1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "cache/clock_cache.h"
#include <algorithm>
#include <atomic>
#include <bitset>
#include <cassert>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <exception>
#include <functional>
#include <numeric>
#include <string>
#include <thread>
#include <type_traits>
#include "cache/cache_key.h"
#include "cache/secondary_cache_adapter.h"
#include "logging/logging.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/statistics_impl.h"
#include "port/lang.h"
#include "rocksdb/env.h"
#include "util/hash.h"
#include "util/math.h"
#include "util/random.h"
namespace ROCKSDB_NAMESPACE {
namespace clock_cache {
namespace {
inline uint64_t GetRefcount(uint64_t meta) {
return ((meta >> ClockHandle::kAcquireCounterShift) -
(meta >> ClockHandle::kReleaseCounterShift)) &
ClockHandle::kCounterMask;
}
inline uint64_t GetInitialCountdown(Cache::Priority priority) {
// Set initial clock data from priority
// TODO: configuration parameters for priority handling and clock cycle
// count?
switch (priority) {
case Cache::Priority::HIGH:
return ClockHandle::kHighCountdown;
case Cache::Priority::LOW:
return ClockHandle::kLowCountdown;
case Cache::Priority::BOTTOM:
return ClockHandle::kBottomCountdown;
}
// Switch should have been exhaustive.
assert(false);
// For release build, fall back on something reasonable.
return ClockHandle::kLowCountdown;
}
inline void MarkEmpty(ClockHandle& h) {
#ifndef NDEBUG
// Mark slot as empty, with assertion
uint64_t meta = h.meta.Exchange(0);
assert(meta >> ClockHandle::kStateShift == ClockHandle::kStateConstruction);
#else
// Mark slot as empty
h.meta.Store(0);
#endif
}
inline void FreeDataMarkEmpty(ClockHandle& h, MemoryAllocator* allocator) {
// NOTE: in theory there's more room for parallelism if we copy the handle
// data and delay actions like this until after marking the entry as empty,
// but performance tests only show a regression by copying the few words
// of data.
h.FreeData(allocator);
MarkEmpty(h);
}
// Called to undo the effect of referencing an entry for internal purposes,
// so it should not be marked as having been used.
inline void Unref(const ClockHandle& h, uint64_t count = 1) {
// Pretend we never took the reference
// WART: there's a tiny chance we release last ref to invisible
// entry here. If that happens, we let eviction take care of it.
uint64_t old_meta = h.meta.FetchSub(ClockHandle::kAcquireIncrement * count);
assert(GetRefcount(old_meta) != 0);
(void)old_meta;
}
inline bool ClockUpdate(ClockHandle& h, BaseClockTable::EvictionData* data,
bool* purgeable = nullptr) {
uint64_t meta;
if (purgeable) {
assert(*purgeable == false);
// In AutoHCC, our eviction process follows the chain structure, so we
// should ensure that we see the latest state of each entry, at least for
// assertion checking.
meta = h.meta.Load();
} else {
// In FixedHCC, our eviction process is a simple iteration without regard
// to probing order, displacements, etc., so it doesn't matter if we see
// somewhat stale data.
meta = h.meta.LoadRelaxed();
}
if (((meta >> ClockHandle::kStateShift) & ClockHandle::kStateShareableBit) ==
0) {
// Only clock update Shareable entries
if (purgeable) {
*purgeable = true;
// AutoHCC only: make sure we only attempt to update non-empty slots
assert((meta >> ClockHandle::kStateShift) &
ClockHandle::kStateOccupiedBit);
}
return false;
}
uint64_t acquire_count =
(meta >> ClockHandle::kAcquireCounterShift) & ClockHandle::kCounterMask;
uint64_t release_count =
(meta >> ClockHandle::kReleaseCounterShift) & ClockHandle::kCounterMask;
if (acquire_count != release_count) {
// Only clock update entries with no outstanding refs
data->seen_pinned_count++;
return false;
}
if ((meta >> ClockHandle::kStateShift == ClockHandle::kStateVisible) &&
acquire_count > 0) {
// Decrement clock
uint64_t new_count =
std::min(acquire_count - 1, uint64_t{ClockHandle::kMaxCountdown} - 1);
// Compare-exchange in the decremented clock info, but
// not aggressively
uint64_t new_meta =
(uint64_t{ClockHandle::kStateVisible} << ClockHandle::kStateShift) |
(meta & ClockHandle::kHitBitMask) |
(new_count << ClockHandle::kReleaseCounterShift) |
(new_count << ClockHandle::kAcquireCounterShift);
h.meta.CasStrongRelaxed(meta, new_meta);
return false;
}
// Otherwise, remove entry (either unreferenced invisible or
// unreferenced and expired visible).
if (h.meta.CasStrong(meta, (uint64_t{ClockHandle::kStateConstruction}
<< ClockHandle::kStateShift) |
(meta & ClockHandle::kHitBitMask))) {
// Took ownership.
data->freed_charge += h.GetTotalCharge();
data->freed_count += 1;
return true;
} else {
// Compare-exchange failing probably
// indicates the entry was used, so skip it in that case.
return false;
}
}
// If an entry doesn't receive clock updates but is repeatedly referenced &
// released, the acquire and release counters could overflow without some
// intervention. This is that intervention, which should be inexpensive
// because it only incurs a simple, very predictable check. (Applying a bit
// mask in addition to an increment to every Release likely would be
// relatively expensive, because it's an extra atomic update.)
//
// We do have to assume that we never have many millions of simultaneous
// references to a cache handle, because we cannot represent so many
// references with the difference in counters, masked to the number of
// counter bits. Similarly, we assume there aren't millions of threads
// holding transient references (which might be "undone" rather than
// released by the way).
//
// Consider these possible states for each counter:
// low: less than kMaxCountdown
// medium: kMaxCountdown to half way to overflow + kMaxCountdown
// high: half way to overflow + kMaxCountdown, or greater
//
// And these possible states for the combination of counters:
// acquire / release
// ------- -------
// low low - Normal / common, with caveats (see below)
// medium low - Can happen while holding some refs
// high low - Violates assumptions (too many refs)
// low medium - Violates assumptions (refs underflow, etc.)
// medium medium - Normal (very read heavy cache)
// high medium - Can happen while holding some refs
// low high - This function is supposed to prevent
// medium high - Violates assumptions (refs underflow, etc.)
// high high - Needs CorrectNearOverflow
//
// Basically, this function detects (high, high) state (inferred from
// release alone being high) and bumps it back down to (medium, medium)
// state with the same refcount and the same logical countdown counter
// (everything > kMaxCountdown is logically the same). Note that bumping
// down to (low, low) would modify the countdown counter, so is "reserved"
// in a sense.
//
// If near-overflow correction is triggered here, there's no guarantee
// that another thread hasn't freed the entry and replaced it with another.
// Therefore, it must be the case that the correction does not affect
// entries unless they are very old (many millions of acquire-release cycles).
// (Our bit manipulation is indeed idempotent and only affects entries in
// exceptional cases.) We assume a pre-empted thread will not stall that long.
// If it did, the state could be corrupted in the (unlikely) case that the top
// bit of the acquire counter is set but not the release counter, and thus
// we only clear the top bit of the acquire counter on resumption. It would
// then appear that there are too many refs and the entry would be permanently
// pinned (which is not terrible for an exceptionally rare occurrence), unless
// it is referenced enough (at least kMaxCountdown more times) for the release
// counter to reach "high" state again and bumped back to "medium." (This
// motivates only checking for release counter in high state, not both in high
// state.)
inline void CorrectNearOverflow(uint64_t old_meta,
AcqRelAtomic<uint64_t>& meta) {
// We clear both top-most counter bits at the same time.
constexpr uint64_t kCounterTopBit = uint64_t{1}
<< (ClockHandle::kCounterNumBits - 1);
constexpr uint64_t kClearBits =
(kCounterTopBit << ClockHandle::kAcquireCounterShift) |
(kCounterTopBit << ClockHandle::kReleaseCounterShift);
// A simple check that allows us to initiate clearing the top bits for
// a large portion of the "high" state space on release counter.
constexpr uint64_t kCheckBits =
(kCounterTopBit | (ClockHandle::kMaxCountdown + 1))
<< ClockHandle::kReleaseCounterShift;
if (UNLIKELY(old_meta & kCheckBits)) {
meta.FetchAndRelaxed(~kClearBits);
}
}
inline bool BeginSlotInsert(const ClockHandleBasicData& proto, ClockHandle& h,
uint64_t initial_countdown, bool* already_matches) {
assert(*already_matches == false);
// Optimistically transition the slot from "empty" to
// "under construction" (no effect on other states)
uint64_t old_meta = h.meta.FetchOr(uint64_t{ClockHandle::kStateOccupiedBit}
<< ClockHandle::kStateShift);
uint64_t old_state = old_meta >> ClockHandle::kStateShift;
if (old_state == ClockHandle::kStateEmpty) {
// We've started inserting into an available slot, and taken
// ownership.
return true;
} else if (old_state != ClockHandle::kStateVisible) {
// Slot not usable / touchable now
return false;
}
// Existing, visible entry, which might be a match.
// But first, we need to acquire a ref to read it. In fact, number of
// refs for initial countdown, so that we boost the clock state if
// this is a match.
old_meta =
h.meta.FetchAdd(ClockHandle::kAcquireIncrement * initial_countdown);
// Like Lookup
if ((old_meta >> ClockHandle::kStateShift) == ClockHandle::kStateVisible) {
// Acquired a read reference
if (h.hashed_key == proto.hashed_key) {
// Match. Release in a way that boosts the clock state
old_meta =
h.meta.FetchAdd(ClockHandle::kReleaseIncrement * initial_countdown);
// Correct for possible (but rare) overflow
CorrectNearOverflow(old_meta, h.meta);
// Insert detached instead (only if return handle needed)
*already_matches = true;
return false;
} else {
// Mismatch.
Unref(h, initial_countdown);
}
} else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
ClockHandle::kStateInvisible)) {
// Pretend we never took the reference
Unref(h, initial_countdown);
} else {
// For other states, incrementing the acquire counter has no effect
// so we don't need to undo it.
// Slot not usable / touchable now.
}
return false;
}
inline void FinishSlotInsert(const ClockHandleBasicData& proto, ClockHandle& h,
uint64_t initial_countdown, bool keep_ref) {
// Save data fields
ClockHandleBasicData* h_alias = &h;
*h_alias = proto;
// Transition from "under construction" state to "visible" state
uint64_t new_meta = uint64_t{ClockHandle::kStateVisible}
<< ClockHandle::kStateShift;
// Maybe with an outstanding reference
new_meta |= initial_countdown << ClockHandle::kAcquireCounterShift;
new_meta |= (initial_countdown - keep_ref)
<< ClockHandle::kReleaseCounterShift;
#ifndef NDEBUG
// Save the state transition, with assertion
uint64_t old_meta = h.meta.Exchange(new_meta);
assert(old_meta >> ClockHandle::kStateShift ==
ClockHandle::kStateConstruction);
#else
// Save the state transition
h.meta.Store(new_meta);
#endif
}
bool TryInsert(const ClockHandleBasicData& proto, ClockHandle& h,
uint64_t initial_countdown, bool keep_ref,
bool* already_matches) {
bool b = BeginSlotInsert(proto, h, initial_countdown, already_matches);
if (b) {
FinishSlotInsert(proto, h, initial_countdown, keep_ref);
}
return b;
}
// Func must be const HandleImpl& -> void callable
template <class HandleImpl, class Func>
void ConstApplyToEntriesRange(const Func& func, const HandleImpl* begin,
const HandleImpl* end,
bool apply_if_will_be_deleted) {
uint64_t check_state_mask = ClockHandle::kStateShareableBit;
if (!apply_if_will_be_deleted) {
check_state_mask |= ClockHandle::kStateVisibleBit;
}
for (const HandleImpl* h = begin; h < end; ++h) {
// Note: to avoid using compare_exchange, we have to be extra careful.
uint64_t old_meta = h->meta.LoadRelaxed();
// Check if it's an entry visible to lookups
if ((old_meta >> ClockHandle::kStateShift) & check_state_mask) {
// Increment acquire counter. Note: it's possible that the entry has
// completely changed since we loaded old_meta, but incrementing acquire
// count is always safe. (Similar to optimistic Lookup here.)
old_meta = h->meta.FetchAdd(ClockHandle::kAcquireIncrement);
// Check whether we actually acquired a reference.
if ((old_meta >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit) {
// Apply func if appropriate
if ((old_meta >> ClockHandle::kStateShift) & check_state_mask) {
func(*h);
}
// Pretend we never took the reference
Unref(*h);
// No net change, so don't need to check for overflow
} else {
// For other states, incrementing the acquire counter has no effect
// so we don't need to undo it. Furthermore, we cannot safely undo
// it because we did not acquire a read reference to lock the
// entry in a Shareable state.
}
}
}
}
constexpr uint32_t kStrictCapacityLimitBit = 1u << 31;
uint32_t SanitizeEncodeEecAndScl(int eviction_effort_cap,
bool strict_capacit_limit) {
eviction_effort_cap = std::max(int{1}, eviction_effort_cap);
eviction_effort_cap =
std::min(static_cast<int>(~kStrictCapacityLimitBit), eviction_effort_cap);
uint32_t eec_and_scl = static_cast<uint32_t>(eviction_effort_cap);
eec_and_scl |= strict_capacit_limit ? kStrictCapacityLimitBit : 0;
return eec_and_scl;
}
} // namespace
void ClockHandleBasicData::FreeData(MemoryAllocator* allocator) const {
if (helper->del_cb) {
helper->del_cb(value, allocator);
}
}
template <class HandleImpl>
HandleImpl* BaseClockTable::StandaloneInsert(
const ClockHandleBasicData& proto) {
// Heap allocated separate from table
HandleImpl* h = new HandleImpl();
ClockHandleBasicData* h_alias = h;
*h_alias = proto;
h->SetStandalone();
// Single reference (standalone entries only created if returning a refed
// Handle back to user)
uint64_t meta = uint64_t{ClockHandle::kStateInvisible}
<< ClockHandle::kStateShift;
meta |= uint64_t{1} << ClockHandle::kAcquireCounterShift;
h->meta.Store(meta);
// Keep track of how much of usage is standalone
standalone_usage_.FetchAddRelaxed(proto.GetTotalCharge());
return h;
}
template <class Table>
typename Table::HandleImpl* BaseClockTable::CreateStandalone(
ClockHandleBasicData& proto, size_t capacity, uint32_t eec_and_scl,
bool allow_uncharged) {
Table& derived = static_cast<Table&>(*this);
typename Table::InsertState state;
derived.StartInsert(state);
const size_t total_charge = proto.GetTotalCharge();
// NOTE: we can use eec_and_scl as eviction_effort_cap below because
// strict_capacity_limit=true is supposed to disable the limit on eviction
// effort, and a large value effectively does that.
if (eec_and_scl & kStrictCapacityLimitBit) {
Status s = ChargeUsageMaybeEvictStrict<Table>(
total_charge, capacity,
/*need_evict_for_occupancy=*/false, eec_and_scl, state);
if (!s.ok()) {
if (allow_uncharged) {
proto.total_charge = 0;
} else {
return nullptr;
}
}
} else {
// Case strict_capacity_limit == false
bool success = ChargeUsageMaybeEvictNonStrict<Table>(
total_charge, capacity,
/*need_evict_for_occupancy=*/false, eec_and_scl, state);
if (!success) {
// Force the issue
usage_.FetchAddRelaxed(total_charge);
}
}
return StandaloneInsert<typename Table::HandleImpl>(proto);
}
template <class Table>
Status BaseClockTable::ChargeUsageMaybeEvictStrict(
size_t total_charge, size_t capacity, bool need_evict_for_occupancy,
uint32_t eviction_effort_cap, typename Table::InsertState& state) {
if (total_charge > capacity) {
return Status::MemoryLimit(
"Cache entry too large for a single cache shard: " +
std::to_string(total_charge) + " > " + std::to_string(capacity));
}
// Grab any available capacity, and free up any more required.
size_t old_usage = usage_.LoadRelaxed();
size_t new_usage;
do {
new_usage = std::min(capacity, old_usage + total_charge);
if (new_usage == old_usage) {
// No change needed
break;
}
} while (!usage_.CasWeakRelaxed(old_usage, new_usage));
// How much do we need to evict then?
size_t need_evict_charge = old_usage + total_charge - new_usage;
size_t request_evict_charge = need_evict_charge;
if (UNLIKELY(need_evict_for_occupancy) && request_evict_charge == 0) {
// Require at least 1 eviction.
