLIKELY(write_after_commit_ && rebuilding_trx_ != nullptr)) {
      WriteBatchInternal::Delete(rebuilding_trx_, column_family_id, key);
      return Status::OK();
      // else insert the values to the memtable right away
    }

    Status seek_status;
    if (UNLIKELY(!SeekToColumnFamily(column_family_id, &seek_status))) {
      bool batch_boundry = false;
      if (rebuilding_trx_ != nullptr) {
        assert(!write_after_commit_);
        // The CF is probably flushed and hence no need for insert but we still
        // need to keep track of the keys for upcoming rollback/commit.
        WriteBatchInternal::Delete(rebuilding_trx_, column_family_id, key);
        batch_boundry = IsDuplicateKeySeq(column_family_id, key);
      }
      MaybeAdvanceSeq(batch_boundry);
      return seek_status;
    }

    auto ret_status = DeleteImpl(column_family_id, key, Slice(), kTypeDeletion);
    // optimize for non-recovery mode
    if (UNLIKELY(!ret_status.IsTryAgain() && rebuilding_trx_ != nullptr)) {
      assert(!write_after_commit_);
      // If the ret_status is TryAgain then let the next try to add the ky to
      // the rebuilding transaction object.
      WriteBatchInternal::Delete(rebuilding_trx_, column_family_id, key);
    }
    return ret_status;
  }

  virtual Status SingleDeleteCF(uint32_t column_family_id,
                                const Slice& key) override {
    // optimize for non-recovery mode
    if (UNLIKELY(write_after_commit_ && rebuilding_trx_ != nullptr)) {
      WriteBatchInternal::SingleDelete(rebuilding_trx_, column_family_id, key);
      return Status::OK();
      // else insert the values to the memtable right away
    }

    Status seek_status;
    if (UNLIKELY(!SeekToColumnFamily(column_family_id, &seek_status))) {
      bool batch_boundry = false;
      if (rebuilding_trx_ != nullptr) {
        assert(!write_after_commit_);
        // The CF is probably flushed and hence no need for insert but we still
        // need to keep track of the keys for upcoming rollback/commit.
        WriteBatchInternal::SingleDelete(rebuilding_trx_, column_family_id,
                                         key);
        batch_boundry = IsDuplicateKeySeq(column_family_id, key);
      }
      MaybeAdvanceSeq(batch_boundry);
      return seek_status;
    }

    auto ret_status =
        DeleteImpl(column_family_id, key, Slice(), kTypeSingleDeletion);
    // optimize for non-recovery mode
    if (UNLIKELY(!ret_status.IsTryAgain() && rebuilding_trx_ != nullptr)) {
      assert(!write_after_commit_);
      // If the ret_status is TryAgain then let the next try to add the ky to
      // the rebuilding transaction object.
      WriteBatchInternal::SingleDelete(rebuilding_trx_, column_family_id, key);
    }
    return ret_status;
  }

  virtual Status DeleteRangeCF(uint32_t column_family_id,
                               const Slice& begin_key,
                               const Slice& end_key) override {
    // optimize for non-recovery mode
    if (UNLIKELY(write_after_commit_ && rebuilding_trx_ != nullptr)) {
      WriteBatchInternal::DeleteRange(rebuilding_trx_, column_family_id,
                                      begin_key, end_key);
      return Status::OK();
      // else insert the values to the memtable right away
    }

    Status seek_status;
    if (UNLIKELY(!SeekToColumnFamily(column_family_id, &seek_status))) {
      bool batch_boundry = false;
      if (rebuilding_trx_ != nullptr) {
        assert(!write_after_commit_);
        // The CF is probably flushed and hence no need for insert but we still
        // need to keep track of the keys for upcoming rollback/commit.
        WriteBatchInternal::DeleteRange(rebuilding_trx_, column_family_id,
                                        begin_key, end_key);
        // TODO(myabandeh): when transactional DeleteRange support is added,
        // check if end_key must also be added.
        batch_boundry = IsDuplicateKeySeq(column_family_id, begin_key);
      }
      MaybeAdvanceSeq(batch_boundry);
      return seek_status;
    }
    if (db_ != nullptr) {
      auto cf_handle = cf_mems_->GetColumnFamilyHandle();
      if (cf_handle == nullptr) {
        cf_handle = db_->DefaultColumnFamily();
      }
      auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(cf_handle)->cfd();
      if (!cfd->is_delete_range_supported()) {
        return Status::NotSupported(
            std::string("DeleteRange not supported for table type ") +
            cfd->ioptions()->table_factory->Name() + " in CF " +
            cfd->GetName());
      }
    }

