1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "cache/lru_cache.h"
#include <memory>
#include <string>
#include <vector>
#include "cache/cache_key.h"
#include "cache/clock_cache.h"
#include "cache_helpers.h"
#include "db/db_test_util.h"
#include "file/sst_file_manager_impl.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/io_status.h"
#include "rocksdb/sst_file_manager.h"
#include "rocksdb/utilities/cache_dump_load.h"
#include "test_util/secondary_cache_test_util.h"
#include "test_util/testharness.h"
#include "typed_cache.h"
#include "util/coding.h"
#include "util/random.h"
#include "utilities/cache_dump_load_impl.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
class LRUCacheTest : public testing::Test {
public:
LRUCacheTest() = default;
~LRUCacheTest() override { DeleteCache(); }
void DeleteCache() {
if (cache_ != nullptr) {
cache_->~LRUCacheShard();
port::cacheline_aligned_free(cache_);
cache_ = nullptr;
}
}
void NewCache(size_t capacity, double high_pri_pool_ratio = 0.0,
double low_pri_pool_ratio = 1.0,
bool use_adaptive_mutex = kDefaultToAdaptiveMutex) {
DeleteCache();
cache_ = static_cast<LRUCacheShard*>(
port::cacheline_aligned_alloc(sizeof(LRUCacheShard)));
new (cache_) LRUCacheShard(capacity, /*strict_capacity_limit=*/false,
high_pri_pool_ratio, low_pri_pool_ratio,
use_adaptive_mutex, kDontChargeCacheMetadata,
/*max_upper_hash_bits=*/24,
/*allocator*/ nullptr, &eviction_callback_);
}
void Insert(const std::string& key,
Cache::Priority priority = Cache::Priority::LOW,
size_t charge = 1) {
EXPECT_OK(cache_->Insert(key, 0 /*hash*/, nullptr /*value*/,
&kNoopCacheItemHelper, charge, nullptr /*handle*/,
priority));
}
void Insert(char key, Cache::Priority priority = Cache::Priority::LOW) {
Insert(std::string(1, key), priority);
}
bool Lookup(const std::string& key) {
auto handle = cache_->Lookup(key, 0 /*hash*/, nullptr, nullptr,
Cache::Priority::LOW, nullptr);
if (handle) {
cache_->Release(handle, true /*useful*/, false /*erase*/);
return true;
}
return false;
}
bool Lookup(char key) { return Lookup(std::string(1, key)); }
void Erase(const std::string& key) { cache_->Erase(key, 0 /*hash*/); }
void ValidateLRUList(std::vector<std::string> keys,
size_t num_high_pri_pool_keys = 0,
size_t num_low_pri_pool_keys = 0,
size_t num_bottom_pri_pool_keys = 0) {
LRUHandle* lru;
LRUHandle* lru_low_pri;
LRUHandle* lru_bottom_pri;
cache_->TEST_GetLRUList(&lru, &lru_low_pri, &lru_bottom_pri);
LRUHandle* iter = lru;
bool in_low_pri_pool = false;
bool in_high_pri_pool = false;
size_t high_pri_pool_keys = 0;
size_t low_pri_pool_keys = 0;
size_t bottom_pri_pool_keys = 0;
if (iter == lru_bottom_pri) {
in_low_pri_pool = true;
in_high_pri_pool = false;
}
if (iter == lru_low_pri) {
in_low_pri_pool = false;
in_high_pri_pool = true;
}
for (const auto& key : keys) {
iter = iter->next;
ASSERT_NE(lru, iter);
ASSERT_EQ(key, iter->key().ToString());
ASSERT_EQ(in_high_pri_pool, iter->InHighPriPool());
ASSERT_EQ(in_low_pri_pool, iter->InLowPriPool());
if (in_high_pri_pool) {
ASSERT_FALSE(iter->InLowPriPool());
high_pri_pool_keys++;
} else if (in_low_pri_pool) {
ASSERT_FALSE(iter->InHighPriPool());
low_pri_pool_keys++;
} else {
bottom_pri_pool_keys++;
}
if (iter == lru_bottom_pri) {
ASSERT_FALSE(in_low_pri_pool);
ASSERT_FALSE(in_high_pri_pool);
in_low_pri_pool = true;
in_high_pri_pool = false;
}
if (iter == lru_low_pri) {
ASSERT_TRUE(in_low_pri_pool);
ASSERT_FALSE(in_high_pri_pool);
in_low_pri_pool = false;
in_high_pri_pool = true;
}
}
ASSERT_EQ(lru, iter->next);
ASSERT_FALSE(in_low_pri_pool);
ASSERT_TRUE(in_high_pri_pool);
ASSERT_EQ(num_high_pri_pool_keys, high_pri_pool_keys);
ASSERT_EQ(num_low_pri_pool_keys, low_pri_pool_keys);
ASSERT_EQ(num_bottom_pri_pool_keys, bottom_pri_pool_keys);
}
protected:
LRUCacheShard* cache_ = nullptr;
private:
Cache::EvictionCallback eviction_callback_;
};
TEST_F(LRUCacheTest, BasicLRU) {
NewCache(5);
for (char ch = 'a'; ch <= 'e'; ch++) {
Insert(ch);
}
ValidateLRUList({"a", "b", "c", "d", "e"}, 0, 5);
for (char ch = 'x'; ch <= 'z'; ch++) {
Insert(ch);
}
ValidateLRUList({"d", "e", "x", "y", "z"}, 0, 5);
ASSERT_FALSE(Lookup("b"));
ValidateLRUList({"d", "e", "x", "y", "z"}, 0, 5);
ASSERT_TRUE(Lookup("e"));
ValidateLRUList({"d", "x", "y", "z", "e"}, 0, 5);
ASSERT_TRUE(Lookup("z"));
ValidateLRUList({"d", "x", "y", "e", "z"}, 0, 5);
Erase("x");
ValidateLRUList({"d", "y", "e", "z"}, 0, 4);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"y", "e", "z", "d"}, 0, 4);
Insert("u");
ValidateLRUList({"y", "e", "z", "d", "u"}, 0, 5);
Insert("v");
ValidateLRUList({"e", "z", "d", "u", "v"}, 0, 5);
}
TEST_F(LRUCacheTest, LowPriorityMidpointInsertion) {
// Allocate 2 cache entries to high-pri pool and 3 to low-pri pool.