request_evict_charge = 1;
}
if (request_evict_charge > 0) {
EvictionData data;
static_cast<Table*>(this)->Evict(request_evict_charge, state, &data,
eviction_effort_cap);
occupancy_.FetchSub(data.freed_count);
if (LIKELY(data.freed_charge > need_evict_charge)) {
assert(data.freed_count > 0);
// Evicted more than enough
usage_.FetchSubRelaxed(data.freed_charge - need_evict_charge);
} else if (data.freed_charge < need_evict_charge ||
(UNLIKELY(need_evict_for_occupancy) && data.freed_count == 0)) {
// Roll back to old usage minus evicted
usage_.FetchSubRelaxed(data.freed_charge + (new_usage - old_usage));
if (data.freed_charge < need_evict_charge) {
return Status::MemoryLimit(
"Insert failed because unable to evict entries to stay within "
"capacity limit.");
} else {
return Status::MemoryLimit(
"Insert failed because unable to evict entries to stay within "
"table occupancy limit.");
}
}
// If we needed to evict something and we are proceeding, we must have
// evicted something.
assert(data.freed_count > 0);
}
return Status::OK();
}
template <class Table>
inline bool BaseClockTable::ChargeUsageMaybeEvictNonStrict(
size_t total_charge, size_t capacity, bool need_evict_for_occupancy,
uint32_t eviction_effort_cap, typename Table::InsertState& state) {
// For simplicity, we consider that either the cache can accept the insert
// with no evictions, or we must evict enough to make (at least) enough
// space. It could lead to unnecessary failures or excessive evictions in
// some extreme cases, but allows a fast, simple protocol. If we allow a
// race to get us over capacity, then we might never get back to capacity
// limit if the sizes of entries allow each insertion to evict the minimum
// charge. Thus, we should evict some extra if it's not a signifcant
// portion of the shard capacity. This can have the side benefit of
// involving fewer threads in eviction.
size_t old_usage = usage_.LoadRelaxed();
size_t need_evict_charge;
// NOTE: if total_charge > old_usage, there isn't yet enough to evict
// `total_charge` amount. Even if we only try to evict `old_usage` amount,
// there's likely something referenced and we would eat CPU looking for
// enough to evict.
if (old_usage + total_charge <= capacity || total_charge > old_usage) {
// Good enough for me (might run over with a race)
need_evict_charge = 0;
} else {
// Try to evict enough space, and maybe some extra
need_evict_charge = total_charge;
if (old_usage > capacity) {
// Not too much to avoid thundering herd while avoiding strict
// synchronization, such as the compare_exchange used with strict
// capacity limit.
need_evict_charge += std::min(capacity / 1024, total_charge) + 1;
}
}
if (UNLIKELY(need_evict_for_occupancy) && need_evict_charge == 0) {
// Special case: require at least 1 eviction if we only have to
// deal with occupancy
need_evict_charge = 1;
}
EvictionData data;
if (need_evict_charge > 0) {
static_cast<Table*>(this)->Evict(need_evict_charge, state, &data,
eviction_effort_cap);
// Deal with potential occupancy deficit
if (UNLIKELY(need_evict_for_occupancy) && data.freed_count == 0) {
assert(data.freed_charge == 0);
// Can't meet occupancy requirement
return false;
} else {
// Update occupancy for evictions
occupancy_.FetchSub(data.freed_count);
}
}
// Track new usage even if we weren't able to evict enough
usage_.FetchAddRelaxed(total_charge - data.freed_charge);
// No underflow
assert(usage_.LoadRelaxed() < SIZE_MAX / 2);
// Success
return true;
}
void BaseClockTable::TrackAndReleaseEvictedEntry(ClockHandle* h) {
bool took_value_ownership = false;
if (eviction_callback_) {
// For key reconstructed from hash
UniqueId64x2 unhashed;
took_value_ownership =
eviction_callback_(ClockCacheShard<FixedHyperClockTable>::ReverseHash(
h->GetHash(), &unhashed, hash_seed_),
static_cast<Cache::Handle*>(h),
h->meta.LoadRelaxed() & ClockHandle::kHitBitMask);
}
if (!took_value_ownership) {
h->FreeData(allocator_);
}
MarkEmpty(*h);
}
bool IsEvictionEffortExceeded(const BaseClockTable::EvictionData& data,
uint32_t eviction_effort_cap) {
// Basically checks whether the ratio of useful effort to wasted effort is
// too low, with a start-up allowance for wasted effort before any useful
// effort.
return (data.freed_count + 1U) * uint64_t{eviction_effort_cap} <=
data.seen_pinned_count;
}
template <class Table>
Status BaseClockTable::Insert(const ClockHandleBasicData& proto,
typename Table::HandleImpl** handle,
Cache::Priority priority, size_t capacity,
uint32_t eec_and_scl) {
using HandleImpl = typename Table::HandleImpl;
Table& derived = static_cast<Table&>(*this);
typename Table::InsertState state;
derived.StartInsert(state);
// Do we have the available occupancy? Optimistically assume we do
// and deal with it if we don't.
size_t old_occupancy = occupancy_.FetchAdd(1);
// Whether we over-committed and need an eviction to make up for it
bool need_evict_for_occupancy =
!derived.GrowIfNeeded(old_occupancy + 1, state);
// Usage/capacity handling is somewhat different depending on
// strict_capacity_limit, but mostly pessimistic.
bool use_standalone_insert = false;
const size_t total_charge = proto.GetTotalCharge();
// NOTE: we can use eec_and_scl as eviction_effort_cap below because
// strict_capacity_limit=true is supposed to disable the limit on eviction
// effort, and a large value effectively does that.
if (eec_and_scl & kStrictCapacityLimitBit) {
Status s = ChargeUsageMaybeEvictStrict<Table>(
total_charge, capacity, need_evict_for_occupancy, eec_and_scl, state);
if (!s.ok()) {
// Revert occupancy
occupancy_.FetchSubRelaxed(1);
return s;
}
} else {
// Case strict_capacity_limit == false
bool success = ChargeUsageMaybeEvictNonStrict<Table>(
total_charge, capacity, need_evict_for_occupancy, eec_and_scl, state);
if (!success) {
// Revert occupancy
occupancy_.FetchSubRelaxed(1);
if (handle == nullptr) {
// Don't insert the entry but still return ok, as if the entry
// inserted into cache and evicted immediately.
proto.FreeData(allocator_);
return Status::OK();
} else {
// Need to track usage of fallback standalone insert
usage_.FetchAddRelaxed(total_charge);
use_standalone_insert = true;
}
}
}
if (!use_standalone_insert) {
// Attempt a table insert, but abort if we find an existing entry for the
// key. If we were to overwrite old entries, we would either
// * Have to gain ownership over an existing entry to overwrite it, which
// would only work if there are no outstanding (read) references and would
// create a small gap in availability of the entry (old or new) to lookups.
// * Have to insert into a suboptimal location (more probes) so that the
// old entry can be kept around as well.
uint64_t initial_countdown = GetInitialCountdown(priority);
assert(initial_countdown > 0);
HandleImpl* e =
derived.DoInsert(proto, initial_countdown, handle != nullptr, state);
if (e) {
// Successfully inserted
if (handle) {
*handle = e;
}
return Status::OK();
}
// Not inserted
// Revert occupancy
occupancy_.FetchSubRelaxed(1);
// Maybe fall back on standalone insert
if (handle == nullptr) {
// Revert usage
usage_.FetchSubRelaxed(total_charge);
// No underflow
assert(usage_.LoadRelaxed() < SIZE_MAX / 2);
// As if unrefed entry immdiately evicted
proto.FreeData(allocator_);
return Status::OK();
}
use_standalone_insert = true;
}
// Run standalone insert
assert(use_standalone_insert);
*handle = StandaloneInsert<HandleImpl>(proto);
// The OkOverwritten status is used to count "redundant" insertions into
// block cache. This implementation doesn't strictly check for redundant
// insertions, but we instead are probably interested in how many insertions
// didn't go into the table (instead "standalone"), which could be redundant
// Insert or some other reason (use_standalone_insert reasons above).
return Status::OkOverwritten();
}
void BaseClockTable::Ref(ClockHandle& h) {
// Increment acquire counter
uint64_t old_meta = h.meta.FetchAdd(ClockHandle::kAcquireIncrement);
assert((old_meta >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit);
// Must have already had a reference
assert(GetRefcount(old_meta) > 0);
(void)old_meta;
}
#ifndef NDEBUG
void BaseClockTable::TEST_RefN(ClockHandle& h, size_t n) {
// Increment acquire counter
uint64_t old_meta = h.meta.FetchAdd(n * ClockHandle::kAcquireIncrement);
assert((old_meta >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit);
(void)old_meta;
}
void BaseClockTable::TEST_ReleaseNMinus1(ClockHandle* h, size_t n) {
assert(n > 0);
// Like n-1 Releases, but assumes one more will happen in the caller to take
// care of anything like erasing an unreferenced, invisible entry.
uint64_t old_meta =
h->meta.FetchAdd((n - 1) * ClockHandle::kReleaseIncrement);
assert((old_meta >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit);
(void)old_meta;
}
#endif
FixedHyperClockTable::FixedHyperClockTable(
size_t capacity, CacheMetadataChargePolicy metadata_charge_policy,
MemoryAllocator* allocator,
const Cache::EvictionCallback* eviction_callback, const uint32_t* hash_seed,
const Opts& opts)
: BaseClockTable(metadata_charge_policy, allocator, eviction_callback,
hash_seed),
length_bits_(CalcHashBits(capacity, opts.estimated_value_size,
metadata_charge_policy)),
length_bits_mask_((size_t{1} << length_bits_) - 1),
occupancy_limit_(static_cast<size_t>((uint64_t{1} << length_bits_) *
kStrictLoadFactor)),
array_(new HandleImpl[size_t{1} << length_bits_]) {
if (metadata_charge_policy ==
CacheMetadataChargePolicy::kFullChargeCacheMetadata) {
usage_.FetchAddRelaxed(size_t{GetTableSize()} * sizeof(HandleImpl));
}
static_assert(sizeof(HandleImpl) == 64U,
"Expecting size / alignment with common cache line size");
}
FixedHyperClockTable::~FixedHyperClockTable() {
// Assumes there are no references or active operations on any slot/element
// in the table.
for (size_t i = 0; i < GetTableSize(); i++) {
HandleImpl& h = array_[i];
switch (h.meta.LoadRelaxed() >> ClockHandle::kStateShift) {
case ClockHandle::kStateEmpty:
// noop
break;
case ClockHandle::kStateInvisible: // rare but possible
case ClockHandle::kStateVisible:
assert(GetRefcount(h.meta.LoadRelaxed()) == 0);
h.FreeData(allocator_);
#ifndef NDEBUG
Rollback(h.hashed_key, &h);
ReclaimEntryUsage(h.GetTotalCharge());
#endif
break;
// otherwise
default:
assert(false);
break;
}
}
#ifndef NDEBUG
for (size_t i = 0; i < GetTableSize(); i++) {
assert(array_[i].displacements.LoadRelaxed() == 0);
}
#endif
assert(usage_.LoadRelaxed() == 0 ||
usage_.LoadRelaxed() == size_t{GetTableSize()} * sizeof(HandleImpl));
assert(occupancy_.LoadRelaxed() == 0);
}
void FixedHyperClockTable::StartInsert(InsertState&) {}
bool FixedHyperClockTable::GrowIfNeeded(size_t new_occupancy, InsertState&) {
return new_occupancy <= occupancy_limit_;
}
FixedHyperClockTable::HandleImpl* FixedHyperClockTable::DoInsert(
const ClockHandleBasicData& proto, uint64_t initial_countdown,
bool keep_ref, InsertState&) {
bool already_matches = false;
HandleImpl* e = FindSlot(
proto.hashed_key,
[&](HandleImpl* h) {
return TryInsert(proto, *h, initial_countdown, keep_ref,
&already_matches);
},
[&](HandleImpl* h) {
if (already_matches) {
// Stop searching & roll back displacements
Rollback(proto.hashed_key, h);
return true;
} else {
// Keep going
return false;
}
},
[&](HandleImpl* h, bool is_last) {
if (is_last) {
// Search is ending. Roll back displacements
Rollback(proto.hashed_key, h);
} else {
h->displacements.FetchAddRelaxed(1);
}
});
if (already_matches) {
// Insertion skipped
return nullptr;
}
if (e != nullptr) {
// Successfully inserted
return e;
}
// Else, no available slot found. Occupancy check should generally prevent
// this, except it's theoretically possible for other threads to evict and
// replace entries in the right order to hit every slot when it is populated.
// Assuming random hashing, the chance of that should be no higher than
// pow(kStrictLoadFactor, n) for n slots. That should be infeasible for
// roughly n >= 256, so if this assertion fails, that suggests something is
// going wrong.
assert(GetTableSize() < 256);
return nullptr;
}
FixedHyperClockTable::HandleImpl* FixedHyperClockTable::Lookup(
const UniqueId64x2& hashed_key) {
HandleImpl* e = FindSlot(
hashed_key,
[&](HandleImpl* h) {
// Mostly branch-free version (similar performance)
/*
uint64_t old_meta = h->meta.FetchAdd(ClockHandle::kAcquireIncrement,
std::memory_order_acquire);
bool Shareable = (old_meta >> (ClockHandle::kStateShift + 1)) & 1U;
bool visible = (old_meta >> ClockHandle::kStateShift) & 1U;
bool match = (h->key == key) & visible;
h->meta.FetchSub(static_cast<uint64_t>(Shareable & !match) <<
ClockHandle::kAcquireCounterShift); return
match;
*/
// Optimistic lookup should pay off when the table is relatively
// sparse.
constexpr bool kOptimisticLookup = true;
uint64_t old_meta;
if (!kOptimisticLookup) {
old_meta = h->meta.Load();
if ((old_meta >> ClockHandle::kStateShift) !=
ClockHandle::kStateVisible) {
return false;
}
}
// (Optimistically) increment acquire counter
old_meta = h->meta.FetchAdd(ClockHandle::kAcquireIncrement);
// Check if it's an entry visible to lookups
if ((old_meta >> ClockHandle::kStateShift) ==
ClockHandle::kStateVisible) {
// Acquired a read reference
if (h->hashed_key == hashed_key) {
// Match
// Update the hit bit
if (eviction_callback_) {
h->meta.FetchOrRelaxed(uint64_t{1} << ClockHandle::kHitBitShift);
}
return true;
} else {
// Mismatch. Pretend we never took the reference
Unref(*h);
}
} else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
ClockHandle::kStateInvisible)) {
// Pretend we never took the reference
Unref(*h);
} else {
// For other states, incrementing the acquire counter has no effect
// so we don't need to undo it. Furthermore, we cannot safely undo
// it because we did not acquire a read reference to lock the
// entry in a Shareable state.
}
return false;
},
[&](HandleImpl* h) { return h->displacements.LoadRelaxed() == 0; },
[&](HandleImpl* /*h*/, bool /*is_last*/) {});
return e;
}
bool FixedHyperClockTable::Release(HandleImpl* h, bool useful,
bool erase_if_last_ref) {
// In contrast with LRUCache's Release, this function won't delete the handle
// when the cache is above capacity and the reference is the last one. Space
// is only freed up by EvictFromClock (called by Insert when space is needed)
// and Erase. We do this to avoid an extra atomic read of the variable usage_.
uint64_t old_meta;
if (useful) {
// Increment release counter to indicate was used
old_meta = h->meta.FetchAdd(ClockHandle::kReleaseIncrement);
} else {
// Decrement acquire counter to pretend it never happened
old_meta = h->meta.FetchSub(ClockHandle::kAcquireIncrement);
}
assert((old_meta >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit);
// No underflow
assert(((old_meta >> ClockHandle::kAcquireCounterShift) &
ClockHandle::kCounterMask) !=
((old_meta >> ClockHandle::kReleaseCounterShift) &
ClockHandle::kCounterMask));
if (erase_if_last_ref || UNLIKELY(old_meta >> ClockHandle::kStateShift ==
ClockHandle::kStateInvisible)) {
// FIXME: There's a chance here that another thread could replace this
// entry and we end up erasing the wrong one.
// Update for last FetchAdd op
if (useful) {
old_meta += ClockHandle::kReleaseIncrement;
} else {
old_meta -= ClockHandle::kAcquireIncrement;
}
// Take ownership if no refs
do {
if (GetRefcount(old_meta) != 0) {
// Not last ref at some point in time during this Release call
// Correct for possible (but rare) overflow
CorrectNearOverflow(old_meta, h->meta);
return false;
}
if ((old_meta & (uint64_t{ClockHandle::kStateShareableBit}
<< ClockHandle::kStateShift)) == 0) {
// Someone else took ownership
return false;
}
// Note that there's a small chance that we release, another thread
// replaces this entry with another, reaches zero refs, and then we end
// up erasing that other entry. That's an acceptable risk / imprecision.
