1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifdef GFLAGS
#include <cinttypes>
#include <cstddef>
#include <cstdio>
#include <limits>
#include <memory>
#include <set>
#include <sstream>
#include "cache/cache_key.h"
#include "cache/sharded_cache.h"
#include "db/db_impl/db_impl.h"
#include "monitoring/histogram.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/advanced_cache.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/secondary_cache.h"
#include "rocksdb/system_clock.h"
#include "rocksdb/table_properties.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/cachable_entry.h"
#include "util/coding.h"
#include "util/distributed_mutex.h"
#include "util/gflags_compat.h"
#include "util/hash.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stderr_logger.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
static constexpr uint32_t KiB = uint32_t{1} << 10;
static constexpr uint32_t MiB = KiB << 10;
static constexpr uint64_t GiB = MiB << 10;
DEFINE_uint32(threads, 16, "Number of concurrent threads to run.");
DEFINE_uint64(cache_size, 1 * GiB,
"Number of bytes to use as a cache of uncompressed data.");
DEFINE_int32(num_shard_bits, -1,
"ShardedCacheOptions::shard_bits. Default = auto");
DEFINE_int32(
eviction_effort_cap,
ROCKSDB_NAMESPACE::HyperClockCacheOptions(1, 1).eviction_effort_cap,
"HyperClockCacheOptions::eviction_effort_cap");
DEFINE_double(resident_ratio, 0.25,
"Ratio of keys fitting in cache to keyspace.");
DEFINE_uint64(ops_per_thread, 2000000U, "Number of operations per thread.");
DEFINE_uint32(value_bytes, 8 * KiB, "Size of each value added.");
DEFINE_uint32(value_bytes_estimate, 0,
"If > 0, overrides estimated_entry_charge or "
"min_avg_entry_charge depending on cache_type.");
DEFINE_int32(
degenerate_hash_bits, 0,
"With HCC, fix this many hash bits to increase table hash collisions");
DEFINE_uint32(skew, 5, "Degree of skew in key selection. 0 = no skew");
DEFINE_bool(populate_cache, true, "Populate cache before operations");
DEFINE_double(pinned_ratio, 0.25,
"Keep roughly this portion of entries pinned in cache.");
DEFINE_double(
vary_capacity_ratio, 0.0,
"If greater than 0.0, will periodically vary the capacity between this "
"ratio less than full size and full size. If vary_capacity_ratio + "
"pinned_ratio is close to or exceeds 1.0, the cache might thrash.");
DEFINE_uint32(lookup_insert_percent, 82,
"Ratio of lookup (+ insert on not found) to total workload "
"(expressed as a percentage)");
DEFINE_uint32(insert_percent, 2,
"Ratio of insert to total workload (expressed as a percentage)");
DEFINE_uint32(blind_insert_percent, 5,
"Ratio of insert without keeping handle to total workload "
"(expressed as a percentage)");
DEFINE_uint32(lookup_percent, 10,
"Ratio of lookup to total workload (expressed as a percentage)");
DEFINE_uint32(erase_percent, 1,
"Ratio of erase to total workload (expressed as a percentage)");
DEFINE_bool(gather_stats, false,
"Whether to periodically simulate gathering block cache stats, "
"using one more thread.");
DEFINE_uint32(
gather_stats_sleep_ms, 1000,
"How many milliseconds to sleep between each gathering of stats.");
DEFINE_uint32(gather_stats_entries_per_lock, 256,
"For Cache::ApplyToAllEntries");
DEFINE_uint32(usleep, 0, "Sleep up to this many microseconds after each op.");
DEFINE_bool(lean, false,
"If true, no additional computation is performed besides cache "
"operations.");
DEFINE_bool(early_exit, false,
"Exit before deallocating most memory. Good for malloc stats, e.g."
"MALLOC_CONF=\"stats_print:true\"");
DEFINE_bool(histograms, true,
"Whether to track and print histogram statistics.");
DEFINE_bool(report_problems, true, "Whether to ReportProblems() at the end.");
DEFINE_uint32(seed, 0, "Hashing/random seed to use. 0 = choose at random");
DEFINE_string(secondary_cache_uri, "",
"Full URI for creating a custom secondary cache object");
DEFINE_string(cache_type, "lru_cache", "Type of block cache.");
DEFINE_bool(use_jemalloc_no_dump_allocator, false,
"Whether to use JemallocNoDumpAllocator");
DEFINE_uint32(jemalloc_no_dump_allocator_num_arenas,
ROCKSDB_NAMESPACE::JemallocAllocatorOptions().num_arenas,
"JemallocNodumpAllocator::num_arenas");
DEFINE_bool(jemalloc_no_dump_allocator_limit_tcache_size,
ROCKSDB_NAMESPACE::JemallocAllocatorOptions().limit_tcache_size,
"JemallocNodumpAllocator::limit_tcache_size");
// ## BEGIN stress_cache_key sub-tool options ##
// See class StressCacheKey below.
DEFINE_bool(stress_cache_key, false,
"If true, run cache key stress test instead");
DEFINE_uint32(
sck_files_per_day, 2500000,
"(-stress_cache_key) Simulated files generated per simulated day");
// NOTE: Giving each run a specified lifetime, rather than e.g. "until
// first collision" ensures equal skew from start-up, when collisions are
// less likely.
DEFINE_uint32(sck_days_per_run, 90,
"(-stress_cache_key) Number of days to simulate in each run");
// NOTE: The number of observed collisions directly affects the relative
// accuracy of the predicted probabilities. 15 observations should be well
// within factor-of-2 accuracy.
