1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include "monitoring/histogram.h"
#include <inttypes.h>
#include <cassert>
#include <math.h>
#include <stdio.h>
#include "port/port.h"
#include "util/cast_util.h"
namespace rocksdb {
HistogramBucketMapper::HistogramBucketMapper() {
// If you change this, you also need to change
// size of array buckets_ in HistogramImpl
bucketValues_ = {1, 2};
valueIndexMap_ = {{1, 0}, {2, 1}};
double bucket_val = static_cast<double>(bucketValues_.back());
while ((bucket_val = 1.5 * bucket_val) <= static_cast<double>(port::kMaxUint64)) {
bucketValues_.push_back(static_cast<uint64_t>(bucket_val));
// Extracts two most significant digits to make histogram buckets more
// human-readable. E.g., 172 becomes 170.
uint64_t pow_of_ten = 1;
while (bucketValues_.back() / 10 > 10) {
bucketValues_.back() /= 10;
pow_of_ten *= 10;
}
bucketValues_.back() *= pow_of_ten;
valueIndexMap_[bucketValues_.back()] = bucketValues_.size() - 1;
}
maxBucketValue_ = bucketValues_.back();
minBucketValue_ = bucketValues_.front();
}
size_t HistogramBucketMapper::IndexForValue(const uint64_t value) const {
if (value >= maxBucketValue_) {
return bucketValues_.size() - 1;
} else if ( value >= minBucketValue_ ) {
std::map<uint64_t, uint64_t>::const_iterator lowerBound =
valueIndexMap_.lower_bound(value);
if (lowerBound != valueIndexMap_.end()) {
return static_cast<size_t>(lowerBound->second);
} else {
return 0;
}
} else {
return 0;
}
}
namespace {
const HistogramBucketMapper bucketMapper;
}
HistogramStat::HistogramStat()
: num_buckets_(bucketMapper.BucketCount()) {
assert(num_buckets_ == sizeof(buckets_) / sizeof(*buckets_));
Clear();
}
void HistogramStat::Clear() {
min_.store(bucketMapper.LastValue(), std::memory_order_relaxed);
max_.store(0, std::memory_order_relaxed);
num_.store(0, std::memory_order_relaxed);
sum_.store(0, std::memory_order_relaxed);
sum_squares_.store(0, std::memory_order_relaxed);
for (unsigned int b = 0; b < num_buckets_; b++) {
buckets_[b].store(0, std::memory_order_relaxed);
}
};
bool HistogramStat::Empty() const { return num() == 0; }
void HistogramStat::Add(uint64_t value) {
// This function is designed to be lock free, as it's in the critical path
// of any operation. Each individual value is atomic and the order of updates
// by concurrent threads is tolerable.
const size_t index = bucketMapper.IndexForValue(value);
assert(index < num_buckets_);
buckets_[index].store(buckets_[index].load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
uint64_t old_min = min();
if (value < old_min) {
min_.store(value, std::memory_order_relaxed);
}
uint64_t old_max = max();
if (value > old_max) {
max_.store(value, std::memory_order_relaxed);
}
num_.store(num_.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
sum_.store(sum_.load(std::memory_order_relaxed) + value,
std::memory_order_relaxed);
sum_squares_.store(
sum_squares_.load(std::memory_order_relaxed) + value * value,
std::memory_order_relaxed);
}
void HistogramStat::Merge(const HistogramStat& other) {
// This function needs to be performned with the outer lock acquired
// However, atomic operation on every member is still need, since Add()
// requires no lock and value update can still happen concurrently
uint64_t old_min = min();
uint64_t other_min = other.min();
while (other_min < old_min &&
!min_.compare_exchange_weak(old_min, other_min)) {}
uint64_t old_max = max();
uint64_t other_max = other.max();
while (other_max > old_max &&
!max_.compare_exchange_weak(old_max, other_max)) {}
num_.fetch_add(other.num(), std::memory_order_relaxed);
sum_.fetch_add(other.sum(), std::memory_order_relaxed);
sum_squares_.fetch_add(other.sum_squares(), std::memory_order_relaxed);
for (unsigned int b = 0; b < num_buckets_; b++) {
buckets_[b].fetch_add(other.bucket_at(b), std::memory_order_relaxed);
}
}
double HistogramStat::Median() const {
return Percentile(50.0);
}
double HistogramStat::Percentile(double p) const {
double threshold = num() * (p / 100.0);
uint64_t cumulative_sum = 0;
for (unsigned int b = 0; b < num_buckets_; b++) {