} while (
!h->meta.CasWeak(old_meta, uint64_t{ClockHandle::kStateConstruction}
<< ClockHandle::kStateShift));
// Took ownership
size_t total_charge = h->GetTotalCharge();
if (UNLIKELY(h->IsStandalone())) {
h->FreeData(allocator_);
// Delete standalone handle
delete h;
standalone_usage_.FetchSubRelaxed(total_charge);
usage_.FetchSubRelaxed(total_charge);
} else {
Rollback(h->hashed_key, h);
FreeDataMarkEmpty(*h, allocator_);
ReclaimEntryUsage(total_charge);
}
return true;
} else {
// Correct for possible (but rare) overflow
CorrectNearOverflow(old_meta, h->meta);
return false;
}
}
#ifndef NDEBUG
void FixedHyperClockTable::TEST_ReleaseN(HandleImpl* h, size_t n) {
if (n > 0) {
// Do n-1 simple releases first
TEST_ReleaseNMinus1(h, n);
// Then the last release might be more involved
Release(h, /*useful*/ true, /*erase_if_last_ref*/ false);
}
}
#endif
void FixedHyperClockTable::Erase(const UniqueId64x2& hashed_key) {
(void)FindSlot(
hashed_key,
[&](HandleImpl* h) {
// Could be multiple entries in rare cases. Erase them all.
// Optimistically increment acquire counter
uint64_t old_meta = h->meta.FetchAdd(ClockHandle::kAcquireIncrement);
// Check if it's an entry visible to lookups
if ((old_meta >> ClockHandle::kStateShift) ==
ClockHandle::kStateVisible) {
// Acquired a read reference
if (h->hashed_key == hashed_key) {
// Match. Set invisible.
old_meta =
h->meta.FetchAnd(~(uint64_t{ClockHandle::kStateVisibleBit}
<< ClockHandle::kStateShift));
// Apply update to local copy
old_meta &= ~(uint64_t{ClockHandle::kStateVisibleBit}
<< ClockHandle::kStateShift);
for (;;) {
uint64_t refcount = GetRefcount(old_meta);
assert(refcount > 0);
if (refcount > 1) {
// Not last ref at some point in time during this Erase call
// Pretend we never took the reference
Unref(*h);
break;
} else if (h->meta.CasWeak(
old_meta, uint64_t{ClockHandle::kStateConstruction}
<< ClockHandle::kStateShift)) {
// Took ownership
assert(hashed_key == h->hashed_key);
size_t total_charge = h->GetTotalCharge();
FreeDataMarkEmpty(*h, allocator_);
ReclaimEntryUsage(total_charge);
// We already have a copy of hashed_key in this case, so OK to
// delay Rollback until after releasing the entry
Rollback(hashed_key, h);
break;
}
}
} else {
// Mismatch. Pretend we never took the reference
Unref(*h);
}
} else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
ClockHandle::kStateInvisible)) {
// Pretend we never took the reference
Unref(*h);
} else {
// For other states, incrementing the acquire counter has no effect
// so we don't need to undo it.
}
return false;
},
[&](HandleImpl* h) { return h->displacements.LoadRelaxed() == 0; },
[&](HandleImpl* /*h*/, bool /*is_last*/) {});
}
void FixedHyperClockTable::EraseUnRefEntries() {
for (size_t i = 0; i <= this->length_bits_mask_; i++) {
HandleImpl& h = array_[i];
uint64_t old_meta = h.meta.LoadRelaxed();
if (old_meta & (uint64_t{ClockHandle::kStateShareableBit}
<< ClockHandle::kStateShift) &&
GetRefcount(old_meta) == 0 &&
h.meta.CasStrong(old_meta, uint64_t{ClockHandle::kStateConstruction}
<< ClockHandle::kStateShift)) {
// Took ownership
size_t total_charge = h.GetTotalCharge();
Rollback(h.hashed_key, &h);
FreeDataMarkEmpty(h, allocator_);
ReclaimEntryUsage(total_charge);
}
}
}
template <typename MatchFn, typename AbortFn, typename UpdateFn>
inline FixedHyperClockTable::HandleImpl* FixedHyperClockTable::FindSlot(
const UniqueId64x2& hashed_key, const MatchFn& match_fn,
const AbortFn& abort_fn, const UpdateFn& update_fn) {
// NOTE: upper 32 bits of hashed_key[0] is used for sharding
//
// We use double-hashing probing. Every probe in the sequence is a
// pseudorandom integer, computed as a linear function of two random hashes,
// which we call base and increment. Specifically, the i-th probe is base + i
// * increment modulo the table size.
size_t base = static_cast<size_t>(hashed_key[1]);
// We use an odd increment, which is relatively prime with the power-of-two
// table size. This implies that we cycle back to the first probe only
// after probing every slot exactly once.
// TODO: we could also reconsider linear probing, though locality benefits
// are limited because each slot is a full cache line
size_t increment = static_cast<size_t>(hashed_key[0]) | 1U;
size_t first = ModTableSize(base);
size_t current = first;
bool is_last;
do {
HandleImpl* h = &array_[current];
if (match_fn(h)) {
return h;
}
if (abort_fn(h)) {
return nullptr;
}
current = ModTableSize(current + increment);
is_last = current == first;
update_fn(h, is_last);
} while (!is_last);
// We looped back.
return nullptr;
}
inline void FixedHyperClockTable::Rollback(const UniqueId64x2& hashed_key,
const HandleImpl* h) {
size_t current = ModTableSize(hashed_key[1]);
size_t increment = static_cast<size_t>(hashed_key[0]) | 1U;
while (&array_[current] != h) {
array_[current].displacements.FetchSubRelaxed(1);
current = ModTableSize(current + increment);
}
}
inline void FixedHyperClockTable::ReclaimEntryUsage(size_t total_charge) {
auto old_occupancy = occupancy_.FetchSub(1U);
(void)old_occupancy;
// No underflow
assert(old_occupancy > 0);
auto old_usage = usage_.FetchSubRelaxed(total_charge);
(void)old_usage;
// No underflow
assert(old_usage >= total_charge);
}
inline void FixedHyperClockTable::Evict(size_t requested_charge, InsertState&,
EvictionData* data,
uint32_t eviction_effort_cap) {
// precondition
assert(requested_charge > 0);
// TODO: make a tuning parameter?
constexpr size_t step_size = 4;
// First (concurrent) increment clock pointer
uint64_t old_clock_pointer = clock_pointer_.FetchAddRelaxed(step_size);
// Cap the eviction effort at this thread (along with those operating in
// parallel) circling through the whole structure kMaxCountdown times.
// In other words, this eviction run must find something/anything that is
// unreferenced at start of and during the eviction run that isn't reclaimed
// by a concurrent eviction run.
uint64_t max_clock_pointer =
old_clock_pointer + (ClockHandle::kMaxCountdown << length_bits_);
for (;;) {
for (size_t i = 0; i < step_size; i++) {
HandleImpl& h = array_[ModTableSize(Lower32of64(old_clock_pointer + i))];
bool evicting = ClockUpdate(h, data);
if (evicting) {
Rollback(h.hashed_key, &h);
TrackAndReleaseEvictedEntry(&h);
}
}
// Loop exit condition
if (data->freed_charge >= requested_charge) {
return;
}
if (old_clock_pointer >= max_clock_pointer) {
return;
}
if (IsEvictionEffortExceeded(*data, eviction_effort_cap)) {
eviction_effort_exceeded_count_.FetchAddRelaxed(1);
return;
}
// Advance clock pointer (concurrently)
old_clock_pointer = clock_pointer_.FetchAddRelaxed(step_size);
}
}
template <class Table>
ClockCacheShard<Table>::ClockCacheShard(
size_t capacity, bool strict_capacity_limit,
CacheMetadataChargePolicy metadata_charge_policy,
MemoryAllocator* allocator,
const Cache::EvictionCallback* eviction_callback, const uint32_t* hash_seed,
const typename Table::Opts& opts)
: CacheShardBase(metadata_charge_policy),
table_(capacity, metadata_charge_policy, allocator, eviction_callback,
hash_seed, opts),
capacity_(capacity),
eec_and_scl_(SanitizeEncodeEecAndScl(opts.eviction_effort_cap,
strict_capacity_limit)) {
// Initial charge metadata should not exceed capacity
assert(table_.GetUsage() <= capacity_.LoadRelaxed() ||
capacity_.LoadRelaxed() < sizeof(HandleImpl));
}
template <class Table>
void ClockCacheShard<Table>::EraseUnRefEntries() {
table_.EraseUnRefEntries();
}
template <class Table>
void ClockCacheShard<Table>::ApplyToSomeEntries(
const std::function<void(const Slice& key, Cache::ObjectPtr value,
size_t charge,
const Cache::CacheItemHelper* helper)>& callback,
size_t average_entries_per_lock, size_t* state) {
// The state will be a simple index into the table. Even with a dynamic
// hyper clock cache, entries will generally stay in their existing
// slots, so we don't need to be aware of the high-level organization
// that makes lookup efficient.
size_t length = table_.GetTableSize();
assert(average_entries_per_lock > 0);
size_t index_begin = *state;
size_t index_end = index_begin + average_entries_per_lock;
if (index_end >= length) {
// Going to end.
index_end = length;
*state = SIZE_MAX;
} else {
*state = index_end;
}
auto hash_seed = table_.GetHashSeed();
ConstApplyToEntriesRange(
[callback, hash_seed](const HandleImpl& h) {
UniqueId64x2 unhashed;
callback(ReverseHash(h.hashed_key, &unhashed, hash_seed), h.value,
h.GetTotalCharge(), h.helper);
},
table_.HandlePtr(index_begin), table_.HandlePtr(index_end), false);
}
int FixedHyperClockTable::CalcHashBits(
size_t capacity, size_t estimated_value_size,
CacheMetadataChargePolicy metadata_charge_policy) {
double average_slot_charge = estimated_value_size * kLoadFactor;
if (metadata_charge_policy == kFullChargeCacheMetadata) {
average_slot_charge += sizeof(HandleImpl);
}
assert(average_slot_charge > 0.0);
uint64_t num_slots =
static_cast<uint64_t>(capacity / average_slot_charge + 0.999999);
int hash_bits = FloorLog2((num_slots << 1) - 1);
if (metadata_charge_policy == kFullChargeCacheMetadata) {
// For very small estimated value sizes, it's possible to overshoot
while (hash_bits > 0 &&
uint64_t{sizeof(HandleImpl)} << hash_bits > capacity) {
hash_bits--;
}
}
return hash_bits;
}
template <class Table>
void ClockCacheShard<Table>::SetCapacity(size_t capacity) {
capacity_.StoreRelaxed(capacity);
// next Insert will take care of any necessary evictions
}
template <class Table>
void ClockCacheShard<Table>::SetStrictCapacityLimit(
bool strict_capacity_limit) {
if (strict_capacity_limit) {
eec_and_scl_.FetchOrRelaxed(kStrictCapacityLimitBit);
} else {
eec_and_scl_.FetchAndRelaxed(~kStrictCapacityLimitBit);
}
// next Insert will take care of any necessary evictions
}
template <class Table>
Status ClockCacheShard<Table>::Insert(const Slice& key,
const UniqueId64x2& hashed_key,
Cache::ObjectPtr value,
const Cache::CacheItemHelper* helper,
size_t charge, HandleImpl** handle,
Cache::Priority priority) {
if (UNLIKELY(key.size() != kCacheKeySize)) {
return Status::NotSupported("ClockCache only supports key size " +
std::to_string(kCacheKeySize) + "B");
}
ClockHandleBasicData proto;
proto.hashed_key = hashed_key;
proto.value = value;
proto.helper = helper;
proto.total_charge = charge;
return table_.template Insert<Table>(proto, handle, priority,
capacity_.LoadRelaxed(),
eec_and_scl_.LoadRelaxed());
}
template <class Table>
typename Table::HandleImpl* ClockCacheShard<Table>::CreateStandalone(
const Slice& key, const UniqueId64x2& hashed_key, Cache::ObjectPtr obj,
const Cache::CacheItemHelper* helper, size_t charge, bool allow_uncharged) {
if (UNLIKELY(key.size() != kCacheKeySize)) {
return nullptr;
}
ClockHandleBasicData proto;
proto.hashed_key = hashed_key;
proto.value = obj;
proto.helper = helper;
proto.total_charge = charge;
return table_.template CreateStandalone<Table>(proto, capacity_.LoadRelaxed(),
eec_and_scl_.LoadRelaxed(),
allow_uncharged);
}
template <class Table>
typename ClockCacheShard<Table>::HandleImpl* ClockCacheShard<Table>::Lookup(
const Slice& key, const UniqueId64x2& hashed_key) {
if (UNLIKELY(key.size() != kCacheKeySize)) {
return nullptr;
}
return table_.Lookup(hashed_key);
}
template <class Table>
bool ClockCacheShard<Table>::Ref(HandleImpl* h) {
if (h == nullptr) {
return false;
}
table_.Ref(*h);
return true;
}
template <class Table>
bool ClockCacheShard<Table>::Release(HandleImpl* handle, bool useful,
bool erase_if_last_ref) {
if (handle == nullptr) {
return false;
}
return table_.Release(handle, useful, erase_if_last_ref);
}
#ifndef NDEBUG
template <class Table>
void ClockCacheShard<Table>::TEST_RefN(HandleImpl* h, size_t n) {
table_.TEST_RefN(*h, n);
}
template <class Table>
void ClockCacheShard<Table>::TEST_ReleaseN(HandleImpl* h, size_t n) {
table_.TEST_ReleaseN(h, n);
}
#endif
template <class Table>
bool ClockCacheShard<Table>::Release(HandleImpl* handle,
bool erase_if_last_ref) {
return Release(handle, /*useful=*/true, erase_if_last_ref);
}
template <class Table>
void ClockCacheShard<Table>::Erase(const Slice& key,
const UniqueId64x2& hashed_key) {
if (UNLIKELY(key.size() != kCacheKeySize)) {
return;
}
table_.Erase(hashed_key);
}
template <class Table>
size_t ClockCacheShard<Table>::GetUsage() const {
return table_.GetUsage();
}
template <class Table>
size_t ClockCacheShard<Table>::GetStandaloneUsage() const {
return table_.GetStandaloneUsage();
}
template <class Table>
size_t ClockCacheShard<Table>::GetCapacity() const {
return capacity_.LoadRelaxed();
}
template <class Table>
size_t ClockCacheShard<Table>::GetPinnedUsage() const {
// Computes the pinned usage by scanning the whole hash table. This
// is slow, but avoids keeping an exact counter on the clock usage,
// i.e., the number of not externally referenced elements.
// Why avoid this counter? Because Lookup removes elements from the clock
// list, so it would need to update the pinned usage every time,
// which creates additional synchronization costs.
size_t table_pinned_usage = 0;
const bool charge_metadata =
metadata_charge_policy_ == kFullChargeCacheMetadata;
ConstApplyToEntriesRange(
[&table_pinned_usage, charge_metadata](const HandleImpl& h) {
uint64_t meta = h.meta.LoadRelaxed();
uint64_t refcount = GetRefcount(meta);
// Holding one ref for ConstApplyToEntriesRange
assert(refcount > 0);
if (refcount > 1) {
table_pinned_usage += h.GetTotalCharge();
if (charge_metadata) {
table_pinned_usage += sizeof(HandleImpl);
}
}
},
table_.HandlePtr(0), table_.HandlePtr(table_.GetTableSize()), true);
return table_pinned_usage + table_.GetStandaloneUsage();
}
template <class Table>
size_t ClockCacheShard<Table>::GetOccupancyCount() const {
return table_.GetOccupancy();
}
template <class Table>
size_t ClockCacheShard<Table>::GetOccupancyLimit() const {
return table_.GetOccupancyLimit();
}
template <class Table>
size_t ClockCacheShard<Table>::GetTableAddressCount() const {
return table_.GetTableSize();
}
// Explicit instantiation
template class ClockCacheShard<FixedHyperClockTable>;
template class ClockCacheShard<AutoHyperClockTable>;
template <class Table>
BaseHyperClockCache<Table>::BaseHyperClockCache(
const HyperClockCacheOptions& opts)
: ShardedCache<ClockCacheShard<Table>>(opts) {
// TODO: should not need to go through two levels of pointer indirection to
// get to table entries
size_t per_shard = this->GetPerShardCapacity();
MemoryAllocator* alloc = this->memory_allocator();
this->InitShards([&](Shard* cs) {
typename Table::Opts table_opts{opts};
new (cs) Shard(per_shard, opts.strict_capacity_limit,
opts.metadata_charge_policy, alloc,
&this->eviction_callback_, &this->hash_seed_, table_opts);
});
}
template <class Table>
Cache::ObjectPtr BaseHyperClockCache<Table>::Value(Handle* handle) {
return static_cast<const typename Table::HandleImpl*>(handle)->value;
}
template <class Table>
size_t BaseHyperClockCache<Table>::GetCharge(Handle* handle) const {
return static_cast<const typename Table::HandleImpl*>(handle)
->GetTotalCharge();
}
template <class Table>
const Cache::CacheItemHelper* BaseHyperClockCache<Table>::GetCacheItemHelper(
Handle* handle) const {
auto h = static_cast<const typename Table::HandleImpl*>(handle);
return h->helper;
}
template <class Table>
void BaseHyperClockCache<Table>::ApplyToHandle(
Cache* cache, Handle* handle,
const std::function<void(const Slice& key, Cache::ObjectPtr value,
size_t charge, const CacheItemHelper* helper)>&
callback) {
BaseHyperClockCache<Table>* cache_ptr =
static_cast<BaseHyperClockCache<Table>*>(cache);
auto h = static_cast<const typename Table::HandleImpl*>(handle);
UniqueId64x2 unhashed;
auto hash_seed = cache_ptr->GetShard(h->GetHash()).GetTable().GetHashSeed();
callback(
ClockCacheShard<Table>::ReverseHash(h->hashed_key, &unhashed, hash_seed),
h->value, h->GetTotalCharge(), h->helper);
}
namespace {
// For each cache shard, estimate what the table load factor would be if
// cache filled to capacity with average entries. This is considered
// indicative of a potential problem if the shard is essentially operating
// "at limit", which we define as high actual usage (>80% of capacity)
// or actual occupancy very close to limit (>95% of limit).