DEFINE_uint32(
sck_min_collision, 15,
"(-stress_cache_key) Keep running until this many collisions seen");
// sck_file_size_mb can be thought of as average file size. The simulation is
// not precise enough to care about the distribution of file sizes; other
// simulations (https://github.com/pdillinger/unique_id/tree/main/monte_carlo)
// indicate the distribution only makes a small difference (e.g. < 2x factor)
DEFINE_uint32(
sck_file_size_mb, 32,
"(-stress_cache_key) Simulated file size in MiB, for accounting purposes");
DEFINE_uint32(sck_reopen_nfiles, 100,
"(-stress_cache_key) Simulate DB re-open average every n files");
DEFINE_uint32(sck_newdb_nreopen, 1000,
"(-stress_cache_key) Simulate new DB average every n re-opens");
DEFINE_uint32(sck_restarts_per_day, 24,
"(-stress_cache_key) Average simulated process restarts per day "
"(across DBs)");
DEFINE_uint32(
sck_db_count, 100,
"(-stress_cache_key) Parallel DBs in simulation sharing a block cache");
DEFINE_uint32(
sck_table_bits, 20,
"(-stress_cache_key) Log2 number of tracked (live) files (across DBs)");
// sck_keep_bits being well below full 128 bits amplifies the collision
// probability so that the true probability can be estimated through observed
// collisions. (More explanation below.)
DEFINE_uint32(
sck_keep_bits, 50,
"(-stress_cache_key) Number of bits to keep from each cache key (<= 64)");
// sck_randomize is used to validate whether cache key is performing "better
// than random." Even with this setting, file offsets are not randomized.
DEFINE_bool(sck_randomize, false,
"(-stress_cache_key) Randomize (hash) cache key");
// See https://github.com/facebook/rocksdb/pull/9058
DEFINE_bool(sck_footer_unique_id, false,
"(-stress_cache_key) Simulate using proposed footer unique id");
// ## END stress_cache_key sub-tool options ##
namespace ROCKSDB_NAMESPACE {
class CacheBench;
namespace {
// State shared by all concurrent executions of the same benchmark.
class SharedState {
public:
explicit SharedState(CacheBench* cache_bench)
: cv_(&mu_),
cache_bench_(cache_bench) {}
~SharedState() = default;
port::Mutex* GetMutex() { return &mu_; }
port::CondVar* GetCondVar() { return &cv_; }
CacheBench* GetCacheBench() const { return cache_bench_; }
void IncInitialized() { num_initialized_++; }
void IncDone() { num_done_++; }
bool AllInitialized() const { return num_initialized_ >= FLAGS_threads; }
bool AllDone() const { return num_done_ >= FLAGS_threads; }
void SetStart() { start_ = true; }
bool Started() const { return start_; }
void AddLookupStats(uint64_t hits, uint64_t misses, size_t pinned_count) {
MutexLock l(&mu_);
lookup_count_ += hits + misses;
lookup_hits_ += hits;
pinned_count_ += pinned_count;
}
double GetLookupHitRatio() const {
return 1.0 * lookup_hits_ / lookup_count_;
}
size_t GetPinnedCount() const { return pinned_count_; }
private:
port::Mutex mu_;
port::CondVar cv_;
CacheBench* cache_bench_;
uint64_t num_initialized_ = 0;
bool start_ = false;
uint64_t num_done_ = 0;
uint64_t lookup_count_ = 0;
uint64_t lookup_hits_ = 0;
size_t pinned_count_ = 0;
};
// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
uint32_t tid;
Random64 rnd;
SharedState* shared;
HistogramImpl latency_ns_hist;
uint64_t duration_us = 0;
ThreadState(uint32_t index, SharedState* _shared)
: tid(index), rnd(FLAGS_seed + 1 + index), shared(_shared) {}
};
struct KeyGen {
char key_data[27];
Slice GetRand(Random64& rnd, uint64_t max_key, uint32_t skew) {
uint64_t raw = rnd.Next();
// Skew according to setting
for (uint32_t i = 0; i < skew; ++i) {
raw = std::min(raw, rnd.Next());
}
uint64_t key = FastRange64(raw, max_key);
if (FLAGS_degenerate_hash_bits) {
uint64_t key_hash =
Hash64(reinterpret_cast<const char*>(&key), sizeof(key));
// HCC uses the high 64 bits and a lower bit mask for starting probe
// location, so we fix hash bits starting at the bottom of that word.