uint64_t bucket_value = bucket_at(b);
cumulative_sum += bucket_value;
if (cumulative_sum >= threshold) {
// Scale linearly within this bucket
uint64_t left_point = (b == 0) ? 0 : bucketMapper.BucketLimit(b-1);
uint64_t right_point = bucketMapper.BucketLimit(b);
uint64_t left_sum = cumulative_sum - bucket_value;
uint64_t right_sum = cumulative_sum;
double pos = 0;
uint64_t right_left_diff = right_sum - left_sum;
if (right_left_diff != 0) {
pos = (threshold - left_sum) / right_left_diff;
}
double r = left_point + (right_point - left_point) * pos;
uint64_t cur_min = min();
uint64_t cur_max = max();
if (r < cur_min) r = static_cast<double>(cur_min);
if (r > cur_max) r = static_cast<double>(cur_max);
return r;
}
}
return static_cast<double>(max());
}
double HistogramStat::Average() const {
uint64_t cur_num = num();
uint64_t cur_sum = sum();
if (cur_num == 0) return 0;
return static_cast<double>(cur_sum) / static_cast<double>(cur_num);
}
double HistogramStat::StandardDeviation() const {
uint64_t cur_num = num();
uint64_t cur_sum = sum();
uint64_t cur_sum_squares = sum_squares();
if (cur_num == 0) return 0;
double variance =
static_cast<double>(cur_sum_squares * cur_num - cur_sum * cur_sum) /
static_cast<double>(cur_num * cur_num);
return sqrt(variance);
}
std::string HistogramStat::ToString() const {
uint64_t cur_num = num();
std::string r;
char buf[1650];
snprintf(buf, sizeof(buf),
"Count: %" PRIu64 " Average: %.4f StdDev: %.2f\n",
cur_num, Average(), StandardDeviation());
r.append(buf);
snprintf(buf, sizeof(buf),
"Min: %" PRIu64 " Median: %.4f Max: %" PRIu64 "\n",
(cur_num == 0 ? 0 : min()), Median(), (cur_num == 0 ? 0 : max()));
r.append(buf);
snprintf(buf, sizeof(buf),
"Percentiles: "
"P50: %.2f P75: %.2f P99: %.2f P99.9: %.2f P99.99: %.2f\n",
Percentile(50), Percentile(75), Percentile(99), Percentile(99.9),
Percentile(99.99));
r.append(buf);
r.append("------------------------------------------------------\n");
if (cur_num == 0) return r; // all buckets are empty
const double mult = 100.0 / cur_num;
uint64_t cumulative_sum = 0;
for (unsigned int b = 0; b < num_buckets_; b++) {
uint64_t bucket_value = bucket_at(b);
if (bucket_value <= 0.0) continue;
cumulative_sum += bucket_value;
snprintf(buf, sizeof(buf),
"%c %7" PRIu64 ", %7" PRIu64 " ] %8" PRIu64 " %7.3f%% %7.3f%% ",
(b == 0) ? '[' : '(',
(b == 0) ? 0 : bucketMapper.BucketLimit(b-1), // left
bucketMapper.BucketLimit(b), // right
bucket_value, // count
(mult * bucket_value), // percentage
(mult * cumulative_sum)); // cumulative percentage
r.append(buf);
// Add hash marks based on percentage; 20 marks for 100%.
size_t marks = static_cast<size_t>(mult * bucket_value / 5 + 0.5);
r.append(marks, '#');
r.push_back('\n');
}
return r;
}
void HistogramStat::Data(HistogramData * const data) const {
assert(data);
data->median = Median();
data->percentile95 = Percentile(95);
data->percentile99 = Percentile(99);
data->max = static_cast<double>(max());
data->average = Average();
data->standard_deviation = StandardDeviation();
data->count = num();
data->sum = sum();
}
void HistogramImpl::Clear() {
std::lock_guard<std::mutex> lock(mutex_);
stats_.Clear();
}
bool HistogramImpl::Empty() const {
return stats_.Empty();
}
void HistogramImpl::Add(uint64_t value) {
stats_.Add(value);
}
void HistogramImpl::Merge(const Histogram& other) {
if (strcmp(Name(), other.Name()) == 0) {
Merge(
*static_cast_with_check<const HistogramImpl, const Histogram>(&other));
}
}
void HistogramImpl::Merge(const HistogramImpl& other) {
std::lock_guard<std::mutex> lock(mutex_);
stats_.Merge(other.stats_);
}
double HistogramImpl::Median() const {
return stats_.Median();
}
double HistogramImpl::Percentile(double p) const {
return stats_.Percentile(p);
}
double HistogramImpl::Average() const {
return stats_.Average();
}
double HistogramImpl::StandardDeviation() const {
return stats_.StandardDeviation();
}
std::string HistogramImpl::ToString() const {
return stats_.ToString();
}
void HistogramImpl::Data(HistogramData * const data) const {
stats_.Data(data);
}
} // namespace levedb
|