// Also, for each shard compute the recommended estimated_entry_charge,
// and keep the minimum one for use as overall recommendation.
void AddShardEvaluation(const FixedHyperClockCache::Shard& shard,
std::vector<double>& predicted_load_factors,
size_t& min_recommendation) {
size_t usage = shard.GetUsage() - shard.GetStandaloneUsage();
size_t capacity = shard.GetCapacity();
double usage_ratio = 1.0 * usage / capacity;
size_t occupancy = shard.GetOccupancyCount();
size_t occ_limit = shard.GetOccupancyLimit();
double occ_ratio = 1.0 * occupancy / occ_limit;
if (usage == 0 || occupancy == 0 || (usage_ratio < 0.8 && occ_ratio < 0.95)) {
// Skip as described above
return;
}
// If filled to capacity, what would the occupancy ratio be?
double ratio = occ_ratio / usage_ratio;
// Given max load factor, what that load factor be?
double lf = ratio * FixedHyperClockTable::kStrictLoadFactor;
predicted_load_factors.push_back(lf);
// Update min_recommendation also
size_t recommendation = usage / occupancy;
min_recommendation = std::min(min_recommendation, recommendation);
}
bool IsSlotOccupied(const ClockHandle& h) {
return (h.meta.LoadRelaxed() >> ClockHandle::kStateShift) != 0;
}
} // namespace
// NOTE: GCC might warn about subobject linkage if this is in anon namespace
template <size_t N = 500>
class LoadVarianceStats {
public:
std::string Report() const {
return "Overall " + PercentStr(positive_count_, samples_) + " (" +
std::to_string(positive_count_) + "/" + std::to_string(samples_) +
"), Min/Max/Window = " + PercentStr(min_, N) + "/" +
PercentStr(max_, N) + "/" + std::to_string(N) +
", MaxRun{Pos/Neg} = " + std::to_string(max_pos_run_) + "/" +
std::to_string(max_neg_run_);
}
void Add(bool positive) {
recent_[samples_ % N] = positive;
if (positive) {
++positive_count_;
++cur_pos_run_;
max_pos_run_ = std::max(max_pos_run_, cur_pos_run_);
cur_neg_run_ = 0;
} else {
++cur_neg_run_;
max_neg_run_ = std::max(max_neg_run_, cur_neg_run_);
cur_pos_run_ = 0;
}
++samples_;
if (samples_ >= N) {
size_t count_set = recent_.count();
max_ = std::max(max_, count_set);
min_ = std::min(min_, count_set);
}
}
private:
size_t max_ = 0;
size_t min_ = N;
size_t positive_count_ = 0;
size_t samples_ = 0;
size_t max_pos_run_ = 0;
size_t cur_pos_run_ = 0;
size_t max_neg_run_ = 0;
size_t cur_neg_run_ = 0;
std::bitset<N> recent_;
static std::string PercentStr(size_t a, size_t b) {
if (b == 0) {
return "??%";
} else {
return std::to_string(uint64_t{100} * a / b) + "%";
}
}
};
template <class Table>
void BaseHyperClockCache<Table>::ReportProblems(
const std::shared_ptr<Logger>& info_log) const {
if (info_log->GetInfoLogLevel() <= InfoLogLevel::DEBUG_LEVEL) {
LoadVarianceStats slot_stats;
uint64_t eviction_effort_exceeded_count = 0;
this->ForEachShard([&](const BaseHyperClockCache<Table>::Shard* shard) {
size_t count = shard->GetTableAddressCount();
for (size_t i = 0; i < count; ++i) {
slot_stats.Add(IsSlotOccupied(*shard->GetTable().HandlePtr(i)));
}
eviction_effort_exceeded_count +=
shard->GetTable().GetEvictionEffortExceededCount();
});
ROCKS_LOG_AT_LEVEL(info_log, InfoLogLevel::DEBUG_LEVEL,
"Slot occupancy stats: %s", slot_stats.Report().c_str());
ROCKS_LOG_AT_LEVEL(info_log, InfoLogLevel::DEBUG_LEVEL,
"Eviction effort exceeded: %" PRIu64,
eviction_effort_exceeded_count);
}
}
void FixedHyperClockCache::ReportProblems(
const std::shared_ptr<Logger>& info_log) const {
BaseHyperClockCache::ReportProblems(info_log);
uint32_t shard_count = GetNumShards();
std::vector<double> predicted_load_factors;
size_t min_recommendation = SIZE_MAX;
ForEachShard([&](const FixedHyperClockCache::Shard* shard) {
AddShardEvaluation(*shard, predicted_load_factors, min_recommendation);
});
if (predicted_load_factors.empty()) {
// None operating "at limit" -> nothing to report
return;
}
std::sort(predicted_load_factors.begin(), predicted_load_factors.end());
// First, if the average load factor is within spec, we aren't going to
// complain about a few shards being out of spec.
// NOTE: this is only the average among cache shards operating "at limit,"
// which should be representative of what we care about. It it normal, even
// desirable, for a cache to operate "at limit" so this should not create
// selection bias. See AddShardEvaluation().
// TODO: Consider detecting cases where decreasing the number of shards
// would be good, e.g. serious imbalance among shards.
double average_load_factor =
std::accumulate(predicted_load_factors.begin(),
predicted_load_factors.end(), 0.0) /
shard_count;
constexpr double kLowSpecLoadFactor = FixedHyperClockTable::kLoadFactor / 2;
constexpr double kMidSpecLoadFactor =
FixedHyperClockTable::kLoadFactor / 1.414;
if (average_load_factor > FixedHyperClockTable::kLoadFactor) {
// Out of spec => Consider reporting load factor too high
// Estimate effective overall capacity loss due to enforcing occupancy limit
double lost_portion = 0.0;
int over_count = 0;
for (double lf : predicted_load_factors) {
if (lf > FixedHyperClockTable::kStrictLoadFactor) {
++over_count;
lost_portion +=
(lf - FixedHyperClockTable::kStrictLoadFactor) / lf / shard_count;
}
}
// >= 20% loss -> error
// >= 10% loss -> consistent warning
// >= 1% loss -> intermittent warning
InfoLogLevel level = InfoLogLevel::INFO_LEVEL;
bool report = true;
if (lost_portion > 0.2) {
level = InfoLogLevel::ERROR_LEVEL;
} else if (lost_portion > 0.1) {
level = InfoLogLevel::WARN_LEVEL;
} else if (lost_portion > 0.01) {
int report_percent = static_cast<int>(lost_portion * 100.0);
if (Random::GetTLSInstance()->PercentTrue(report_percent)) {
level = InfoLogLevel::WARN_LEVEL;
}
} else {
// don't report
report = false;
}
if (report) {
ROCKS_LOG_AT_LEVEL(
info_log, level,
"FixedHyperClockCache@%p unable to use estimated %.1f%% capacity "
"because of full occupancy in %d/%u cache shards "
"(estimated_entry_charge too high). "
"Recommend estimated_entry_charge=%zu",
this, lost_portion * 100.0, over_count, (unsigned)shard_count,
min_recommendation);
}
} else if (average_load_factor < kLowSpecLoadFactor) {
// Out of spec => Consider reporting load factor too low
// But cautiously because low is not as big of a problem.
// Only report if highest occupancy shard is also below
// spec and only if average is substantially out of spec
if (predicted_load_factors.back() < kLowSpecLoadFactor &&
average_load_factor < kLowSpecLoadFactor / 1.414) {
InfoLogLevel level = InfoLogLevel::INFO_LEVEL;
if (average_load_factor < kLowSpecLoadFactor / 2) {
level = InfoLogLevel::WARN_LEVEL;
}
ROCKS_LOG_AT_LEVEL(
info_log, level,
"FixedHyperClockCache@%p table has low occupancy at full capacity. "
"Higher estimated_entry_charge (about %.1fx) would likely improve "
"performance. Recommend estimated_entry_charge=%zu",
this, kMidSpecLoadFactor / average_load_factor, min_recommendation);
}
}
}
// =======================================================================
// AutoHyperClockCache
// =======================================================================
// See AutoHyperClockTable::length_info_ etc. for how the linear hashing
// metadata is encoded. Here are some example values:
//
// Used length | min shift | threshold | max shift
// 2 | 1 | 0 | 1
// 3 | 1 | 1 | 2
// 4 | 2 | 0 | 2
// 5 | 2 | 1 | 3
// 6 | 2 | 2 | 3
// 7 | 2 | 3 | 3
// 8 | 3 | 0 | 3
// 9 | 3 | 1 | 4
// ...
// Note:
// * min shift = floor(log2(used length))
// * max shift = ceil(log2(used length))
// * used length == (1 << shift) + threshold
// Also, shift=0 is never used in practice, so is reserved for "unset"
namespace {
inline int LengthInfoToMinShift(uint64_t length_info) {
int mask_shift = BitwiseAnd(length_info, int{255});
assert(mask_shift <= 63);
assert(mask_shift > 0);
return mask_shift;
}
inline size_t LengthInfoToThreshold(uint64_t length_info) {
return static_cast<size_t>(length_info >> 8);
}
inline size_t LengthInfoToUsedLength(uint64_t length_info) {
size_t threshold = LengthInfoToThreshold(length_info);
int shift = LengthInfoToMinShift(length_info);
assert(threshold < (size_t{1} << shift));
size_t used_length = (size_t{1} << shift) + threshold;
assert(used_length >= 2);
return used_length;
}
inline uint64_t UsedLengthToLengthInfo(size_t used_length) {
assert(used_length >= 2);
int shift = FloorLog2(used_length);
uint64_t threshold = BottomNBits(used_length, shift);
uint64_t length_info =
(uint64_t{threshold} << 8) + static_cast<uint64_t>(shift);
assert(LengthInfoToUsedLength(length_info) == used_length);
assert(LengthInfoToMinShift(length_info) == shift);
assert(LengthInfoToThreshold(length_info) == threshold);
return length_info;
}
inline size_t GetStartingLength(size_t capacity) {
if (capacity > port::kPageSize) {
// Start with one memory page
return port::kPageSize / sizeof(AutoHyperClockTable::HandleImpl);
} else {
// Mostly to make unit tests happy
return 4;
}
}
inline size_t GetHomeIndex(uint64_t hash, int shift) {
return static_cast<size_t>(BottomNBits(hash, shift));
}
inline void GetHomeIndexAndShift(uint64_t length_info, uint64_t hash,
size_t* home, int* shift) {
int min_shift = LengthInfoToMinShift(length_info);
size_t threshold = LengthInfoToThreshold(length_info);
bool extra_shift = GetHomeIndex(hash, min_shift) < threshold;
*home = GetHomeIndex(hash, min_shift + extra_shift);
*shift = min_shift + extra_shift;
assert(*home < LengthInfoToUsedLength(length_info));
}
inline int GetShiftFromNextWithShift(uint64_t next_with_shift) {
return BitwiseAnd(next_with_shift,
AutoHyperClockTable::HandleImpl::kShiftMask);
}
inline size_t GetNextFromNextWithShift(uint64_t next_with_shift) {
return static_cast<size_t>(next_with_shift >>
AutoHyperClockTable::HandleImpl::kNextShift);
}
inline uint64_t MakeNextWithShift(size_t next, int shift) {
return (uint64_t{next} << AutoHyperClockTable::HandleImpl::kNextShift) |
static_cast<uint64_t>(shift);
}
inline uint64_t MakeNextWithShiftEnd(size_t head, int shift) {
return AutoHyperClockTable::HandleImpl::kNextEndFlags |
MakeNextWithShift(head, shift);
}
// Helper function for Lookup
inline bool MatchAndRef(const UniqueId64x2* hashed_key, const ClockHandle& h,
int shift = 0, size_t home = 0,
bool* full_match_or_unknown = nullptr) {
// Must be at least something to match
assert(hashed_key || shift > 0);
uint64_t old_meta;
// (Optimistically) increment acquire counter.
old_meta = h.meta.FetchAdd(ClockHandle::kAcquireIncrement);
// Check if it's a referencable (sharable) entry
if ((old_meta & (uint64_t{ClockHandle::kStateShareableBit}
<< ClockHandle::kStateShift)) == 0) {
// For non-sharable states, incrementing the acquire counter has no effect
// so we don't need to undo it. Furthermore, we cannot safely undo
// it because we did not acquire a read reference to lock the
// entry in a Shareable state.
if (full_match_or_unknown) {
*full_match_or_unknown = true;
}
return false;
}
// Else acquired a read reference
assert(GetRefcount(old_meta + ClockHandle::kAcquireIncrement) > 0);
if (hashed_key && h.hashed_key == *hashed_key &&
LIKELY(old_meta & (uint64_t{ClockHandle::kStateVisibleBit}
<< ClockHandle::kStateShift))) {
// Match on full key, visible
if (full_match_or_unknown) {
*full_match_or_unknown = true;
}
return true;
} else if (shift > 0 && home == BottomNBits(h.hashed_key[1], shift)) {
// NOTE: upper 32 bits of hashed_key[0] is used for sharding
// Match on home address, possibly invisible
if (full_match_or_unknown) {
*full_match_or_unknown = false;
}
return true;
} else {
// Mismatch. Pretend we never took the reference
Unref(h);
if (full_match_or_unknown) {
*full_match_or_unknown = false;
}
return false;
}
}
// Assumes a chain rewrite lock prevents concurrent modification of
// these chain pointers
void UpgradeShiftsOnRange(AutoHyperClockTable::HandleImpl* arr,
size_t& frontier, uint64_t stop_before_or_new_tail,
int old_shift, int new_shift) {
assert(frontier != SIZE_MAX);
assert(new_shift == old_shift + 1);
(void)old_shift;
(void)new_shift;
using HandleImpl = AutoHyperClockTable::HandleImpl;
for (;;) {
uint64_t next_with_shift = arr[frontier].chain_next_with_shift.Load();
assert(GetShiftFromNextWithShift(next_with_shift) == old_shift);
if (next_with_shift == stop_before_or_new_tail) {
// Stopping at entry with pointer matching "stop before"
assert(!HandleImpl::IsEnd(next_with_shift));
return;
}
if (HandleImpl::IsEnd(next_with_shift)) {
// Also update tail to new tail
assert(HandleImpl::IsEnd(stop_before_or_new_tail));
arr[frontier].chain_next_with_shift.Store(stop_before_or_new_tail);
// Mark nothing left to upgrade
frontier = SIZE_MAX;
return;
}
// Next is another entry to process, so upgrade and advance frontier
arr[frontier].chain_next_with_shift.FetchAdd(1U);
assert(GetShiftFromNextWithShift(next_with_shift + 1) == new_shift);
frontier = GetNextFromNextWithShift(next_with_shift);
}
}
size_t CalcOccupancyLimit(size_t used_length) {
return static_cast<size_t>(used_length * AutoHyperClockTable::kMaxLoadFactor +
0.999);
}
} // namespace
// An RAII wrapper for locking a chain of entries (flag bit on the head)
// so that there is only one thread allowed to remove entries from the
// chain, or to rewrite it by splitting for Grow. Without the lock,
// all lookups and insertions at the head can proceed wait-free.
// The class also provides functions for safely manipulating the head pointer
// while holding the lock--or wanting to should it become non-empty.