auto hi_hash = uint64_t{0x9e3779b97f4a7c13U} ^
(key_hash << 1 << (FLAGS_degenerate_hash_bits - 1));
uint64_t un_hi, un_lo;
BijectiveUnhash2x64(hi_hash, key_hash, &un_hi, &un_lo);
un_lo ^= BitwiseAnd(FLAGS_seed, INT32_MAX);
EncodeFixed64(key_data, un_lo);
EncodeFixed64(key_data + 8, un_hi);
return Slice(key_data, kCacheKeySize);
}
// Variable size and alignment
size_t off = key % 8;
key_data[0] = char{42};
EncodeFixed64(key_data + 1, key);
key_data[9] = char{11};
EncodeFixed64(key_data + 10, key);
key_data[18] = char{4};
EncodeFixed64(key_data + 19, key);
assert(27 >= kCacheKeySize);
return Slice(&key_data[off], kCacheKeySize);
}
};
Cache::ObjectPtr createValue(Random64& rnd, MemoryAllocator* alloc) {
char* rv = AllocateBlock(FLAGS_value_bytes, alloc).release();
// Fill with some filler data, and take some CPU time
for (uint32_t i = 0; i < FLAGS_value_bytes; i += 8) {
EncodeFixed64(rv + i, rnd.Next());
}
return rv;
}
// Callbacks for secondary cache
size_t SizeFn(Cache::ObjectPtr /*obj*/) { return FLAGS_value_bytes; }
Status SaveToFn(Cache::ObjectPtr from_obj, size_t /*from_offset*/,
size_t length, char* out) {
memcpy(out, from_obj, length);
return Status::OK();
}
Status CreateFn(const Slice& data, CompressionType /*type*/,
CacheTier /*source*/, Cache::CreateContext* /*context*/,
MemoryAllocator* /*allocator*/, Cache::ObjectPtr* out_obj,
size_t* out_charge) {
*out_obj = new char[data.size()];
memcpy(*out_obj, data.data(), data.size());
*out_charge = data.size();
return Status::OK();
};
void DeleteFn(Cache::ObjectPtr value, MemoryAllocator* alloc) {
CustomDeleter{alloc}(static_cast<char*>(value));
}
Cache::CacheItemHelper helper1_wos(CacheEntryRole::kDataBlock, DeleteFn);
Cache::CacheItemHelper helper1(CacheEntryRole::kDataBlock, DeleteFn, SizeFn,
SaveToFn, CreateFn, &helper1_wos);
Cache::CacheItemHelper helper2_wos(CacheEntryRole::kIndexBlock, DeleteFn);
Cache::CacheItemHelper helper2(CacheEntryRole::kIndexBlock, DeleteFn, SizeFn,
SaveToFn, CreateFn, &helper2_wos);
Cache::CacheItemHelper helper3_wos(CacheEntryRole::kFilterBlock, DeleteFn);
Cache::CacheItemHelper helper3(CacheEntryRole::kFilterBlock, DeleteFn, SizeFn,
SaveToFn, CreateFn, &helper3_wos);
void ConfigureSecondaryCache(ShardedCacheOptions& opts) {
if (!FLAGS_secondary_cache_uri.empty()) {
std::shared_ptr<SecondaryCache> secondary_cache;
Status s = SecondaryCache::CreateFromString(
ConfigOptions(), FLAGS_secondary_cache_uri, &secondary_cache);
if (secondary_cache == nullptr) {
fprintf(stderr,
"No secondary cache registered matching string: %s status=%s\n",
FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str());
exit(1);
}
opts.secondary_cache = secondary_cache;
}
}
ShardedCacheBase* AsShardedCache(Cache* c) {
if (!FLAGS_secondary_cache_uri.empty()) {
c = static_cast_with_check<CacheWrapper>(c)->GetTarget().get();
}
return static_cast_with_check<ShardedCacheBase>(c);
}
} // namespace
class CacheBench {
static constexpr uint64_t kHundredthUint64 =
std::numeric_limits<uint64_t>::max() / 100U;
public:
CacheBench()
: max_key_(static_cast<uint64_t>(FLAGS_cache_size / FLAGS_resident_ratio /
FLAGS_value_bytes)),
lookup_insert_threshold_(kHundredthUint64 *
FLAGS_lookup_insert_percent),
insert_threshold_(lookup_insert_threshold_ +
kHundredthUint64 * FLAGS_insert_percent),
blind_insert_threshold_(insert_threshold_ +
kHundredthUint64 * FLAGS_blind_insert_percent),
lookup_threshold_(blind_insert_threshold_ +
kHundredthUint64 * FLAGS_lookup_percent),
erase_threshold_(lookup_threshold_ +
kHundredthUint64 * FLAGS_erase_percent) {
if (erase_threshold_ != 100U * kHundredthUint64) {
fprintf(stderr, "Percentages must add to 100.\n");
exit(1);
}
std::shared_ptr<MemoryAllocator> allocator;
if (FLAGS_use_jemalloc_no_dump_allocator) {
JemallocAllocatorOptions opts;
opts.num_arenas = FLAGS_jemalloc_no_dump_allocator_num_arenas;
opts.limit_tcache_size =
FLAGS_jemalloc_no_dump_allocator_limit_tcache_size;
Status s = NewJemallocNodumpAllocator(opts, &allocator);
assert(s.ok());
}
if (FLAGS_cache_type == "clock_cache") {
fprintf(stderr, "Old clock cache implementation has been removed.\n");
exit(1);
} else if (EndsWith(FLAGS_cache_type, "hyper_clock_cache")) {
HyperClockCacheOptions opts(
FLAGS_cache_size, /*estimated_entry_charge=*/0, FLAGS_num_shard_bits);
opts.hash_seed = BitwiseAnd(FLAGS_seed, INT32_MAX);
opts.memory_allocator = allocator;
opts.eviction_effort_cap = FLAGS_eviction_effort_cap;
if (FLAGS_cache_type == "fixed_hyper_clock_cache" ||
FLAGS_cache_type == "hyper_clock_cache") {
opts.estimated_entry_charge = FLAGS_value_bytes_estimate > 0
? FLAGS_value_bytes_estimate
: FLAGS_value_bytes;
} else if (FLAGS_cache_type == "auto_hyper_clock_cache") {
if (FLAGS_value_bytes_estimate > 0) {
opts.min_avg_entry_charge = FLAGS_value_bytes_estimate;
}
} else {
fprintf(stderr, "Cache type not supported.\n");
exit(1);
}
ConfigureSecondaryCache(opts);
cache_ = opts.MakeSharedCache();
} else if (FLAGS_cache_type == "lru_cache") {
LRUCacheOptions opts(FLAGS_cache_size, FLAGS_num_shard_bits,
false /* strict_capacity_limit */,
0.5 /* high_pri_pool_ratio */);
opts.hash_seed = BitwiseAnd(FLAGS_seed, INT32_MAX);
opts.memory_allocator = allocator;
ConfigureSecondaryCache(opts);
cache_ = NewLRUCache(opts);
} else {
fprintf(stderr, "Cache type not supported.\n");
exit(1);
}
}
~CacheBench() = default;
void PopulateCache() {
Random64 rnd(FLAGS_seed);
KeyGen keygen;
size_t max_occ = 0;
size_t inserts_since_max_occ_increase = 0;
size_t keys_since_last_not_found = 0;
// Avoid redundant insertions by checking Lookup before Insert.