    auto ret_status =
        DeleteImpl(column_family_id, begin_key, end_key, kTypeRangeDeletion);
    // optimize for non-recovery mode
    if (UNLIKELY(!ret_status.IsTryAgain() && rebuilding_trx_ != nullptr)) {
      assert(!write_after_commit_);
      // If the ret_status is TryAgain then let the next try to add the ky to
      // the rebuilding transaction object.
      WriteBatchInternal::DeleteRange(rebuilding_trx_, column_family_id,
                                      begin_key, end_key);
    }
    return ret_status;
  }

  virtual Status MergeCF(uint32_t column_family_id, const Slice& key,
                         const Slice& value) override {
    assert(!concurrent_memtable_writes_);
    // optimize for non-recovery mode
    if (UNLIKELY(write_after_commit_ && rebuilding_trx_ != nullptr)) {
      WriteBatchInternal::Merge(rebuilding_trx_, column_family_id, key, value);
      return Status::OK();
      // else insert the values to the memtable right away
    }

    Status seek_status;
    if (UNLIKELY(!SeekToColumnFamily(column_family_id, &seek_status))) {
      bool batch_boundry = false;
      if (rebuilding_trx_ != nullptr) {
        assert(!write_after_commit_);
        // The CF is probably flushed and hence no need for insert but we still
        // need to keep track of the keys for upcoming rollback/commit.
        WriteBatchInternal::Merge(rebuilding_trx_, column_family_id, key,
                                  value);
        batch_boundry = IsDuplicateKeySeq(column_family_id, key);
      }
      MaybeAdvanceSeq(batch_boundry);
      return seek_status;
    }

    Status ret_status;
    MemTable* mem = cf_mems_->GetMemTable();
    auto* moptions = mem->GetImmutableMemTableOptions();
    bool perform_merge = false;

    // If we pass DB through and options.max_successive_merges is hit
    // during recovery, Get() will be issued which will try to acquire
    // DB mutex and cause deadlock, as DB mutex is already held.
    // So we disable merge in recovery
    if (moptions->max_successive_merges > 0 && db_ != nullptr &&
        recovering_log_number_ == 0) {
      LookupKey lkey(key, sequence_);

      // Count the number of successive merges at the head
      // of the key in the memtable
      size_t num_merges = mem->CountSuccessiveMergeEntries(lkey);

      if (num_merges >= moptions->max_successive_merges) {
        perform_merge = true;
      }
    }

    if (perform_merge) {
      // 1) Get the existing value
      std::string get_value;

      // Pass in the sequence number so that we also include previous merge
      // operations in the same batch.
      SnapshotImpl read_from_snapshot;
      read_from_snapshot.number_ = sequence_;
      ReadOptions read_options;
      read_options.snapshot = &read_from_snapshot;

      auto cf_handle = cf_mems_->GetColumnFamilyHandle();
      if (cf_handle == nullptr) {
        cf_handle = db_->DefaultColumnFamily();
      }
      db_->Get(read_options, cf_handle, key, &get_value);
      Slice get_value_slice = Slice(get_value);

      // 2) Apply this merge
      auto merge_operator = moptions->merge_operator;
      assert(merge_operator);

      std::string new_value;