//
// The flag bits on the head are such that the head cannot be locked if it
// is an empty chain, so that a "blind" FetchOr will try to lock a non-empty
// chain but have no effect on an empty chain. When a potential rewrite
// operation see an empty head pointer, there is no need to lock as the
// operation is a no-op. However, there are some cases such as CAS-update
// where locking might be required after initially not being needed, if the
// operation is forced to revisit the head pointer.
class AutoHyperClockTable::ChainRewriteLock {
public:
using HandleImpl = AutoHyperClockTable::HandleImpl;
// Acquire lock if head of h is not an end
explicit ChainRewriteLock(HandleImpl* h, RelaxedAtomic<uint64_t>& yield_count)
: head_ptr_(&h->head_next_with_shift) {
Acquire(yield_count);
}
// RAII wrap existing lock held (or end)
explicit ChainRewriteLock(HandleImpl* h,
RelaxedAtomic<uint64_t>& /*yield_count*/,
uint64_t already_locked_or_end)
: head_ptr_(&h->head_next_with_shift) {
saved_head_ = already_locked_or_end;
// already locked or end
assert(saved_head_ & HandleImpl::kHeadLocked);
}
~ChainRewriteLock() {
if (!IsEnd()) {
// Release lock
uint64_t old = head_ptr_->FetchAnd(~HandleImpl::kHeadLocked);
(void)old;
assert((old & HandleImpl::kNextEndFlags) == HandleImpl::kHeadLocked);
}
}
void Reset(HandleImpl* h, RelaxedAtomic<uint64_t>& yield_count) {
this->~ChainRewriteLock();
new (this) ChainRewriteLock(h, yield_count);
}
// Expected current state, assuming no parallel updates.
uint64_t GetSavedHead() const { return saved_head_; }
bool CasUpdate(uint64_t next_with_shift,
RelaxedAtomic<uint64_t>& yield_count) {
uint64_t new_head = next_with_shift | HandleImpl::kHeadLocked;
uint64_t expected = GetSavedHead();
bool success = head_ptr_->CasStrong(expected, new_head);
if (success) {
// Ensure IsEnd() is kept up-to-date, including for dtor
saved_head_ = new_head;
} else {
// Parallel update to head, such as Insert()
if (IsEnd()) {
// Didn't previously hold a lock
if (HandleImpl::IsEnd(expected)) {
// Still don't need to
saved_head_ = expected;
} else {
// Need to acquire lock before proceeding
Acquire(yield_count);
}
} else {
// Parallel update must preserve our lock
assert((expected & HandleImpl::kNextEndFlags) ==
HandleImpl::kHeadLocked);
saved_head_ = expected;
}
}
return success;
}
bool IsEnd() const { return HandleImpl::IsEnd(saved_head_); }
private:
void Acquire(RelaxedAtomic<uint64_t>& yield_count) {
for (;;) {
// Acquire removal lock on the chain
uint64_t old_head = head_ptr_->FetchOr(HandleImpl::kHeadLocked);
if ((old_head & HandleImpl::kNextEndFlags) != HandleImpl::kHeadLocked) {
// Either acquired the lock or lock not needed (end)
assert((old_head & HandleImpl::kNextEndFlags) == 0 ||
(old_head & HandleImpl::kNextEndFlags) ==
HandleImpl::kNextEndFlags);
saved_head_ = old_head | HandleImpl::kHeadLocked;
break;
}
// NOTE: one of the few yield-wait loops, which is rare enough in practice
// for its performance to be insignificant. (E.g. using C++20 atomic
// wait/notify would likely be worse because of wasted notify costs.)
yield_count.FetchAddRelaxed(1);
std::this_thread::yield();
}
}
AcqRelAtomic<uint64_t>* head_ptr_;
uint64_t saved_head_;
};
AutoHyperClockTable::AutoHyperClockTable(
size_t capacity, CacheMetadataChargePolicy metadata_charge_policy,
MemoryAllocator* allocator,
const Cache::EvictionCallback* eviction_callback, const uint32_t* hash_seed,
const Opts& opts)
: BaseClockTable(metadata_charge_policy, allocator, eviction_callback,
hash_seed),
array_(MemMapping::AllocateLazyZeroed(
sizeof(HandleImpl) * CalcMaxUsableLength(capacity,
opts.min_avg_value_size,
metadata_charge_policy))),
length_info_(UsedLengthToLengthInfo(GetStartingLength(capacity))),
occupancy_limit_(
CalcOccupancyLimit(LengthInfoToUsedLength(length_info_.Load()))),
grow_frontier_(GetTableSize()),
clock_pointer_mask_(
BottomNBits(UINT64_MAX, LengthInfoToMinShift(length_info_.Load()))) {
if (metadata_charge_policy ==
CacheMetadataChargePolicy::kFullChargeCacheMetadata) {
// NOTE: ignoring page boundaries for simplicity
usage_.FetchAddRelaxed(size_t{GetTableSize()} * sizeof(HandleImpl));
}
static_assert(sizeof(HandleImpl) == 64U,
"Expecting size / alignment with common cache line size");
// Populate head pointers
uint64_t length_info = length_info_.Load();
int min_shift = LengthInfoToMinShift(length_info);
int max_shift = min_shift + 1;
size_t major = uint64_t{1} << min_shift;
size_t used_length = GetTableSize();
assert(major <= used_length);
assert(used_length <= major * 2);
// Initialize the initial usable set of slots. This slightly odd iteration
// order makes it easier to get the correct shift amount on each head.
for (size_t i = 0; i < major; ++i) {
#ifndef NDEBUG
int shift;
size_t home;
#endif
if (major + i < used_length) {
array_[i].head_next_with_shift.StoreRelaxed(
MakeNextWithShiftEnd(i, max_shift));
array_[major + i].head_next_with_shift.StoreRelaxed(
MakeNextWithShiftEnd(major + i, max_shift));
#ifndef NDEBUG // Extra invariant checking
GetHomeIndexAndShift(length_info, i, &home, &shift);
assert(home == i);
assert(shift == max_shift);
GetHomeIndexAndShift(length_info, major + i, &home, &shift);
assert(home == major + i);
assert(shift == max_shift);
#endif
} else {
array_[i].head_next_with_shift.StoreRelaxed(
MakeNextWithShiftEnd(i, min_shift));
#ifndef NDEBUG // Extra invariant checking
GetHomeIndexAndShift(length_info, i, &home, &shift);
assert(home == i);
assert(shift == min_shift);
GetHomeIndexAndShift(length_info, major + i, &home, &shift);
assert(home == i);
assert(shift == min_shift);
#endif
}
}
}
AutoHyperClockTable::~AutoHyperClockTable() {
// As usual, destructor assumes there are no references or active operations
// on any slot/element in the table.
// It's possible that there were not enough Insert() after final concurrent
// Grow to ensure length_info_ (published GetTableSize()) is fully up to
// date. Probe for first unused slot to ensure we see the whole structure.
size_t used_end = GetTableSize();
while (used_end < array_.Count() &&
array_[used_end].head_next_with_shift.LoadRelaxed() !=
HandleImpl::kUnusedMarker) {
used_end++;
}
#ifndef NDEBUG
for (size_t i = used_end; i < array_.Count(); i++) {
assert(array_[i].head_next_with_shift.LoadRelaxed() == 0);
assert(array_[i].chain_next_with_shift.LoadRelaxed() == 0);
assert(array_[i].meta.LoadRelaxed() == 0);
}
std::vector<bool> was_populated(used_end);
std::vector<bool> was_pointed_to(used_end);
#endif
for (size_t i = 0; i < used_end; i++) {
HandleImpl& h = array_[i];
switch (h.meta.LoadRelaxed() >> ClockHandle::kStateShift) {
case ClockHandle::kStateEmpty:
// noop
break;
case ClockHandle::kStateInvisible: // rare but possible
case ClockHandle::kStateVisible:
assert(GetRefcount(h.meta.LoadRelaxed()) == 0);
h.FreeData(allocator_);
#ifndef NDEBUG // Extra invariant checking
usage_.FetchSubRelaxed(h.total_charge);
occupancy_.FetchSubRelaxed(1U);
was_populated[i] = true;
if (!HandleImpl::IsEnd(h.chain_next_with_shift.LoadRelaxed())) {
assert((h.chain_next_with_shift.LoadRelaxed() &
HandleImpl::kHeadLocked) == 0);
size_t next =
GetNextFromNextWithShift(h.chain_next_with_shift.LoadRelaxed());
assert(!was_pointed_to[next]);
was_pointed_to[next] = true;
}
#endif
break;
// otherwise
default:
assert(false);
break;
}
#ifndef NDEBUG // Extra invariant checking
if (!HandleImpl::IsEnd(h.head_next_with_shift.LoadRelaxed())) {
size_t next =
GetNextFromNextWithShift(h.head_next_with_shift.LoadRelaxed());
assert(!was_pointed_to[next]);
was_pointed_to[next] = true;
}
#endif
}
#ifndef NDEBUG // Extra invariant checking
// This check is not perfect, but should detect most reasonable cases
// of abandonned or floating entries, etc. (A floating cycle would not
// be reported as bad.)
for (size_t i = 0; i < used_end; i++) {
if (was_populated[i]) {
assert(was_pointed_to[i]);
} else {
assert(!was_pointed_to[i]);
}
}
#endif
// Metadata charging only follows the published table size
assert(usage_.LoadRelaxed() == 0 ||
usage_.LoadRelaxed() == GetTableSize() * sizeof(HandleImpl));
assert(occupancy_.LoadRelaxed() == 0);
}
size_t AutoHyperClockTable::GetTableSize() const {
return LengthInfoToUsedLength(length_info_.Load());
}
size_t AutoHyperClockTable::GetOccupancyLimit() const {
return occupancy_limit_.LoadRelaxed();
}
void AutoHyperClockTable::StartInsert(InsertState& state) {
state.saved_length_info = length_info_.Load();
}
// Because we have linked lists, bugs or even hardware errors can make it
// possible to create a cycle, which would lead to infinite loop.
// Furthermore, when we have retry cases in the code, we want to be sure
// these are not (and do not become) spin-wait loops. Given the assumption
// of quality hashing and the infeasibility of consistently recurring
// concurrent modifications to an entry or chain, we can safely bound the
// number of loop iterations in feasible operation, whether following chain
// pointers or retrying with some backtracking. A smaller limit is used for
// stress testing, to detect potential issues such as cycles or spin-waits,
// and a larger limit is used to break cycles should they occur in production.
#define CHECK_TOO_MANY_ITERATIONS(i) \
{ \
assert(i < 768); \
if (UNLIKELY(i >= 4096)) { \
std::terminate(); \
} \
}
bool AutoHyperClockTable::GrowIfNeeded(size_t new_occupancy,
InsertState& state) {
// new_occupancy has taken into account other threads that are also trying
// to insert, so as soon as we see sufficient *published* usable size, we
// can declare success even if we aren't the one that grows the table.
// However, there's an awkward state where other threads own growing the
// table to sufficient usable size, but the udpated size is not yet
// published. If we wait, then that likely slows the ramp-up cache
// performance. If we unblock ourselves by ensuring we grow by at least one
// slot, we could technically overshoot required size by number of parallel
// threads accessing block cache. On balance considering typical cases and
// the modest consequences of table being slightly too large, the latter
// seems preferable.
//
// So if the published occupancy limit is too small, we unblock ourselves
// by committing to growing the table by at least one slot. Also note that
// we might need to grow more than once to actually increase the occupancy
// limit (due to max load factor < 1.0)
while (UNLIKELY(new_occupancy > occupancy_limit_.LoadRelaxed())) {
// At this point we commit the thread to growing unless we've reached the
// limit (returns false).
if (!Grow(state)) {
return false;
}
}
// Success (didn't need to grow, or did successfully)
return true;
}
bool AutoHyperClockTable::Grow(InsertState& state) {
// Allocate the next grow slot
size_t grow_home = grow_frontier_.FetchAddRelaxed(1);
if (grow_home >= array_.Count()) {
// Can't grow any more.
// (Tested by unit test ClockCacheTest/Limits)
// Make sure we don't overflow grow_frontier_ by reaching here repeatedly
grow_frontier_.StoreRelaxed(array_.Count());
return false;
}
#ifdef COERCE_CONTEXT_SWITCH
// This is useful in reproducing concurrency issues in Grow()
while (Random::GetTLSInstance()->OneIn(2)) {
std::this_thread::yield();
}
#endif
// Basically, to implement https://en.wikipedia.org/wiki/Linear_hashing
// entries that belong in a new chain starting at grow_home will be
// split off from the chain starting at old_home, which is computed here.
int old_shift = FloorLog2(grow_home);
size_t old_home = BottomNBits(grow_home, old_shift);
assert(old_home + (size_t{1} << old_shift) == grow_home);
// Wait here to ensure any Grow operations that would directly feed into
// this one are finished, though the full waiting actually completes in
// acquiring the rewrite lock for old_home in SplitForGrow. Here we ensure
// the expected shift amount has been reached, and there we ensure the
// chain rewrite lock has been released.
size_t old_old_home = BottomNBits(grow_home, old_shift - 1);
for (;;) {
uint64_t old_old_head = array_[old_old_home].head_next_with_shift.Load();
if (GetShiftFromNextWithShift(old_old_head) >= old_shift) {
if ((old_old_head & HandleImpl::kNextEndFlags) !=
HandleImpl::kHeadLocked) {
break;
}
}
// NOTE: one of the few yield-wait loops, which is rare enough in practice
// for its performance to be insignificant.
yield_count_.FetchAddRelaxed(1);
std::this_thread::yield();
}
// Do the dirty work of splitting the chain, including updating heads and
// chain nexts for new shift amounts.
SplitForGrow(grow_home, old_home, old_shift);
// length_info_ can be updated any time after the new shift amount is
// published to both heads, potentially before the end of SplitForGrow.
// But we also can't update length_info_ until the previous Grow operation
// (with grow_home := this grow_home - 1) has published the new shift amount
// to both of its heads. However, we don't want to artificially wait here
// on that Grow that is otherwise irrelevant.
//
// We could have each Grow operation advance length_info_ here as far as it
// can without waiting, by checking for updated shift on the corresponding
// old home and also stopping at an empty head value for possible grow_home.
// However, this could increase CPU cache line sharing and in 1/64 cases
// bring in an extra page from our mmap.
//
// Instead, part of the strategy is delegated to DoInsert():
// * Here we try to bring length_info_ up to date with this grow_home as
// much as we can without waiting. It will fall short if a previous Grow
// is still between reserving the grow slot and making the first big step
// to publish the new shift amount.
// * To avoid length_info_ being perpetually out-of-date (for a small number
// of heads) after our last Grow, we do the same when Insert has to "fall
// forward" due to length_info_ being out-of-date.
CatchUpLengthInfoNoWait(grow_home);
// See usage in DoInsert()
state.likely_empty_slot = grow_home;
// Success
return true;
}
// See call in Grow()
void AutoHyperClockTable::CatchUpLengthInfoNoWait(
size_t known_usable_grow_home) {
uint64_t current_length_info = length_info_.Load();
size_t published_usable_size = LengthInfoToUsedLength(current_length_info);
while (published_usable_size <= known_usable_grow_home) {
// For when published_usable_size was grow_home
size_t next_usable_size = published_usable_size + 1;
uint64_t next_length_info = UsedLengthToLengthInfo(next_usable_size);
// known_usable_grow_home is known to be ready for Lookup/Insert with
// the new shift amount, but between that and published usable size, we
// need to check.
if (published_usable_size < known_usable_grow_home) {
int old_shift = FloorLog2(next_usable_size - 1);
size_t old_home = BottomNBits(published_usable_size, old_shift);
int shift = GetShiftFromNextWithShift(
array_[old_home].head_next_with_shift.Load());
if (shift <= old_shift) {
// Not ready
break;
}
}
// CAS update length_info_. This only moves in one direction, so if CAS
// fails, someone else made progress like we are trying, and we can just
// pick up the new value and keep going as appropriate.
if (length_info_.CasStrong(current_length_info, next_length_info)) {
current_length_info = next_length_info;
// Update usage_ if metadata charge policy calls for it
if (metadata_charge_policy_ ==
CacheMetadataChargePolicy::kFullChargeCacheMetadata) {
// NOTE: ignoring page boundaries for simplicity
usage_.FetchAddRelaxed(sizeof(HandleImpl));
}
}
published_usable_size = LengthInfoToUsedLength(current_length_info);
}
// After updating lengh_info_ we can update occupancy_limit_,
// allowing for later operations to update it before us.
// Note: there is no AcqRelAtomic max operation, so we have to use a CAS loop
size_t old_occupancy_limit = occupancy_limit_.LoadRelaxed();
size_t new_occupancy_limit = CalcOccupancyLimit(published_usable_size);
while (old_occupancy_limit < new_occupancy_limit) {
if (occupancy_limit_.CasWeakRelaxed(old_occupancy_limit,
new_occupancy_limit)) {
break;
}
}
}
void AutoHyperClockTable::SplitForGrow(size_t grow_home, size_t old_home,
int old_shift) {
int new_shift = old_shift + 1;
HandleImpl* const arr = array_.Get();
// We implement a somewhat complicated splitting algorithm to ensure that
// entries are always wait-free visible to Lookup, without Lookup needing
// to double-check length_info_ to ensure every potentially relevant
// existing entry is seen. This works step-by-step, carefully sharing
// unmigrated parts of the chain between the source chain and the new
// destination chain. This means that Lookup might see a partially migrated
// chain so has to take that into consideration when checking that it hasn't
// "jumped off" its intended chain (due to a parallel modification to an
// "under (de)construction" entry that was found on the chain but has
// been reassigned).
//
// We use a "rewrite lock" on the source and desination chains to exclude
// removals from those, and we have a prior waiting step that ensures any Grow
// operations feeding into this one have completed. But this process does have
// to gracefully handle concurrent insertions to the head of the source chain,
// and once marked ready, the destination chain.
//
// With those considerations, the migration starts with one "big step,"
// potentially with retries to deal with insertions in parallel. Part of the
// big step is to mark the two chain heads as updated with the new shift
// amount, which redirects Lookups to the appropriate new chain.