// Loop until insertions consistently fail to increase max occupancy or
// it becomes difficult to find keys not already inserted.
while (inserts_since_max_occ_increase < 100 &&
keys_since_last_not_found < 100) {
Slice key = keygen.GetRand(rnd, max_key_, FLAGS_skew);
Cache::Handle* handle = cache_->Lookup(key);
if (handle != nullptr) {
cache_->Release(handle);
++keys_since_last_not_found;
continue;
}
keys_since_last_not_found = 0;
Status s =
cache_->Insert(key, createValue(rnd, cache_->memory_allocator()),
&helper1, FLAGS_value_bytes);
assert(s.ok());
handle = cache_->Lookup(key);
if (!handle) {
fprintf(stderr, "Failed to lookup key just inserted.\n");
assert(false);
exit(42);
} else {
cache_->Release(handle);
}
size_t occ = cache_->GetOccupancyCount();
if (occ > max_occ) {
max_occ = occ;
inserts_since_max_occ_increase = 0;
} else {
++inserts_since_max_occ_increase;
}
}
printf("Population complete (%zu entries, %g average charge)\n", max_occ,
1.0 * FLAGS_cache_size / max_occ);
}
bool Run() {
const auto clock = SystemClock::Default().get();
PrintEnv();
SharedState shared(this);
std::vector<std::unique_ptr<ThreadState> > threads(FLAGS_threads);
for (uint32_t i = 0; i < FLAGS_threads; i++) {
threads[i].reset(new ThreadState(i, &shared));
std::thread(ThreadBody, threads[i].get()).detach();
}
HistogramImpl stats_hist;
std::string stats_report;
std::thread stats_thread(StatsBody, &shared, &stats_hist, &stats_report);
uint64_t start_time;
{
MutexLock l(shared.GetMutex());
while (!shared.AllInitialized()) {
shared.GetCondVar()->Wait();
}
// Record start time
start_time = clock->NowMicros();
// Start all threads
shared.SetStart();
shared.GetCondVar()->SignalAll();
// Wait threads to complete
while (!shared.AllDone()) {
shared.GetCondVar()->Wait();
}
}
// Stats gathering is considered background work. This time measurement
// is for foreground work, and not really ideal for that. See below.
uint64_t end_time = clock->NowMicros();
stats_thread.join();
// Wall clock time - includes idle time if threads
// finish at different times (not ideal).
double elapsed_secs = static_cast<double>(end_time - start_time) * 1e-6;
uint32_t ops_per_sec = static_cast<uint32_t>(
1.0 * FLAGS_threads * FLAGS_ops_per_thread / elapsed_secs);
printf("Complete in %.3f s; Rough parallel ops/sec = %u\n", elapsed_secs,
ops_per_sec);
// Total time in each thread (more accurate throughput measure)
elapsed_secs = 0;
for (uint32_t i = 0; i < FLAGS_threads; i++) {
elapsed_secs += threads[i]->duration_us * 1e-6;
}
ops_per_sec = static_cast<uint32_t>(1.0 * FLAGS_threads *
FLAGS_ops_per_thread / elapsed_secs);
printf("Thread ops/sec = %u\n", ops_per_sec);
printf("Lookup hit ratio: %g\n", shared.GetLookupHitRatio());
size_t occ = cache_->GetOccupancyCount();
size_t slot = cache_->GetTableAddressCount();
printf("Final load factor: %g (%zu / %zu)\n", 1.0 * occ / slot, occ, slot);
printf("Final pinned count: %zu\n", shared.GetPinnedCount());
if (FLAGS_histograms) {
printf("\nOperation latency (ns):\n");
HistogramImpl combined;
for (uint32_t i = 0; i < FLAGS_threads; i++) {
combined.Merge(threads[i]->latency_ns_hist);
}
printf("%s", combined.ToString().c_str());
if (FLAGS_gather_stats) {
printf("\nGather stats latency (us):\n");
printf("%s", stats_hist.ToString().c_str());
}
}
if (FLAGS_report_problems) {
printf("\n");
std::shared_ptr<Logger> logger =
std::make_shared<StderrLogger>(InfoLogLevel::DEBUG_LEVEL);
cache_->ReportProblems(logger);
}
printf("%s", stats_report.c_str());
return true;
}
private:
std::shared_ptr<Cache> cache_;
const uint64_t max_key_;
// Cumulative thresholds in the space of a random uint64_t
const uint64_t lookup_insert_threshold_;
const uint64_t insert_threshold_;
const uint64_t blind_insert_threshold_;
const uint64_t lookup_threshold_;
const uint64_t erase_threshold_;
// A benchmark version of gathering stats on an active block cache by
// iterating over it. The primary purpose is to measure the impact of
// gathering stats with ApplyToAllEntries on throughput- and
// latency-sensitive Cache users. Performance of stats gathering is
// also reported. The last set of gathered stats is also reported, for
// manual sanity checking for logical errors or other unexpected
// behavior of cache_bench or the underlying Cache.