      Status merge_status = MergeHelper::TimedFullMerge(
          merge_operator, key, &get_value_slice, {value}, &new_value,
          moptions->info_log, moptions->statistics, Env::Default());

      if (!merge_status.ok()) {
        // Failed to merge!
        // Store the delta in memtable
        perform_merge = false;
      } else {
        // 3) Add value to memtable
        bool mem_res = mem->Add(sequence_, kTypeValue, key, new_value);
        if (UNLIKELY(!mem_res)) {
          assert(seq_per_batch_);
          ret_status = Status::TryAgain("key+seq exists");
          const bool BATCH_BOUNDRY = true;
          MaybeAdvanceSeq(BATCH_BOUNDRY);
        }
      }
    }

    if (!perform_merge) {
      // Add merge operator to memtable
      bool mem_res = mem->Add(sequence_, kTypeMerge, key, value);
      if (UNLIKELY(!mem_res)) {
        assert(seq_per_batch_);
        ret_status = Status::TryAgain("key+seq exists");
        const bool BATCH_BOUNDRY = true;
        MaybeAdvanceSeq(BATCH_BOUNDRY);
      }
    }

    // optimize for non-recovery mode
    if (UNLIKELY(!ret_status.IsTryAgain() && rebuilding_trx_ != nullptr)) {
      assert(!write_after_commit_);
      // If the ret_status is TryAgain then let the next try to add the ky to
      // the rebuilding transaction object.
      WriteBatchInternal::Merge(rebuilding_trx_, column_family_id, key, value);
    }
    MaybeAdvanceSeq();
    CheckMemtableFull();
    return ret_status;
  }

  virtual Status PutBlobIndexCF(uint32_t column_family_id, const Slice& key,
                                const Slice& value) override {
    // Same as PutCF except for value type.
    return PutCFImpl(column_family_id, key, value, kTypeBlobIndex);
  }

  void CheckMemtableFull() {
    if (flush_scheduler_ != nullptr) {
      auto* cfd = cf_mems_->current();
      assert(cfd != nullptr);
      if (cfd->mem()->ShouldScheduleFlush() &&
          cfd->mem()->MarkFlushScheduled()) {
        // MarkFlushScheduled only returns true if we are the one that
        // should take action, so no need to dedup further
        flush_scheduler_->ScheduleFlush(cfd);
      }
    }
  }

  // The write batch handler calls MarkBeginPrepare with unprepare set to true
  // if it encounters the kTypeBeginUnprepareXID marker.
  Status MarkBeginPrepare(bool unprepare) override {
    assert(rebuilding_trx_ == nullptr);
    assert(db_);

    if (recovering_log_number_ != 0) {
      // during recovery we rebuild a hollow transaction
      // from all encountered prepare sections of the wal
      if (db_->allow_2pc() == false) {
        return Status::NotSupported(
            "WAL contains prepared transactions. Open with "
            "TransactionDB::Open().");
      }

      // we are now iterating through a prepared section
      rebuilding_trx_ = new WriteBatch();
      rebuilding_trx_seq_ = sequence_;
      // We only call MarkBeginPrepare once per batch, and unprepared_batch_
      // is initialized to false by default.
      assert(!unprepared_batch_);
      unprepared_batch_ = unprepare;

      if (has_valid_writes_ != nullptr) {
        *has_valid_writes_ = true;
      }
    }

    return Status::OK();
  }

  Status MarkEndPrepare(const Slice& name) override {
    assert(db_);
    assert((rebuilding_trx_ != nullptr) == (recovering_log_number_ != 0));

    if (recovering_log_number_ != 0) {
      assert(db_->allow_2pc());
      size_t batch_cnt =
          write_after_commit_
              ? 0  // 0 will disable further checks
              : static_cast<size_t>(sequence_ - rebuilding_trx_seq_ + 1);
      db_->InsertRecoveredTransaction(recovering_log_number_, name.ToString(),
                                      rebuilding_trx_, rebuilding_trx_seq_,
                                      batch_cnt, unprepared_batch_);
      rebuilding_trx_ = nullptr;
    } else {
      assert(rebuilding_trx_ == nullptr);
    }
    const bool batch_boundry = true;
    MaybeAdvanceSeq(batch_boundry);

    return Status::OK();
  }

  Status MarkNoop(bool empty_batch) override {
    // A hack in pessimistic transaction could result into a noop at the start
    // of the write batch, that should be ignored.
    if (!empty_batch) {
      // In the absence of Prepare markers, a kTypeNoop tag indicates the end of
      // a batch. This happens when write batch commits skipping the prepare
      // phase.
      const bool batch_boundry = true;
      MaybeAdvanceSeq(batch_boundry);
    }
    return Status::OK();
  }