//
// After that big step that updates the heads, the rewrite lock makes it
// relatively easy to deal with the rest of the migration. Big
// simplifications come from being able to read the hashed_key of each
// entry on the chain without needing to hold a read reference, and
// from never "jumping our to another chain." Concurrent insertions only
// happen at the chain head, which is outside of what is left to migrate.
//
// A series of smaller steps finishes splitting apart the existing chain into
// two distinct chains, followed by some steps to fully commit the result.
//
// Except for trivial cases in which all entries (or remaining entries)
// on the input chain go to one output chain, there is an important invariant
// after each step of migration, including after the initial "big step":
// For each output chain, the "zero chain" (new hash bit is zero) and the
// "one chain" (new hash bit is one) we have a "frontier" entry marking the
// boundary between what has been migrated and what has not. One of the
// frontiers is along the old chain after the other, and all entries between
// them are for the same target chain as the earlier frontier. Thus, the
// chains share linked list tails starting at the latter frontier. All
// pointers from the new head locations to the frontier entries are marked
// with the new shift amount, while all pointers after the frontiers use the
// old shift amount.
//
// And after each step there is a strengthening step to reach a stronger
// invariant: the frontier earlier in the original chain is advanced to be
// immediately before the other frontier.
//
// Consider this original input chain,
//
// OldHome -Old-> A0 -Old-> B0 -Old-> A1 -Old-> C0 -Old-> OldHome(End)
// GrowHome (empty)
//
// == BIG STEP ==
// The initial big step finds the first entry that will be on the each
// output chain (in this case A0 and A1). We use brackets ([]) to mark them
// as our prospective frontiers.
//
// OldHome -Old-> [A0] -Old-> B0 -Old-> [A1] -Old-> C0 -Old-> OldHome(End)
// GrowHome (empty)
//
// Next we speculatively update grow_home head to point to the first entry for
// the one chain. This will not be used by Lookup until the head at old_home
// uses the new shift amount.
//
// OldHome -Old-> [A0] -Old-> B0 -Old-> [A1] -Old-> C0 -Old-> OldHome(End)
// GrowHome --------------New------------/
//
// Observe that if Lookup were to use the new head at GrowHome, it would be
// able to find all relevant entries. Finishing the initial big step
// requires a CAS (compare_exchange) of the OldHome head because there
// might have been parallel insertions there, in which case we roll back
// and try again. (We might need to point GrowHome head differently.)
//
// OldHome -New-> [A0] -Old-> B0 -Old-> [A1] -Old-> C0 -Old-> OldHome(End)
// GrowHome --------------New------------/
//
// Upgrading the OldHome head pointer with the new shift amount, with a
// compare_exchange, completes the initial big step, with [A0] as zero
// chain frontier and [A1] as one chain frontier. Links before the frontiers
// use the new shift amount and links after use the old shift amount.
// == END BIG STEP==
// == STRENGTHENING ==
// Zero chain frontier is advanced to [B0] (immediately before other
// frontier) by updating pointers with new shift amounts.
//
// OldHome -New-> A0 -New-> [B0] -Old-> [A1] -Old-> C0 -Old-> OldHome(End)
// GrowHome -------------New-----------/
//
// == END STRENGTHENING ==
// == SMALL STEP #1 ==
// From the strong invariant state, we need to find the next entry for
// the new chain with the earlier frontier. In this case, we need to find
// the next entry for the zero chain that comes after [B0], which in this
// case is C0. This will be our next zero chain frontier, at least under
// the weak invariant. To get there, we simply update the link between
// the current two frontiers to skip over the entries irreleveant to the
// ealier frontier chain. In this case, the zero chain skips over A1. As a
// result, he other chain is now the "earlier."
//
// OldHome -New-> A0 -New-> B0 -New-> [C0] -Old-> OldHome(End)
// GrowHome -New-> [A1] ------Old-----/
//
// == END SMALL STEP #1 ==
//
// Repeating the cycle and end handling is not as interesting.
// Acquire rewrite lock on zero chain (if it's non-empty)
ChainRewriteLock zero_head_lock(&arr[old_home], yield_count_);
// Used for locking the one chain below
uint64_t saved_one_head;
// One head has not been written to
assert(arr[grow_home].head_next_with_shift.Load() == 0);
// old_home will also the head of the new "zero chain" -- all entries in the
// "from" chain whose next hash bit is 0. grow_home will be head of the new
// "one chain".
// For these, SIZE_MAX is like nullptr (unknown)
size_t zero_chain_frontier = SIZE_MAX;
size_t one_chain_frontier = SIZE_MAX;
size_t cur = SIZE_MAX;
// Set to 0 (zero chain frontier earlier), 1 (one chain), or -1 (unknown)
int chain_frontier_first = -1;
// Might need to retry initial update of heads
for (int i = 0;; ++i) {
CHECK_TOO_MANY_ITERATIONS(i);
assert(zero_chain_frontier == SIZE_MAX);
assert(one_chain_frontier == SIZE_MAX);
assert(cur == SIZE_MAX);
assert(chain_frontier_first == -1);
uint64_t next_with_shift = zero_head_lock.GetSavedHead();
// Find a single representative for each target chain, or scan the whole
// chain if some target chain has no representative.
for (;; ++i) {
CHECK_TOO_MANY_ITERATIONS(i);
// Loop invariants
assert((chain_frontier_first < 0) == (zero_chain_frontier == SIZE_MAX &&
one_chain_frontier == SIZE_MAX));
assert((cur == SIZE_MAX) == (zero_chain_frontier == SIZE_MAX &&
one_chain_frontier == SIZE_MAX));
assert(GetShiftFromNextWithShift(next_with_shift) == old_shift);
// Check for end of original chain
if (HandleImpl::IsEnd(next_with_shift)) {
cur = SIZE_MAX;
break;
}
// next_with_shift is not End
cur = GetNextFromNextWithShift(next_with_shift);
if (BottomNBits(arr[cur].hashed_key[1], new_shift) == old_home) {
// Entry for zero chain
if (zero_chain_frontier == SIZE_MAX) {
zero_chain_frontier = cur;
if (one_chain_frontier != SIZE_MAX) {
// Ready to update heads
break;
}
// Nothing yet for one chain
chain_frontier_first = 0;
}
} else {
assert(BottomNBits(arr[cur].hashed_key[1], new_shift) == grow_home);
// Entry for one chain
if (one_chain_frontier == SIZE_MAX) {
one_chain_frontier = cur;
if (zero_chain_frontier != SIZE_MAX) {
// Ready to update heads
break;
}
// Nothing yet for zero chain
chain_frontier_first = 1;
}
}
next_with_shift = arr[cur].chain_next_with_shift.Load();
}
// Try to update heads for initial migration info
// We only reached the end of the migrate-from chain already if one of the
// target chains will be empty.
assert((cur == SIZE_MAX) ==
(zero_chain_frontier == SIZE_MAX || one_chain_frontier == SIZE_MAX));
assert((chain_frontier_first < 0) ==
(zero_chain_frontier == SIZE_MAX && one_chain_frontier == SIZE_MAX));
// Always update one chain's head first (safe), and mark it as locked
saved_one_head = HandleImpl::kHeadLocked |
(one_chain_frontier != SIZE_MAX
? MakeNextWithShift(one_chain_frontier, new_shift)
: MakeNextWithShiftEnd(grow_home, new_shift));
arr[grow_home].head_next_with_shift.Store(saved_one_head);
// Make sure length_info_ hasn't been updated too early, as we're about
// to make the change that makes it safe to update (e.g. in DoInsert())
assert(LengthInfoToUsedLength(length_info_.Load()) <= grow_home);
// Try to set zero's head.
if (zero_head_lock.CasUpdate(
zero_chain_frontier != SIZE_MAX
? MakeNextWithShift(zero_chain_frontier, new_shift)
: MakeNextWithShiftEnd(old_home, new_shift),
yield_count_)) {
// Both heads successfully updated to new shift
break;
} else {
// Concurrent insertion. This should not happen too many times.
CHECK_TOO_MANY_ITERATIONS(i);
// The easiest solution is to restart.
zero_chain_frontier = SIZE_MAX;
one_chain_frontier = SIZE_MAX;
cur = SIZE_MAX;
chain_frontier_first = -1;
continue;
}
}
// Create an RAII wrapper for the one chain rewrite lock we are already
// holding (if was not end) and is now "published" after successful CAS on
// zero chain head.
ChainRewriteLock one_head_lock(&arr[grow_home], yield_count_, saved_one_head);
// Except for trivial cases, we have something like
// AHome -New-> [A0] -Old-> [B0] -Old-> [C0] \ |
// BHome --------------------New------------> [A1] -Old-> ...
// And we need to upgrade as much as we can on the "first" chain
// (the one eventually pointing to the other's frontier). This will
// also finish off any case in which one of the target chains will be empty.
if (chain_frontier_first >= 0) {
size_t& first_frontier = chain_frontier_first == 0
? /*&*/ zero_chain_frontier
: /*&*/ one_chain_frontier;
size_t& other_frontier = chain_frontier_first != 0
? /*&*/ zero_chain_frontier
: /*&*/ one_chain_frontier;
uint64_t stop_before_or_new_tail =
other_frontier != SIZE_MAX
? /*stop before*/ MakeNextWithShift(other_frontier, old_shift)
: /*new tail*/ MakeNextWithShiftEnd(
chain_frontier_first == 0 ? old_home : grow_home, new_shift);
UpgradeShiftsOnRange(arr, first_frontier, stop_before_or_new_tail,
old_shift, new_shift);
}
if (zero_chain_frontier == SIZE_MAX) {
// Already finished migrating
assert(one_chain_frontier == SIZE_MAX);
assert(cur == SIZE_MAX);
} else {
// Still need to migrate between two target chains
for (int i = 0;; ++i) {
CHECK_TOO_MANY_ITERATIONS(i);
// Overall loop invariants
assert(zero_chain_frontier != SIZE_MAX);
assert(one_chain_frontier != SIZE_MAX);
assert(cur != SIZE_MAX);
assert(chain_frontier_first >= 0);
size_t& first_frontier = chain_frontier_first == 0
? /*&*/ zero_chain_frontier
: /*&*/ one_chain_frontier;
size_t& other_frontier = chain_frontier_first != 0
? /*&*/ zero_chain_frontier
: /*&*/ one_chain_frontier;
assert(cur != first_frontier);
assert(GetNextFromNextWithShift(
arr[first_frontier].chain_next_with_shift.Load()) ==
other_frontier);
uint64_t next_with_shift = arr[cur].chain_next_with_shift.Load();
// Check for end of original chain
if (HandleImpl::IsEnd(next_with_shift)) {
// Can set upgraded tail on first chain
uint64_t first_new_tail = MakeNextWithShiftEnd(
chain_frontier_first == 0 ? old_home : grow_home, new_shift);
arr[first_frontier].chain_next_with_shift.Store(first_new_tail);
// And upgrade remainder of other chain
uint64_t other_new_tail = MakeNextWithShiftEnd(
chain_frontier_first != 0 ? old_home : grow_home, new_shift);
UpgradeShiftsOnRange(arr, other_frontier, other_new_tail, old_shift,
new_shift);
assert(other_frontier == SIZE_MAX); // Finished
break;
}
// next_with_shift is not End
cur = GetNextFromNextWithShift(next_with_shift);
int target_chain;
if (BottomNBits(arr[cur].hashed_key[1], new_shift) == old_home) {
// Entry for zero chain
target_chain = 0;
} else {
assert(BottomNBits(arr[cur].hashed_key[1], new_shift) == grow_home);
// Entry for one chain
target_chain = 1;
}
if (target_chain == chain_frontier_first) {
// Found next entry to skip to on the first chain
uint64_t skip_to = MakeNextWithShift(cur, new_shift);
arr[first_frontier].chain_next_with_shift.Store(skip_to);
first_frontier = cur;
// Upgrade other chain up to entry before that one
UpgradeShiftsOnRange(arr, other_frontier, next_with_shift, old_shift,
new_shift);
// Swap which is marked as first
chain_frontier_first = 1 - chain_frontier_first;
} else {
// Nothing to do yet, as we need to keep old generation pointers in
// place for lookups
}
}
}
}
// Variant of PurgeImplLocked: Removes all "under (de) construction" entries
// from a chain where already holding a rewrite lock
using PurgeLockedOpData = void;
// Variant of PurgeImplLocked: Clock-updates all entries in a chain, in
// addition to functionality of PurgeLocked, where already holding a rewrite
// lock. (Caller finalizes eviction on entries added to the autovector, in part
// so that we don't hold the rewrite lock while doing potentially expensive
// callback and allocator free.)
using ClockUpdateChainLockedOpData =
autovector<AutoHyperClockTable::HandleImpl*>;
template <class OpData>
void AutoHyperClockTable::PurgeImplLocked(OpData* op_data,
ChainRewriteLock& rewrite_lock,
size_t home,
BaseClockTable::EvictionData* data) {
constexpr bool kIsPurge = std::is_same_v<OpData, PurgeLockedOpData>;
constexpr bool kIsClockUpdateChain =
std::is_same_v<OpData, ClockUpdateChainLockedOpData>;
// Exactly one op specified
static_assert(kIsPurge + kIsClockUpdateChain == 1);
HandleImpl* const arr = array_.Get();
uint64_t next_with_shift = rewrite_lock.GetSavedHead();
assert(!HandleImpl::IsEnd(next_with_shift));
int home_shift = GetShiftFromNextWithShift(next_with_shift);
(void)home;
(void)home_shift;
size_t next = GetNextFromNextWithShift(next_with_shift);
assert(next < array_.Count());
HandleImpl* h = &arr[next];
HandleImpl* prev_to_keep = nullptr;
#ifndef NDEBUG
uint64_t prev_to_keep_next_with_shift = 0;
#endif
// Whether there are entries between h and prev_to_keep that should be
// purged from the chain.
bool pending_purge = false;
// Walk the chain, and stitch together any entries that are still
// "shareable," possibly after clock update. prev_to_keep tells us where
// the last "stitch back to" location is (nullptr => head).
for (size_t i = 0;; ++i) {
CHECK_TOO_MANY_ITERATIONS(i);
bool purgeable = false;
// In last iteration, h will be nullptr, to stitch together the tail of
// the chain.
if (h) {
// NOTE: holding a rewrite lock on the chain prevents any "under
// (de)construction" entries in the chain from being marked empty, which
// allows us to access the hashed_keys without holding a read ref.
assert(home == BottomNBits(h->hashed_key[1], home_shift));
if constexpr (kIsClockUpdateChain) {
// Clock update and/or check for purgeable (under (de)construction)
if (ClockUpdate(*h, data, &purgeable)) {
// Remember for finishing eviction
op_data->push_back(h);
// Entries for eviction become purgeable
purgeable = true;
assert((h->meta.Load() >> ClockHandle::kStateShift) ==
ClockHandle::kStateConstruction);
}
} else {
(void)op_data;
(void)data;
purgeable = ((h->meta.Load() >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit) == 0;
}
}
if (purgeable) {
assert((h->meta.Load() >> ClockHandle::kStateShift) ==
ClockHandle::kStateConstruction);
pending_purge = true;
} else if (pending_purge) {
if (prev_to_keep) {
// Update chain next to skip purgeable entries
assert(prev_to_keep->chain_next_with_shift.Load() ==
prev_to_keep_next_with_shift);
prev_to_keep->chain_next_with_shift.Store(next_with_shift);
} else if (rewrite_lock.CasUpdate(next_with_shift, yield_count_)) {
// Managed to update head without any parallel insertions
} else {
// Parallel insertion must have interfered. Need to do a purge
// from updated head to here. Since we have no prev_to_keep, there's
// no risk of duplicate clock updates to entries. Any entries already
// updated must have been evicted (purgeable) and it's OK to clock
// update any new entries just inserted in parallel.
// Can simply restart (GetSavedHead() already updated from CAS failure).
next_with_shift = rewrite_lock.GetSavedHead();
assert(!HandleImpl::IsEnd(next_with_shift));
next = GetNextFromNextWithShift(next_with_shift);
assert(next < array_.Count());
h = &arr[next];
pending_purge = false;
assert(prev_to_keep == nullptr);
assert(GetShiftFromNextWithShift(next_with_shift) == home_shift);
continue;
}
pending_purge = false;
prev_to_keep = h;
} else {
prev_to_keep = h;
}
if (h == nullptr) {
// Reached end of the chain
return;
}
// Read chain pointer
next_with_shift = h->chain_next_with_shift.Load();
#ifndef NDEBUG
if (prev_to_keep == h) {
prev_to_keep_next_with_shift = next_with_shift;
}
#endif
assert(GetShiftFromNextWithShift(next_with_shift) == home_shift);
// Check for end marker
if (HandleImpl::IsEnd(next_with_shift)) {
h = nullptr;
} else {
next = GetNextFromNextWithShift(next_with_shift);
assert(next < array_.Count());
h = &arr[next];
assert(h != prev_to_keep);
}
}
}
// Variant of PurgeImpl: Removes all "under (de) construction" entries in a
// chain, such that any entry with the given key must have been purged.
using PurgeOpData = const UniqueId64x2;
// Variant of PurgeImpl: Clock-updates all entries in a chain, in addition to
// purging as appropriate. (Caller finalizes eviction on entries added to the
// autovector, in part so that we don't hold the rewrite lock while doing
// potentially expensive callback and allocator free.)
using ClockUpdateChainOpData = ClockUpdateChainLockedOpData;
template <class OpData>
void AutoHyperClockTable::PurgeImpl(OpData* op_data, size_t home,
BaseClockTable::EvictionData* data) {
// Early efforts to make AutoHCC fully wait-free ran into too many problems
// that needed obscure and potentially inefficient work-arounds to have a
// chance at working.