static void StatsBody(SharedState* shared, HistogramImpl* stats_hist,
std::string* stats_report) {
if (!FLAGS_gather_stats) {
return;
}
const auto clock = SystemClock::Default().get();
uint64_t total_key_size = 0;
uint64_t total_charge = 0;
uint64_t total_entry_count = 0;
uint64_t table_occupancy = 0;
uint64_t table_size = 0;
std::set<const Cache::CacheItemHelper*> helpers;
StopWatchNano timer(clock);
for (;;) {
uint64_t time;
time = clock->NowMicros();
uint64_t deadline = time + uint64_t{FLAGS_gather_stats_sleep_ms} * 1000;
{
MutexLock l(shared->GetMutex());
for (;;) {
if (shared->AllDone()) {
std::ostringstream ostr;
ostr << "\nMost recent cache entry stats:\n"
<< "Number of entries: " << total_entry_count << "\n"
<< "Table occupancy: " << table_occupancy << " / "
<< table_size << " = "
<< (100.0 * table_occupancy / table_size) << "%\n"
<< "Total charge: " << BytesToHumanString(total_charge) << "\n"
<< "Average key size: "
<< (1.0 * total_key_size / total_entry_count) << "\n"
<< "Average charge: "
<< BytesToHumanString(static_cast<uint64_t>(
1.0 * total_charge / total_entry_count))
<< "\n"
<< "Unique helpers: " << helpers.size() << "\n";
*stats_report = ostr.str();
return;
}
if (clock->NowMicros() >= deadline) {
break;
}
uint64_t diff = deadline - std::min(clock->NowMicros(), deadline);
shared->GetCondVar()->TimedWait(diff + 1);
}
}
// Now gather stats, outside of mutex
total_key_size = 0;
total_charge = 0;
total_entry_count = 0;
helpers.clear();
auto fn = [&](const Slice& key, Cache::ObjectPtr /*value*/, size_t charge,
const Cache::CacheItemHelper* helper) {
total_key_size += key.size();
total_charge += charge;
++total_entry_count;
// Something slightly more expensive as in stats by category
helpers.insert(helper);
};
if (FLAGS_histograms) {
timer.Start();
}
Cache::ApplyToAllEntriesOptions opts;
opts.average_entries_per_lock = FLAGS_gather_stats_entries_per_lock;
shared->GetCacheBench()->cache_->ApplyToAllEntries(fn, opts);
table_occupancy = shared->GetCacheBench()->cache_->GetOccupancyCount();
table_size = shared->GetCacheBench()->cache_->GetTableAddressCount();
if (FLAGS_histograms) {
stats_hist->Add(timer.ElapsedNanos() / 1000);
}
}
}
static void ThreadBody(ThreadState* thread) {
SharedState* shared = thread->shared;
{
MutexLock l(shared->GetMutex());
shared->IncInitialized();
if (shared->AllInitialized()) {
shared->GetCondVar()->SignalAll();
}
while (!shared->Started()) {
shared->GetCondVar()->Wait();
}
}
thread->shared->GetCacheBench()->OperateCache(thread);
{
MutexLock l(shared->GetMutex());
shared->IncDone();
if (shared->AllDone()) {
shared->GetCondVar()->SignalAll();
}
}
}
void OperateCache(ThreadState* thread) {
// To use looked-up values
uint64_t result = 0;
uint64_t lookup_misses = 0;
uint64_t lookup_hits = 0;
// To hold handles for a non-trivial amount of time
std::deque<Cache::Handle*> pinned;
size_t total_pin_count = static_cast<size_t>(
(FLAGS_cache_size * FLAGS_pinned_ratio) / FLAGS_value_bytes + 0.999999);
// For this thread. Some round up, some round down, as appropriate
size_t pin_count = (total_pin_count + thread->tid) / FLAGS_threads;
KeyGen gen;
const auto clock = SystemClock::Default().get();
uint64_t start_time = clock->NowMicros();
StopWatchNano timer(clock);
auto system_clock = SystemClock::Default();
size_t steps_to_next_capacity_change = 0;
for (uint64_t i = 0; i < FLAGS_ops_per_thread; i++) {
Slice key = gen.GetRand(thread->rnd, max_key_, FLAGS_skew);
uint64_t random_op = thread->rnd.Next();
if (FLAGS_vary_capacity_ratio > 0.0 && thread->tid == 0) {
if (steps_to_next_capacity_change == 0) {
double cut_ratio = static_cast<double>(thread->rnd.Next()) /
static_cast<double>(UINT64_MAX) *
FLAGS_vary_capacity_ratio;
cache_->SetCapacity(FLAGS_cache_size * (1.0 - cut_ratio));
steps_to_next_capacity_change =
static_cast<size_t>(FLAGS_ops_per_thread / 100);
} else {
--steps_to_next_capacity_change;
}
}
if (FLAGS_histograms) {
timer.Start();
}
if (random_op < lookup_insert_threshold_) {
// do lookup
auto handle = cache_->Lookup(key, &helper2, /*context*/ nullptr,
Cache::Priority::LOW);
if (handle) {
++lookup_hits;
if (!FLAGS_lean) {
// do something with the data
result += NPHash64(static_cast<char*>(cache_->Value(handle)),
FLAGS_value_bytes);
}
pinned.push_back(handle);
} else {
++lookup_misses;
// do insert
Status s = cache_->Insert(
key, createValue(thread->rnd, cache_->memory_allocator()),
&helper2, FLAGS_value_bytes, &pinned.emplace_back());
assert(s.ok());
}
} else if (random_op < insert_threshold_) {
// do insert
Status s = cache_->Insert(
key, createValue(thread->rnd, cache_->memory_allocator()), &helper3,
FLAGS_value_bytes, &pinned.emplace_back());
assert(s.ok());
} else if (random_op < blind_insert_threshold_) {
// insert without keeping a handle
Status s = cache_->Insert(
key, createValue(thread->rnd, cache_->memory_allocator()), &helper3,
FLAGS_value_bytes);
assert(s.ok());
} else if (random_op < lookup_threshold_) {
// do lookup
auto handle = cache_->Lookup(key, &helper2, /*context*/ nullptr,
Cache::Priority::LOW);
if (handle) {
++lookup_hits;
if (!FLAGS_lean) {
// do something with the data
result += NPHash64(static_cast<char*>(cache_->Value(handle)),