  Status MarkCommit(const Slice& name) override {
    assert(db_);

    Status s;

    if (recovering_log_number_ != 0) {
      // in recovery when we encounter a commit marker
      // we lookup this transaction in our set of rebuilt transactions
      // and commit.
      auto trx = db_->GetRecoveredTransaction(name.ToString());

      // the log containing the prepared section may have
      // been released in the last incarnation because the
      // data was flushed to L0
      if (trx != nullptr) {
        // at this point individual CF lognumbers will prevent
        // duplicate re-insertion of values.
        assert(log_number_ref_ == 0);
        if (write_after_commit_) {
          // write_after_commit_ can only have one batch in trx.
          assert(trx->batches_.size() == 1);
          const auto& batch_info = trx->batches_.begin()->second;
          // all inserts must reference this trx log number
          log_number_ref_ = batch_info.log_number_;
          s = batch_info.batch_->Iterate(this);
          log_number_ref_ = 0;
        }
        // else the values are already inserted before the commit

        if (s.ok()) {
          db_->DeleteRecoveredTransaction(name.ToString());
        }
        if (has_valid_writes_ != nullptr) {
          *has_valid_writes_ = true;
        }
      }
    } else {
      // When writes are not delayed until commit, there is no disconnect
      // between a memtable write and the WAL that supports it. So the commit
      // need not reference any log as the only log to which it depends.
      assert(!write_after_commit_ || log_number_ref_ > 0);
    }
    const bool batch_boundry = true;
    MaybeAdvanceSeq(batch_boundry);

    return s;
  }

  Status MarkRollback(const Slice& name) override {
    assert(db_);

    if (recovering_log_number_ != 0) {
      auto trx = db_->GetRecoveredTransaction(name.ToString());

      // the log containing the transactions prep section
      // may have been released in the previous incarnation
      // because we knew it had been rolled back
      if (trx != nullptr) {
        db_->DeleteRecoveredTransaction(name.ToString());
      }
    } else {
      // in non recovery we simply ignore this tag
    }

    const bool batch_boundry = true;
    MaybeAdvanceSeq(batch_boundry);

    return Status::OK();
  }

 private:
  MemTablePostProcessInfo* get_post_process_info(MemTable* mem) {
    if (!concurrent_memtable_writes_) {
      // No need to batch counters locally if we don't use concurrent mode.
      return nullptr;
    }
    return &GetPostMap()[mem];
  }
};

// This function can only be called in these conditions:
// 1) During Recovery()
// 2) During Write(), in a single-threaded write thread
// 3) During Write(), in a concurrent context where memtables has been cloned
// The reason is that it calls memtables->Seek(), which has a stateful cache
Status WriteBatchInternal::InsertInto(
    WriteThread::WriteGroup& write_group, SequenceNumber sequence,
    ColumnFamilyMemTables* memtables, FlushScheduler* flush_scheduler,
    bool ignore_missing_column_families, uint64_t recovery_log_number, DB* db,
    bool concurrent_memtable_writes, bool seq_per_batch, bool batch_per_txn) {
  MemTableInserter inserter(
      sequence, memtables, flush_scheduler, ignore_missing_column_families,
      recovery_log_number, db, concurrent_memtable_writes,
      nullptr /*has_valid_writes*/, seq_per_batch, batch_per_txn);
  for (auto w : write_group) {
    if (w->CallbackFailed()) {
      continue;
    }
    w->sequence = inserter.sequence();
    if (!w->ShouldWriteToMemtable()) {
      // In seq_per_batch_ mode this advances the seq by one.
      inserter.MaybeAdvanceSeq(true);
      continue;
    }
    SetSequence(w->batch, inserter.sequence());
    inserter.set_log_number_ref(w->log_ref);
    w->status = w->batch->Iterate(&inserter);
    if (!w->status.ok()) {
      return w->status;
    }
    assert(!seq_per_batch || w->batch_cnt != 0);
    assert(!seq_per_batch || inserter.sequence() - w->sequence == w->batch_cnt);
  }
  return Status::OK();
}