//
// The implementation settled on "essentially wait-free" which can be
// achieved by locking at the level of each probing chain and only for
// operations that might remove entries from the chain. Because parallel
// clock updates and Grow operations are ordered, contention is very rare.
// However, parallel insertions at any chain head have to be accommodated
// to keep them wait-free.
//
// This function implements Purge and ClockUpdateChain functions (see above
// OpData type definitions) as part of higher-level operations. This function
// ensures the correct chain is (eventually) covered and handles rewrite
// locking the chain. PurgeImplLocked has lower level details.
//
// In general, these operations and Grow are kept simpler by allowing eager
// purging of under (de-)construction entries. For example, an Erase
// operation might find that another thread has purged the entry from the
// chain by the time its own purge operation acquires the rewrite lock and
// proceeds. This is OK, and potentially reduces the number of lock/unlock
// cycles because empty chains are not rewrite-lockable.
constexpr bool kIsPurge = std::is_same_v<OpData, PurgeOpData>;
constexpr bool kIsClockUpdateChain =
std::is_same_v<OpData, ClockUpdateChainOpData>;
// Exactly one op specified
static_assert(kIsPurge + kIsClockUpdateChain == 1);
int home_shift = 0;
if constexpr (kIsPurge) {
// Purge callers leave home unspecified, to be determined from key
assert(home == SIZE_MAX);
GetHomeIndexAndShift(length_info_.Load(), (*op_data)[1], &home,
&home_shift);
assert(home_shift > 0);
} else {
assert(kIsClockUpdateChain);
// Evict callers must specify home
assert(home < SIZE_MAX);
}
HandleImpl* const arr = array_.Get();
// Acquire the RAII rewrite lock (if not an empty chain)
ChainRewriteLock rewrite_lock(&arr[home], yield_count_);
if constexpr (kIsPurge) {
// Ensure we are at the correct home for the shift in effect for the
// chain head.
for (;;) {
int shift = GetShiftFromNextWithShift(rewrite_lock.GetSavedHead());
if (shift > home_shift) {
// Found a newer shift at candidate head, which must apply to us.
// Newer shift might not yet be reflected in length_info_ (an atomicity
// gap in Grow), so operate as if it is. Note that other insertions
// could happen using this shift before length_info_ is updated, and
// it's possible (though unlikely) that multiple generations of Grow
// have occurred. If shift is more than one generation ahead of
// home_shift, it's possible that not all descendent homes have
// reached the `shift` generation. Thus, we need to advance only one
// shift at a time looking for a home+head with a matching shift
// amount.
home_shift++;
home = GetHomeIndex((*op_data)[1], home_shift);
rewrite_lock.Reset(&arr[home], yield_count_);
continue;
} else {
assert(shift == home_shift);
}
break;
}
}
// If the chain is empty, nothing to do
if (!rewrite_lock.IsEnd()) {
if constexpr (kIsPurge) {
PurgeLockedOpData* locked_op_data{};
PurgeImplLocked(locked_op_data, rewrite_lock, home, data);
} else {
PurgeImplLocked(op_data, rewrite_lock, home, data);
}
}
}
AutoHyperClockTable::HandleImpl* AutoHyperClockTable::DoInsert(
const ClockHandleBasicData& proto, uint64_t initial_countdown,
bool take_ref, InsertState& state) {
size_t home;
int orig_home_shift;
GetHomeIndexAndShift(state.saved_length_info, proto.hashed_key[1], &home,
&orig_home_shift);
HandleImpl* const arr = array_.Get();
// We could go searching through the chain for any duplicate, but that's
// not typically helpful, except for the REDUNDANT block cache stats.
// (Inferior duplicates will age out with eviction.) However, we do skip
// insertion if the home slot (or some other we happen to probe) already
// has a match (already_matches below). This helps to keep better locality
// when we can.
//
// And we can do that as part of searching for an available slot to
// insert the new entry, because our preferred location and first slot
// checked will be the home slot.
//
// As the table initially grows to size, few entries will be in the same
// cache line as the chain head. However, churn in the cache relatively
// quickly improves the proportion of entries sharing that cache line with
// the chain head. Data:
//
// Initial population only: (cache_bench with -ops_per_thread=1)
// Entries at home count: 29,202 (out of 129,170 entries in 94,411 chains)
// Approximate average cache lines read to find an existing entry:
// 129.2 / 94.4 [without the heads]
// + (94.4 - 29.2) / 94.4 [the heads not included with entries]
// = 2.06 cache lines
//
// After 10 million ops: (-threads=10 -ops_per_thread=100000)
// Entries at home count: 67,556 (out of 129,359 entries in 94,756 chains)
// That's a majority of entries and more than 2/3rds of chains.
// Approximate average cache lines read to find an existing entry:
// = 1.65 cache lines
// Even if we aren't saving a ref to this entry (take_ref == false), we need
// to keep a reference while we are inserting the entry into a chain, so that
// it is not erased by another thread while trying to insert it on the chain.
constexpr bool initial_take_ref = true;
size_t used_length = LengthInfoToUsedLength(state.saved_length_info);
assert(home < used_length);
size_t idx = home;
bool already_matches = false;
bool already_matches_ignore = false;
if (TryInsert(proto, arr[idx], initial_countdown, initial_take_ref,
&already_matches)) {
assert(idx == home);
} else if (already_matches) {
return nullptr;
// Here we try to populate newly-opened slots in the table, but not
// when we can add something to its home slot. This makes the structure
// more performant more quickly on (initial) growth. We ignore "already
// matches" in this case because it is unlikely and difficult to
// incorporate logic for here cleanly and efficiently.
} else if (UNLIKELY(state.likely_empty_slot > 0) &&
TryInsert(proto, arr[state.likely_empty_slot], initial_countdown,
initial_take_ref, &already_matches_ignore)) {
idx = state.likely_empty_slot;
} else {
// We need to search for an available slot outside of the home.
// Linear hashing provides nice resizing but does typically mean
// that some heads (home locations) have (in expectation) twice as
// many entries mapped to them as other heads. For example if the
// usable length is 80, then heads 16-63 are (in expectation) twice
// as loaded as heads 0-15 and 64-79, which are using another hash bit.
//
// This means that if we just use linear probing (by a small constant)
// to find an available slot, part of the structure could easily fill up
// and resort to linear time operations even when the overall load factor
// is only modestly high, like 70%. Even though each slot has its own CPU
// cache line, there appears to be a small locality benefit (e.g. TLB and
// paging) to iterating one by one, as long as we don't afoul of the
// linear hashing imbalance.
//
// In a traditional non-concurrent structure, we could keep a "free list"
// to ensure immediate access to an available slot, but maintaining such
// a structure could require more cross-thread coordination to ensure
// all entries are eventually available to all threads.
//
// The way we solve this problem is to use unit-increment linear probing
// with a small bound, and then fall back on big jumps to have a good
// chance of finding a slot in an under-populated region quickly if that
// doesn't work.
size_t i = 0;
constexpr size_t kMaxLinearProbe = 4;
for (; i < kMaxLinearProbe; i++) {
idx++;
if (idx >= used_length) {
idx -= used_length;
}
if (TryInsert(proto, arr[idx], initial_countdown, initial_take_ref,
&already_matches)) {
break;
}
if (already_matches) {
return nullptr;
}
}
if (i == kMaxLinearProbe) {
// Keep searching, but change to a search method that should quickly
// find any under-populated region. Switching to an increment based
// on the golden ratio helps with that, but we also inject some minor
// variation (less than 2%, 1 in 2^6) to avoid clustering effects on
// this larger increment (if it were a fixed value in steady state
// operation). Here we are primarily using upper bits of hashed_key[1]
// while home is based on lowest bits.
uint64_t incr_ratio = 0x9E3779B185EBCA87U + (proto.hashed_key[1] >> 6);
size_t incr = FastRange64(incr_ratio, used_length);
assert(incr > 0);
size_t start = idx;
for (;; i++) {
idx += incr;
if (idx >= used_length) {
// Wrap around (faster than %)
idx -= used_length;
}
if (idx == start) {
// We have just completed a cycle that might not have covered all
// slots. (incr and used_length could have common factors.)
// Increment for the next cycle, which eventually ensures complete
// iteration over the set of slots before repeating.
idx++;
if (idx >= used_length) {
idx -= used_length;
}
start++;
if (start >= used_length) {
start -= used_length;
}
if (i >= used_length) {
used_length = LengthInfoToUsedLength(length_info_.Load());
if (i >= used_length * 2) {
// Cycling back should not happen unless there is enough random
// churn in parallel that we happen to hit each slot at a time
// that it's occupied, which is really only feasible for small
// structures, though with linear probing to find empty slots,
// "small" here might be larger than for double hashing.
assert(used_length <= 256);
// Fall back on standalone insert in case something goes awry to
// cause this
return nullptr;
}
}
}
if (TryInsert(proto, arr[idx], initial_countdown, initial_take_ref,
&already_matches)) {
break;
}
if (already_matches) {
return nullptr;
}
}
}
}
// Now insert into chain using head pointer
uint64_t next_with_shift;
int home_shift = orig_home_shift;
// Might need to retry
for (int i = 0;; ++i) {
CHECK_TOO_MANY_ITERATIONS(i);
next_with_shift = arr[home].head_next_with_shift.Load();
int shift = GetShiftFromNextWithShift(next_with_shift);
if (UNLIKELY(shift != home_shift)) {
// NOTE: shift increases with table growth
if (shift > home_shift) {
// Must be grow in progress or completed since reading length_info.
// Pull out one more hash bit. (See Lookup() for why we can't
// safely jump to the shift that was read.)
home_shift++;
uint64_t hash_bit_mask = uint64_t{1} << (home_shift - 1);
assert((home & hash_bit_mask) == 0);
// BEGIN leftover updates to length_info_ for Grow()
size_t grow_home = home + hash_bit_mask;
assert(arr[grow_home].head_next_with_shift.Load() !=
HandleImpl::kUnusedMarker);
CatchUpLengthInfoNoWait(grow_home);
// END leftover updates to length_info_ for Grow()
home += proto.hashed_key[1] & hash_bit_mask;
continue;
} else {
// Should not happen because length_info_ is only updated after both
// old and new home heads are marked with new shift
assert(false);
}
}
// Values to update to
uint64_t head_next_with_shift = MakeNextWithShift(idx, home_shift);
uint64_t chain_next_with_shift = next_with_shift;
// Preserve the locked state in head, without propagating to chain next
// where it is meaningless (and not allowed)
if (UNLIKELY((next_with_shift & HandleImpl::kNextEndFlags) ==
HandleImpl::kHeadLocked)) {
head_next_with_shift |= HandleImpl::kHeadLocked;
chain_next_with_shift &= ~HandleImpl::kHeadLocked;
}
arr[idx].chain_next_with_shift.Store(chain_next_with_shift);
if (arr[home].head_next_with_shift.CasWeak(next_with_shift,
head_next_with_shift)) {
// Success
if (!take_ref) {
Unref(arr[idx]);
}
return arr + idx;
}
}
}
AutoHyperClockTable::HandleImpl* AutoHyperClockTable::Lookup(
const UniqueId64x2& hashed_key) {
// Lookups are wait-free with low occurrence of retries, back-tracking,
// and fallback. We do not have the benefit of holding a rewrite lock on
// the chain so must be prepared for many kinds of mayhem, most notably
// "falling off our chain" where a slot that Lookup has identified but
// has not read-referenced is removed from one chain and inserted into
// another. The full algorithm uses the following mitigation strategies to
// ensure every relevant entry inserted before this Lookup, and not yet
// evicted, is seen by Lookup, without excessive backtracking etc.:
// * Keep a known good read ref in the chain for "island hopping." When
// we observe that a concurrent write takes us off to another chain, we
// only need to fall back to our last known good read ref (most recent
// entry on the chain that is not "under construction," which is a transient
// state). We don't want to compound the CPU toil of a long chain with
// operations that might need to retry from scratch, with probability
// in proportion to chain length.
// * Only detect a chain is potentially incomplete because of a Grow in
// progress by looking at shift in the next pointer tags (rather than
// re-checking length_info_).
// * SplitForGrow, Insert, and PurgeImplLocked ensure that there are no
// transient states that might cause this full Lookup algorithm to skip over
// live entries.
// Reading length_info_ is not strictly required for Lookup, if we were
// to increment shift sizes until we see a shift size match on the
// relevant head pointer. Thus, reading with relaxed memory order gives
// us a safe and almost always up-to-date jump into finding the correct
// home and head.
size_t home;
int home_shift;
GetHomeIndexAndShift(length_info_.LoadRelaxed(), hashed_key[1], &home,
&home_shift);
assert(home_shift > 0);
// The full Lookup algorithm however is not great for hot path efficiency,
// because of the extra careful tracking described above. Overwhelmingly,
// we can find what we're looking for with a naive linked list traversal
// of the chain. Even if we "fall off our chain" to another, we don't
// violate memory safety. We just won't match the key we're looking for.
// And we would eventually reach an end state, possibly even experiencing a
// cycle as an entry is freed and reused during our traversal (though at
// any point in time the structure doesn't have cycles).
//
// So for hot path efficiency, we start with a naive Lookup attempt, and
// then fall back on full Lookup if we don't find the correct entry. To
// cap how much we invest into the naive Lookup, we simply cap the traversal
// length before falling back. Also, when we do fall back on full Lookup,
// we aren't paying much penalty by starting over. Much or most of the cost
// of Lookup is memory latency in following the chain pointers, and the
// naive Lookup has warmed the CPU cache for these entries, using as tight
// of a loop as possible.
HandleImpl* const arr = array_.Get();
uint64_t next_with_shift = arr[home].head_next_with_shift.LoadRelaxed();
for (size_t i = 0; !HandleImpl::IsEnd(next_with_shift) && i < 10; ++i) {
HandleImpl* h = &arr[GetNextFromNextWithShift(next_with_shift)];
// Attempt cheap key match without acquiring a read ref. This could give a
// false positive, which is re-checked after acquiring read ref, or false
// negative, which is re-checked in the full Lookup. Also, this is a
// technical UB data race according to TSAN, but we don't need to read
// a "correct" value here for correct overall behavior.
#ifdef __SANITIZE_THREAD__
bool probably_equal = Random::GetTLSInstance()->OneIn(2);
#else
bool probably_equal = h->hashed_key == hashed_key;
#endif
if (probably_equal) {
// Increment acquire counter for definitive check
uint64_t old_meta = h->meta.FetchAdd(ClockHandle::kAcquireIncrement);
// Check if it's a referencable (sharable) entry
if (LIKELY(old_meta & (uint64_t{ClockHandle::kStateShareableBit}
<< ClockHandle::kStateShift))) {
assert(GetRefcount(old_meta + ClockHandle::kAcquireIncrement) > 0);
if (LIKELY(h->hashed_key == hashed_key) &&
LIKELY(old_meta & (uint64_t{ClockHandle::kStateVisibleBit}
<< ClockHandle::kStateShift))) {
return h;
} else {
Unref(*h);
}
} else {
// For non-sharable states, incrementing the acquire counter has no
// effect so we don't need to undo it. Furthermore, we cannot safely
// undo it because we did not acquire a read reference to lock the entry
// in a Shareable state.
}
}
next_with_shift = h->chain_next_with_shift.LoadRelaxed();
}
// If we get here, falling back on full Lookup algorithm.
HandleImpl* h = nullptr;
HandleImpl* read_ref_on_chain = nullptr;
for (size_t i = 0;; ++i) {
CHECK_TOO_MANY_ITERATIONS(i);
// Read head or chain pointer
next_with_shift = h ? h->chain_next_with_shift.Load()
: arr[home].head_next_with_shift.Load();
int shift = GetShiftFromNextWithShift(next_with_shift);
// Make sure it's usable
size_t effective_home = home;
if (UNLIKELY(shift != home_shift)) {
// We have potentially gone awry somehow, but it's possible we're just
// hitting old data that is not yet completed Grow.
// NOTE: shift bits goes up with table growth.
if (shift < home_shift) {
// To avoid waiting on Grow in progress, an old shift amount needs
// to be processed as if we were still using it and (potentially
// different or the same) the old home.