FLAGS_value_bytes);
}
pinned.push_back(handle);
} else {
++lookup_misses;
}
} else if (random_op < erase_threshold_) {
// do erase
cache_->Erase(key);
} else {
// Should be extremely unlikely (noop)
assert(random_op >= kHundredthUint64 * 100U);
}
if (FLAGS_histograms) {
thread->latency_ns_hist.Add(timer.ElapsedNanos());
}
if (FLAGS_usleep > 0) {
unsigned us =
static_cast<unsigned>(thread->rnd.Uniform(FLAGS_usleep + 1));
if (us > 0) {
system_clock->SleepForMicroseconds(us);
}
}
while (pinned.size() > pin_count) {
cache_->Release(pinned.front());
pinned.pop_front();
}
}
if (FLAGS_early_exit) {
MutexLock l(thread->shared->GetMutex());
exit(0);
}
thread->shared->AddLookupStats(lookup_hits, lookup_misses, pinned.size());
for (auto handle : pinned) {
cache_->Release(handle);
handle = nullptr;
}
// Ensure computations on `result` are not optimized away.
if (result == 1) {
printf("You are extremely unlucky(2). Try again.\n");
exit(1);
}
thread->duration_us = clock->NowMicros() - start_time;
}
void PrintEnv() const {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
printf(
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
printf("WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
printf("----------------------------\n");
printf("RocksDB version : %d.%d\n", kMajorVersion, kMinorVersion);
printf("Cache impl name : %s\n", cache_->Name());
printf("DMutex impl name : %s\n", DMutex::kName());
printf("Number of threads : %u\n", FLAGS_threads);
printf("Ops per thread : %" PRIu64 "\n", FLAGS_ops_per_thread);
printf("Cache size : %s\n",
BytesToHumanString(FLAGS_cache_size).c_str());
printf("Num shard bits : %d\n",
AsShardedCache(cache_.get())->GetNumShardBits());
printf("Max key : %" PRIu64 "\n", max_key_);
printf("Resident ratio : %g\n", FLAGS_resident_ratio);
printf("Skew degree : %u\n", FLAGS_skew);
printf("Populate cache : %d\n", int{FLAGS_populate_cache});
printf("Lookup+Insert pct : %u%%\n", FLAGS_lookup_insert_percent);
printf("Insert percentage : %u%%\n", FLAGS_insert_percent);
printf("Lookup percentage : %u%%\n", FLAGS_lookup_percent);
printf("Erase percentage : %u%%\n", FLAGS_erase_percent);
std::ostringstream stats;
if (FLAGS_gather_stats) {
stats << "enabled (" << FLAGS_gather_stats_sleep_ms << "ms, "
<< FLAGS_gather_stats_entries_per_lock << "/lock)";
} else {
stats << "disabled";
}
printf("Gather stats : %s\n", stats.str().c_str());
printf("----------------------------\n");
}
};
// cache_bench -stress_cache_key is an independent embedded tool for
// estimating the probability of CacheKey collisions through simulation.
// At a high level, it simulates generating SST files over many months,
// keeping them in the DB and/or cache for some lifetime while staying
// under resource caps, and checking for any cache key collisions that
// arise among the set of live files. For efficient simulation, we make
// some simplifying "pessimistic" assumptions (that only increase the
// chance of the simulation reporting a collision relative to the chance
// of collision in practice):
// * Every generated file has a cache entry for every byte offset in the
// file (contiguous range of cache keys)
// * All of every file is cached for its entire lifetime. (Here "lifetime"
// is technically the union of DB and Cache lifetime, though we only
// model a generous DB lifetime, where space usage is always maximized.
// In a effective Cache, lifetime in cache can only substantially exceed
// lifetime in DB if there is little cache activity; cache activity is
// required to hit cache key collisions.)
//
// It would be possible to track an exact set of cache key ranges for the
// set of live files, but we would have no hope of observing collisions
// (overlap in live files) in our simulation. We need to employ some way
// of amplifying collision probability that allows us to predict the real
// collision probability by extrapolation from observed collisions. Our
// basic approach is to reduce each cache key range down to some smaller
// number of bits, and limiting to bits that are shared over the whole
// range. Now we can observe collisions using a set of smaller stripped-down
// (reduced) cache keys. Let's do some case analysis to understand why this
// works:
// * No collision in reduced key - because the reduction is a pure function
// this implies no collision in the full keys
// * Collision detected between two reduced keys - either
// * The reduction has dropped some structured uniqueness info (from one of
// session counter or file number; file offsets are never materialized here).
// This can only artificially inflate the observed and extrapolated collision
// probabilities. We only have to worry about this in designing the reduction.
// * The reduction has preserved all the structured uniqueness in the cache
// key, which means either
// * REJECTED: We have a uniqueness bug in generating cache keys, where
// structured uniqueness info should have been different but isn't. In such a
// case, increasing by 1 the number of bits kept after reduction would not
// reduce observed probabilities by half. (In our observations, the
// probabilities are reduced approximately by half.)