Status WriteBatchInternal::InsertInto(
    WriteThread::Writer* writer, SequenceNumber sequence,
    ColumnFamilyMemTables* memtables, FlushScheduler* flush_scheduler,
    bool ignore_missing_column_families, uint64_t log_number, DB* db,
    bool concurrent_memtable_writes, bool seq_per_batch, size_t batch_cnt,
    bool batch_per_txn) {
#ifdef NDEBUG
  (void)batch_cnt;
#endif
  assert(writer->ShouldWriteToMemtable());
  MemTableInserter inserter(
      sequence, memtables, flush_scheduler, ignore_missing_column_families,
      log_number, db, concurrent_memtable_writes, nullptr /*has_valid_writes*/,
      seq_per_batch, batch_per_txn);
  SetSequence(writer->batch, sequence);
  inserter.set_log_number_ref(writer->log_ref);
  Status s = writer->batch->Iterate(&inserter);
  assert(!seq_per_batch || batch_cnt != 0);
  assert(!seq_per_batch || inserter.sequence() - sequence == batch_cnt);
  if (concurrent_memtable_writes) {
    inserter.PostProcess();
  }
  return s;
}

Status WriteBatchInternal::InsertInto(
    const WriteBatch* batch, ColumnFamilyMemTables* memtables,
    FlushScheduler* flush_scheduler, bool ignore_missing_column_families,
    uint64_t log_number, DB* db, bool concurrent_memtable_writes,
    SequenceNumber* next_seq, bool* has_valid_writes, bool seq_per_batch,
    bool batch_per_txn) {
  MemTableInserter inserter(Sequence(batch), memtables, flush_scheduler,
                            ignore_missing_column_families, log_number, db,
                            concurrent_memtable_writes, has_valid_writes,
                            seq_per_batch, batch_per_txn);
  Status s = batch->Iterate(&inserter);
  if (next_seq != nullptr) {
    *next_seq = inserter.sequence();
  }
  if (concurrent_memtable_writes) {
    inserter.PostProcess();
  }
  return s;
}

Status WriteBatchInternal::SetContents(WriteBatch* b, const Slice& contents) {
  assert(contents.size() >= WriteBatchInternal::kHeader);
  b->rep_.assign(contents.data(), contents.size());
  b->content_flags_.store(ContentFlags::DEFERRED, std::memory_order_relaxed);
  return Status::OK();
}

Status WriteBatchInternal::Append(WriteBatch* dst, const WriteBatch* src,
                                  const bool wal_only) {
  size_t src_len;
  int src_count;
  uint32_t src_flags;

  const SavePoint& batch_end = src->GetWalTerminationPoint();

  if (wal_only && !batch_end.is_cleared()) {
    src_len = batch_end.size - WriteBatchInternal::kHeader;
    src_count = batch_end.count;
    src_flags = batch_end.content_flags;
  } else {
    src_len = src->rep_.size() - WriteBatchInternal::kHeader;
    src_count = Count(src);
    src_flags = src->content_flags_.load(std::memory_order_relaxed);
  }

  SetCount(dst, Count(dst) + src_count);
  assert(src->rep_.size() >= WriteBatchInternal::kHeader);
  dst->rep_.append(src->rep_.data() + WriteBatchInternal::kHeader, src_len);
  dst->content_flags_.store(
      dst->content_flags_.load(std::memory_order_relaxed) | src_flags,
      std::memory_order_relaxed);
  return Status::OK();
}

size_t WriteBatchInternal::AppendedByteSize(size_t leftByteSize,
                                            size_t rightByteSize) {
  if (leftByteSize == 0 || rightByteSize == 0) {
    return leftByteSize + rightByteSize;
  } else {
    return leftByteSize + rightByteSize - WriteBatchInternal::kHeader;
  }
}

}  // namespace rocksdb