// We can assert it's not too old, because each generation of Grow
// waits on its ancestor in the previous generation.
assert(shift + 1 == home_shift);
effective_home = GetHomeIndex(home, shift);
} else if (h == read_ref_on_chain) {
assert(shift > home_shift);
// At head or coming from an entry on our chain where we're holding
// a read reference. Thus, we know the newer shift applies to us.
// Newer shift might not yet be reflected in length_info_ (an atomicity
// gap in Grow), so operate as if it is. Note that other insertions
// could happen using this shift before length_info_ is updated, and
// it's possible (though unlikely) that multiple generations of Grow
// have occurred. If shift is more than one generation ahead of
// home_shift, it's possible that not all descendent homes have
// reached the `shift` generation. Thus, we need to advance only one
// shift at a time looking for a home+head with a matching shift
// amount.
home_shift++;
// Update home in case it has changed
home = GetHomeIndex(hashed_key[1], home_shift);
// This should be rare enough occurrence that it's simplest just
// to restart (TODO: improve in some cases?)
h = nullptr;
if (read_ref_on_chain) {
Unref(*read_ref_on_chain);
read_ref_on_chain = nullptr;
}
// Didn't make progress & retry
continue;
} else {
assert(shift > home_shift);
assert(h != nullptr);
// An "under (de)construction" entry has a new shift amount, which
// means we have either gotten off our chain or our home shift is out
// of date. If we revert back to saved ref, we will get updated info.
h = read_ref_on_chain;
// Didn't make progress & retry
continue;
}
}
// Check for end marker
if (HandleImpl::IsEnd(next_with_shift)) {
// To ensure we didn't miss anything in the chain, the end marker must
// point back to the correct home.
if (LIKELY(GetNextFromNextWithShift(next_with_shift) == effective_home)) {
// Complete, clean iteration of the chain, not found.
// Clean up.
if (read_ref_on_chain) {
Unref(*read_ref_on_chain);
}
return nullptr;
} else {
// Something went awry. Revert back to a safe point (if we have it)
h = read_ref_on_chain;
// Didn't make progress & retry
continue;
}
}
// Follow the next and check for full key match, home match, or neither
h = &arr[GetNextFromNextWithShift(next_with_shift)];
bool full_match_or_unknown = false;
if (MatchAndRef(&hashed_key, *h, shift, effective_home,
&full_match_or_unknown)) {
// Got a read ref on next (h).
//
// There is a very small chance that between getting the next pointer
// (now h) and doing MatchAndRef on it, another thread erased/evicted it
// reinserted it into the same chain, causing us to cycle back in the
// same chain and potentially see some entries again if we keep walking.
// Newly-inserted entries are inserted before older ones, so we are at
// least guaranteed not to miss anything. Here in Lookup, it's just a
// transient, slight hiccup in performance.
if (full_match_or_unknown) {
// Full match.
// Release old read ref on chain if applicable
if (read_ref_on_chain) {
// Pretend we never took the reference.
Unref(*read_ref_on_chain);
}
// Update the hit bit
if (eviction_callback_) {
h->meta.FetchOrRelaxed(uint64_t{1} << ClockHandle::kHitBitShift);
}
// All done.
return h;
} else if (UNLIKELY(shift != home_shift) &&
home != BottomNBits(h->hashed_key[1], home_shift)) {
// This chain is in a Grow operation and we've landed on an entry
// that belongs to the wrong destination chain. We can keep going, but
// there's a chance we'll need to backtrack back *before* this entry,
// if the Grow finishes before this Lookup. We cannot save this entry
// for backtracking because it might soon or already be on the wrong
// chain.
// NOTE: if we simply backtrack rather than continuing, we would
// be in a wait loop (not allowed in Lookup!) until the other thread
// finishes its Grow.
Unref(*h);
} else {
// Correct home location, so we are on the right chain.
// With new usable read ref, can release old one (if applicable).
if (read_ref_on_chain) {
// Pretend we never took the reference.
Unref(*read_ref_on_chain);
}
// And keep the new one.
read_ref_on_chain = h;
}
} else {
if (full_match_or_unknown) {
// Must have been an "under construction" entry. Can safely skip it,
// but there's a chance we'll have to backtrack later
} else {
// Home mismatch! Revert back to a safe point (if we have it)
h = read_ref_on_chain;
// Didn't make progress & retry
}
}
}
}
void AutoHyperClockTable::Remove(HandleImpl* h) {
assert((h->meta.Load() >> ClockHandle::kStateShift) ==
ClockHandle::kStateConstruction);
const HandleImpl& c_h = *h;
PurgeImpl(&c_h.hashed_key);
}
bool AutoHyperClockTable::TryEraseHandle(HandleImpl* h, bool holding_ref,
bool mark_invisible) {
uint64_t meta;
if (mark_invisible) {
// Set invisible
meta = h->meta.FetchAnd(
~(uint64_t{ClockHandle::kStateVisibleBit} << ClockHandle::kStateShift));
// To local variable also
meta &=
~(uint64_t{ClockHandle::kStateVisibleBit} << ClockHandle::kStateShift);
} else {
meta = h->meta.Load();
}
// Take ownership if no other refs
do {
if (GetRefcount(meta) != uint64_t{holding_ref}) {
// Not last ref at some point in time during this call
return false;
}
if ((meta & (uint64_t{ClockHandle::kStateShareableBit}
<< ClockHandle::kStateShift)) == 0) {
// Someone else took ownership
return false;
}
// Note that if !holding_ref, there's a small chance that we release,
// another thread replaces this entry with another, reaches zero refs, and
// then we end up erasing that other entry. That's an acceptable risk /
// imprecision.
} while (!h->meta.CasWeak(meta, uint64_t{ClockHandle::kStateConstruction}
<< ClockHandle::kStateShift));
// Took ownership
// TODO? Delay freeing?
h->FreeData(allocator_);
size_t total_charge = h->total_charge;
if (UNLIKELY(h->IsStandalone())) {
// Delete detached handle
delete h;
standalone_usage_.FetchSubRelaxed(total_charge);
} else {
Remove(h);
MarkEmpty(*h);
occupancy_.FetchSub(1U);
}
usage_.FetchSubRelaxed(total_charge);
assert(usage_.LoadRelaxed() < SIZE_MAX / 2);
return true;
}
bool AutoHyperClockTable::Release(HandleImpl* h, bool useful,
bool erase_if_last_ref) {
// In contrast with LRUCache's Release, this function won't delete the handle
// when the cache is above capacity and the reference is the last one. Space
// is only freed up by Evict/PurgeImpl (called by Insert when space
// is needed) and Erase. We do this to avoid an extra atomic read of the
// variable usage_.
uint64_t old_meta;
if (useful) {
// Increment release counter to indicate was used
old_meta = h->meta.FetchAdd(ClockHandle::kReleaseIncrement);
// Correct for possible (but rare) overflow
CorrectNearOverflow(old_meta, h->meta);
} else {
// Decrement acquire counter to pretend it never happened
old_meta = h->meta.FetchSub(ClockHandle::kAcquireIncrement);
}
assert((old_meta >> ClockHandle::kStateShift) &
ClockHandle::kStateShareableBit);
// No underflow
assert(((old_meta >> ClockHandle::kAcquireCounterShift) &
ClockHandle::kCounterMask) !=
((old_meta >> ClockHandle::kReleaseCounterShift) &
ClockHandle::kCounterMask));
if ((erase_if_last_ref || UNLIKELY(old_meta >> ClockHandle::kStateShift ==
ClockHandle::kStateInvisible))) {
// FIXME: There's a chance here that another thread could replace this
// entry and we end up erasing the wrong one.
return TryEraseHandle(h, /*holding_ref=*/false, /*mark_invisible=*/false);
} else {
return false;
}
}
#ifndef NDEBUG
void AutoHyperClockTable::TEST_ReleaseN(HandleImpl* h, size_t n) {
if (n > 0) {
// Do n-1 simple releases first
TEST_ReleaseNMinus1(h, n);
// Then the last release might be more involved
Release(h, /*useful*/ true, /*erase_if_last_ref*/ false);
}
}
#endif
void AutoHyperClockTable::Erase(const UniqueId64x2& hashed_key) {
// Don't need to be efficient.
// Might be one match masking another, so loop.
while (HandleImpl* h = Lookup(hashed_key)) {
bool gone =
TryEraseHandle(h, /*holding_ref=*/true, /*mark_invisible=*/true);
if (!gone) {
// Only marked invisible, which is ok.
// Pretend we never took the reference from Lookup.
Unref(*h);
}
}
}
void AutoHyperClockTable::EraseUnRefEntries() {
size_t usable_size = GetTableSize();
for (size_t i = 0; i < usable_size; i++) {
HandleImpl& h = array_[i];
uint64_t old_meta = h.meta.LoadRelaxed();
if (old_meta & (uint64_t{ClockHandle::kStateShareableBit}
<< ClockHandle::kStateShift) &&
GetRefcount(old_meta) == 0 &&
h.meta.CasStrong(old_meta, uint64_t{ClockHandle::kStateConstruction}
<< ClockHandle::kStateShift)) {
// Took ownership
h.FreeData(allocator_);
usage_.FetchSubRelaxed(h.total_charge);
// NOTE: could be more efficient with a dedicated variant of
// PurgeImpl, but this is not a common operation
Remove(&h);
MarkEmpty(h);
occupancy_.FetchSub(1U);
}
}
}
void AutoHyperClockTable::Evict(size_t requested_charge, InsertState& state,
EvictionData* data,
uint32_t eviction_effort_cap) {
// precondition
assert(requested_charge > 0);
// We need the clock pointer to seemlessly "wrap around" at the end of the
// table, and to be reasonably stable under Grow operations. This is
// challenging when the linear hashing progressively opens additional
// most-significant-hash-bits in determining home locations.
// TODO: make a tuning parameter?
// Up to 2x this number of homes will be evicted per step. In very rare
// cases, possibly more, as homes of an out-of-date generation will be
// resolved to multiple in a newer generation.
constexpr size_t step_size = 4;
// A clock_pointer_mask_ field separate from length_info_ enables us to use
// the same mask (way of dividing up the space among evicting threads) for
// iterating over the whole structure before considering changing the mask
// at the beginning of each pass. This ensures we do not have a large portion
// of the space that receives redundant or missed clock updates. However,
// with two variables, for each update to clock_pointer_mask (< 64 ever in
// the life of the cache), there will be a brief period where concurrent
// eviction threads could use the old mask value, possibly causing redundant
// or missed clock updates for a *small* portion of the table.
size_t clock_pointer_mask = clock_pointer_mask_.LoadRelaxed();
uint64_t max_clock_pointer = 0; // unset
// TODO: consider updating during a long eviction
size_t used_length = LengthInfoToUsedLength(state.saved_length_info);
autovector<HandleImpl*> to_finish_eviction;
// Loop until enough freed, or limit reached (see bottom of loop)
for (;;) {
// First (concurrent) increment clock pointer
uint64_t old_clock_pointer = clock_pointer_.FetchAddRelaxed(step_size);
if (UNLIKELY((old_clock_pointer & clock_pointer_mask) == 0)) {
// Back at the beginning. See if clock_pointer_mask should be updated.
uint64_t mask = BottomNBits(
UINT64_MAX, LengthInfoToMinShift(state.saved_length_info));
if (clock_pointer_mask != mask) {
clock_pointer_mask = static_cast<size_t>(mask);
clock_pointer_mask_.StoreRelaxed(clock_pointer_mask);
}
}
size_t major_step = clock_pointer_mask + 1;
assert((major_step & clock_pointer_mask) == 0);
for (size_t base_home = old_clock_pointer & clock_pointer_mask;
base_home < used_length; base_home += major_step) {
for (size_t i = 0; i < step_size; i++) {
size_t home = base_home + i;
if (home >= used_length) {
break;
}
PurgeImpl(&to_finish_eviction, home, data);
}
}
for (HandleImpl* h : to_finish_eviction) {
TrackAndReleaseEvictedEntry(h);
// NOTE: setting likely_empty_slot here can cause us to reduce the
// portion of "at home" entries, probably because an evicted entry
// is more likely to come back than a random new entry and would be
// unable to go into its home slot.
}
to_finish_eviction.clear();
// Loop exit conditions
if (data->freed_charge >= requested_charge) {
return;
}
if (max_clock_pointer == 0) {
// Cap the eviction effort at this thread (along with those operating in
// parallel) circling through the whole structure kMaxCountdown times.
// In other words, this eviction run must find something/anything that is
// unreferenced at start of and during the eviction run that isn't
// reclaimed by a concurrent eviction run.
// TODO: Does HyperClockCache need kMaxCountdown + 1?
max_clock_pointer =
old_clock_pointer +
(uint64_t{ClockHandle::kMaxCountdown + 1} * major_step);
}
if (old_clock_pointer + step_size >= max_clock_pointer) {
return;
}
if (IsEvictionEffortExceeded(*data, eviction_effort_cap)) {
eviction_effort_exceeded_count_.FetchAddRelaxed(1);
return;
}
}
}
size_t AutoHyperClockTable::CalcMaxUsableLength(
size_t capacity, size_t min_avg_value_size,
CacheMetadataChargePolicy metadata_charge_policy) {
double min_avg_slot_charge = min_avg_value_size * kMaxLoadFactor;
if (metadata_charge_policy == kFullChargeCacheMetadata) {
min_avg_slot_charge += sizeof(HandleImpl);
}
assert(min_avg_slot_charge > 0.0);
size_t num_slots =
static_cast<size_t>(capacity / min_avg_slot_charge + 0.999999);
const size_t slots_per_page = port::kPageSize / sizeof(HandleImpl);
// Round up to page size
return ((num_slots + slots_per_page - 1) / slots_per_page) * slots_per_page;
}
namespace {
bool IsHeadNonempty(const AutoHyperClockTable::HandleImpl& h) {
return !AutoHyperClockTable::HandleImpl::IsEnd(
h.head_next_with_shift.LoadRelaxed());
}
bool IsEntryAtHome(const AutoHyperClockTable::HandleImpl& h, int shift,
size_t home) {
if (MatchAndRef(nullptr, h, shift, home)) {
Unref(h);
return true;
} else {
return false;
}
}
} // namespace
void AutoHyperClockCache::ReportProblems(
const std::shared_ptr<Logger>& info_log) const {
BaseHyperClockCache::ReportProblems(info_log);
if (info_log->GetInfoLogLevel() <= InfoLogLevel::DEBUG_LEVEL) {
LoadVarianceStats head_stats;
size_t entry_at_home_count = 0;
uint64_t yield_count = 0;
this->ForEachShard([&](const Shard* shard) {
size_t count = shard->GetTableAddressCount();
uint64_t length_info = UsedLengthToLengthInfo(count);
for (size_t i = 0; i < count; ++i) {
const auto& h = *shard->GetTable().HandlePtr(i);
head_stats.Add(IsHeadNonempty(h));
int shift;
size_t home;
GetHomeIndexAndShift(length_info, i, &home, &shift);
assert(home == i);
entry_at_home_count += IsEntryAtHome(h, shift, home);
}
yield_count += shard->GetTable().GetYieldCount();
});
ROCKS_LOG_AT_LEVEL(info_log, InfoLogLevel::DEBUG_LEVEL,
"Head occupancy stats: %s", head_stats.Report().c_str());
ROCKS_LOG_AT_LEVEL(info_log, InfoLogLevel::DEBUG_LEVEL,
"Entries at home count: %zu", entry_at_home_count);
ROCKS_LOG_AT_LEVEL(info_log, InfoLogLevel::DEBUG_LEVEL,
"Yield count: %" PRIu64, yield_count);
}
}
} // namespace clock_cache
// DEPRECATED (see public API)
std::shared_ptr<Cache> NewClockCache(
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
CacheMetadataChargePolicy metadata_charge_policy) {
return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
/* high_pri_pool_ratio */ 0.5, nullptr,
kDefaultToAdaptiveMutex, metadata_charge_policy,
/* low_pri_pool_ratio */ 0.0);
}
std::shared_ptr<Cache> HyperClockCacheOptions::MakeSharedCache() const {
// For sanitized options
HyperClockCacheOptions opts = *this;
if (opts.num_shard_bits >= 20) {
return nullptr; // The cache cannot be sharded into too many fine pieces.
}
if (opts.num_shard_bits < 0) {
// Use larger shard size to reduce risk of large entries clustering
// or skewing individual shards.
constexpr size_t min_shard_size = 32U * 1024U * 1024U;
opts.num_shard_bits =
GetDefaultCacheShardBits(opts.capacity, min_shard_size);
}
std::shared_ptr<Cache> cache;
if (opts.estimated_entry_charge == 0) {
cache = std::make_shared<clock_cache::AutoHyperClockCache>(opts);
} else {
cache = std::make_shared<clock_cache::FixedHyperClockCache>(opts);
}
if (opts.secondary_cache) {
cache = std::make_shared<CacheWithSecondaryAdapter>(cache,
opts.secondary_cache);
}
return cache;
}
} // namespace ROCKSDB_NAMESPACE
|