// * ACCEPTED: The lost unstructured uniqueness in the key determines the
// probability that an observed collision would imply an overlap in ranges.
// In short, dropping n bits from key would increase collision probability by
// 2**n, assuming those n bits have full entropy in unstructured uniqueness.
//
// But we also have to account for the key ranges based on file size. If file
// sizes are roughly 2**b offsets, using XOR in 128-bit cache keys for
// "ranges", we know from other simulations (see
// https://github.com/pdillinger/unique_id/) that that's roughly equivalent to
// (less than 2x higher collision probability) using a cache key of size
// 128 - b bits for the whole file. (This is the only place we make an
// "optimistic" assumption, which is more than offset by the real
// implementation stripping off 2 lower bits from block byte offsets for cache
// keys. The simulation assumes byte offsets, which is net pessimistic.)
//
// So to accept the extrapolation as valid, we need to be confident that all
// "lost" bits, excluding those covered by file offset, are full entropy.
// Recall that we have assumed (verifiably, safely) that other structured data
// (file number and session counter) are kept, not lost. Based on the
// implementation comments for OffsetableCacheKey, the only potential hole here
// is that we only have ~103 bits of entropy in "all new" session IDs, and in
// extreme cases, there might be only 1 DB ID. However, because the upper ~39
// bits of session ID are hashed, the combination of file number and file
// offset only has to add to 25 bits (or more) to ensure full entropy in
// unstructured uniqueness lost in the reduction. Typical file size of 32MB
// suffices (at least for simulation purposes where we assume each file offset
// occupies a cache key).
//
// Example results in comments on OffsetableCacheKey.
class StressCacheKey {
public:
void Run() {
if (FLAGS_sck_footer_unique_id) {
// Proposed footer unique IDs are DB-independent and session-independent
// (but process-dependent) which is most easily simulated here by
// assuming 1 DB and (later below) no session resets without process
// reset.
FLAGS_sck_db_count = 1;
}
// Describe the simulated workload
uint64_t mb_per_day =
uint64_t{FLAGS_sck_files_per_day} * FLAGS_sck_file_size_mb;
printf("Total cache or DBs size: %gTiB Writing %g MiB/s or %gTiB/day\n",
FLAGS_sck_file_size_mb / 1024.0 / 1024.0 *
std::pow(2.0, FLAGS_sck_table_bits),
mb_per_day / 86400.0, mb_per_day / 1024.0 / 1024.0);
// For extrapolating probability of any collisions from a number of
// observed collisions
multiplier_ = std::pow(2.0, 128 - FLAGS_sck_keep_bits) /
(FLAGS_sck_file_size_mb * 1024.0 * 1024.0);
printf(
"Multiply by %g to correct for simulation losses (but still assume "
"whole file cached)\n",
multiplier_);
restart_nfiles_ = FLAGS_sck_files_per_day / FLAGS_sck_restarts_per_day;
double without_ejection =
std::pow(1.414214, FLAGS_sck_keep_bits) / FLAGS_sck_files_per_day;
// This should be a lower bound for -sck_randomize, usually a terribly
// rough lower bound.
// If observation is worse than this, then something has gone wrong.
printf(
"Without ejection, expect random collision after %g days (%g "
"corrected)\n",
without_ejection, without_ejection * multiplier_);
double with_full_table =
std::pow(2.0, FLAGS_sck_keep_bits - FLAGS_sck_table_bits) /
FLAGS_sck_files_per_day;
// This is an alternate lower bound for -sck_randomize, usually pretty
// accurate. Our cache keys should usually perform "better than random"
// but always no worse. (If observation is substantially worse than this,
// then something has gone wrong.)
printf(
"With ejection and full table, expect random collision after %g "
"days (%g corrected)\n",
with_full_table, with_full_table * multiplier_);
collisions_ = 0;
// Run until sufficient number of observed collisions.
for (int i = 1; collisions_ < FLAGS_sck_min_collision; i++) {
RunOnce();
if (collisions_ == 0) {
printf(
"No collisions after %d x %u days "
" \n",
i, FLAGS_sck_days_per_run);
} else {
double est = 1.0 * i * FLAGS_sck_days_per_run / collisions_;
printf("%" PRIu64
" collisions after %d x %u days, est %g days between (%g "
"corrected) \n",
collisions_, i, FLAGS_sck_days_per_run, est, est * multiplier_);
}
}
}
void RunOnce() {
// Re-initialized simulated state
const size_t db_count = std::max(size_t{FLAGS_sck_db_count}, size_t{1});
dbs_.reset(new TableProperties[db_count]{});
const size_t table_mask = (size_t{1} << FLAGS_sck_table_bits) - 1;
table_.reset(new uint64_t[table_mask + 1]{});
if (FLAGS_sck_keep_bits > 64) {
FLAGS_sck_keep_bits = 64;
}
// Details of which bits are dropped in reduction
uint32_t shift_away = 64 - FLAGS_sck_keep_bits;
// Shift away fewer potential file number bits (b) than potential
// session counter bits (a).
uint32_t shift_away_b = shift_away / 3;
uint32_t shift_away_a = shift_away - shift_away_b;
process_count_ = 0;
session_count_ = 0;
newdb_count_ = 0;
ResetProcess(/*newdbs*/ true);
Random64 r{std::random_device{}()};
uint64_t max_file_count =
uint64_t{FLAGS_sck_files_per_day} * FLAGS_sck_days_per_run;
uint32_t report_count = 0;
uint32_t collisions_this_run = 0;
size_t db_i = 0;
for (uint64_t file_count = 1; file_count <= max_file_count;
++file_count, ++db_i) {
// Round-robin through DBs (this faster than %)
if (db_i >= db_count) {
db_i = 0;
}
// Any other periodic actions before simulating next file
if (!FLAGS_sck_footer_unique_id && r.OneIn(FLAGS_sck_reopen_nfiles)) {
ResetSession(db_i, /*newdb*/ r.OneIn(FLAGS_sck_newdb_nreopen));
} else if (r.OneIn(restart_nfiles_)) {
ResetProcess(/*newdbs*/ false);
}
// Simulate next file
OffsetableCacheKey ock;
dbs_[db_i].orig_file_number += 1;
// skip some file numbers for other file kinds, except in footer unique
// ID, orig_file_number here tracks process-wide generated SST file
// count.
if (!FLAGS_sck_footer_unique_id) {
dbs_[db_i].orig_file_number += (r.Next() & 3);
}
bool is_stable;
BlockBasedTable::SetupBaseCacheKey(&dbs_[db_i], /* ignored */ "",
/* ignored */ 42, &ock, &is_stable);
assert(is_stable);
// Get a representative cache key, which later we analytically generalize
// to a range.
CacheKey ck = ock.WithOffset(0);
uint64_t reduced_key;
if (FLAGS_sck_randomize) {
reduced_key = GetSliceHash64(ck.AsSlice()) >> shift_away;
} else if (FLAGS_sck_footer_unique_id) {
// Special case: keep only file number, not session counter
reduced_key = DecodeFixed64(ck.AsSlice().data()) >> shift_away;
} else {
// Try to keep file number and session counter (shift away other bits)
uint32_t a = DecodeFixed32(ck.AsSlice().data()) << shift_away_a;
uint32_t b = DecodeFixed32(ck.AsSlice().data() + 4) >> shift_away_b;
reduced_key = (uint64_t{a} << 32) + b;
}
if (reduced_key == 0) {
// Unlikely, but we need to exclude tracking this value because we
// use it to mean "empty" in table. This case is OK as long as we
// don't hit it often.
printf("Hit Zero! \n");
file_count--;
continue;
}
uint64_t h =
NPHash64(reinterpret_cast<char*>(&reduced_key), sizeof(reduced_key));
// Skew expected lifetimes, for high variance (super-Poisson) variance
// in actual lifetimes.
size_t pos =
std::min(Lower32of64(h) & table_mask, Upper32of64(h) & table_mask);
if (table_[pos] == reduced_key) {
collisions_this_run++;
// Our goal is to predict probability of no collisions, not expected
// number of collisions. To make the distinction, we have to get rid
// of observing correlated collisions, which this takes care of:
ResetProcess(/*newdbs*/ false);
} else {
// Replace (end of lifetime for file that was in this slot)
table_[pos] = reduced_key;
}
if (++report_count == FLAGS_sck_files_per_day) {
report_count = 0;
// Estimate fill %
size_t incr = table_mask / 1000;
size_t sampled_count = 0;
for (size_t i = 0; i <= table_mask; i += incr) {
if (table_[i] != 0) {
sampled_count++;
}
}
// Report
printf(
"%" PRIu64 " days, %" PRIu64 " proc, %" PRIu64 " sess, %" PRIu64
" newdb, %u coll, occ %g%%, ejected %g%% \r",
file_count / FLAGS_sck_files_per_day, process_count_,
session_count_, newdb_count_ - FLAGS_sck_db_count,
collisions_this_run, 100.0 * sampled_count / 1000.0,
100.0 * (1.0 - sampled_count / 1000.0 * table_mask / file_count));
fflush(stdout);
}
}
collisions_ += collisions_this_run;
}
void ResetSession(size_t i, bool newdb) {
dbs_[i].db_session_id = DBImpl::GenerateDbSessionId(nullptr);
if (newdb) {
++newdb_count_;
if (FLAGS_sck_footer_unique_id) {
// Simulate how footer id would behave
dbs_[i].db_id = "none";
} else {
// db_id might be ignored, depending on the implementation details
dbs_[i].db_id = std::to_string(newdb_count_);
dbs_[i].orig_file_number = 0;
}
}
session_count_++;
}
void ResetProcess(bool newdbs) {
process_count_++;
DBImpl::TEST_ResetDbSessionIdGen();
for (size_t i = 0; i < FLAGS_sck_db_count; ++i) {
ResetSession(i, newdbs);
}
if (FLAGS_sck_footer_unique_id) {
// For footer unique ID, this tracks process-wide generated SST file
// count.
dbs_[0].orig_file_number = 0;
}
}
private:
// Use db_session_id and orig_file_number from TableProperties
std::unique_ptr<TableProperties[]> dbs_;
std::unique_ptr<uint64_t[]> table_;
uint64_t process_count_ = 0;
uint64_t session_count_ = 0;
uint64_t newdb_count_ = 0;
uint64_t collisions_ = 0;
uint32_t restart_nfiles_ = 0;
double multiplier_ = 0.0;
};
int cache_bench_tool(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_stress_cache_key) {
// Alternate tool
StressCacheKey().Run();
return 0;
}
if (FLAGS_threads <= 0) {
fprintf(stderr, "threads number <= 0\n");
exit(1);
}
if (FLAGS_seed == 0) {
FLAGS_seed = static_cast<uint32_t>(port::GetProcessID());
printf("Using seed = %" PRIu32 "\n", FLAGS_seed);
}
ROCKSDB_NAMESPACE::CacheBench bench;
if (FLAGS_populate_cache) {
bench.PopulateCache();
}
if (bench.Run()) {
return 0;
} else {
return 1;
}
} // namespace ROCKSDB_NAMESPACE
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS
|