NewCache(5, /* high_pri_pool_ratio */ 0.40, /* low_pri_pool_ratio */ 0.60);
Insert("a", Cache::Priority::LOW);
Insert("b", Cache::Priority::LOW);
Insert("c", Cache::Priority::LOW);
Insert("x", Cache::Priority::HIGH);
Insert("y", Cache::Priority::HIGH);
ValidateLRUList({"a", "b", "c", "x", "y"}, 2, 3);
// Low-pri entries inserted to the tail of low-pri list (the midpoint).
// After lookup, it will move to the tail of the full list.
Insert("d", Cache::Priority::LOW);
ValidateLRUList({"b", "c", "d", "x", "y"}, 2, 3);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"b", "c", "x", "y", "d"}, 2, 3);
// High-pri entries will be inserted to the tail of full list.
Insert("z", Cache::Priority::HIGH);
ValidateLRUList({"c", "x", "y", "d", "z"}, 2, 3);
}
TEST_F(LRUCacheTest, BottomPriorityMidpointInsertion) {
// Allocate 2 cache entries to high-pri pool and 2 to low-pri pool.
NewCache(6, /* high_pri_pool_ratio */ 0.35, /* low_pri_pool_ratio */ 0.35);
Insert("a", Cache::Priority::BOTTOM);
Insert("b", Cache::Priority::BOTTOM);
Insert("i", Cache::Priority::LOW);
Insert("j", Cache::Priority::LOW);
Insert("x", Cache::Priority::HIGH);
Insert("y", Cache::Priority::HIGH);
ValidateLRUList({"a", "b", "i", "j", "x", "y"}, 2, 2, 2);
// Low-pri entries will be inserted to the tail of low-pri list (the
// midpoint). After lookup, 'k' will move to the tail of the full list, and
// 'x' will spill over to the low-pri pool.
Insert("k", Cache::Priority::LOW);
ValidateLRUList({"b", "i", "j", "k", "x", "y"}, 2, 2, 2);
ASSERT_TRUE(Lookup("k"));
ValidateLRUList({"b", "i", "j", "x", "y", "k"}, 2, 2, 2);
// High-pri entries will be inserted to the tail of full list. Although y was
// inserted with high priority, it got spilled over to the low-pri pool. As
// a result, j also got spilled over to the bottom-pri pool.
Insert("z", Cache::Priority::HIGH);
ValidateLRUList({"i", "j", "x", "y", "k", "z"}, 2, 2, 2);
Erase("x");
ValidateLRUList({"i", "j", "y", "k", "z"}, 2, 1, 2);
Erase("y");
ValidateLRUList({"i", "j", "k", "z"}, 2, 0, 2);
// Bottom-pri entries will be inserted to the tail of bottom-pri list.
Insert("c", Cache::Priority::BOTTOM);
ValidateLRUList({"i", "j", "c", "k", "z"}, 2, 0, 3);
Insert("d", Cache::Priority::BOTTOM);
ValidateLRUList({"i", "j", "c", "d", "k", "z"}, 2, 0, 4);
Insert("e", Cache::Priority::BOTTOM);
ValidateLRUList({"j", "c", "d", "e", "k", "z"}, 2, 0, 4);
// Low-pri entries will be inserted to the tail of low-pri list (the
// midpoint).
Insert("l", Cache::Priority::LOW);
ValidateLRUList({"c", "d", "e", "l", "k", "z"}, 2, 1, 3);
Insert("m", Cache::Priority::LOW);
ValidateLRUList({"d", "e", "l", "m", "k", "z"}, 2, 2, 2);
Erase("k");
ValidateLRUList({"d", "e", "l", "m", "z"}, 1, 2, 2);
Erase("z");
ValidateLRUList({"d", "e", "l", "m"}, 0, 2, 2);
// Bottom-pri entries will be inserted to the tail of bottom-pri list.
Insert("f", Cache::Priority::BOTTOM);
ValidateLRUList({"d", "e", "f", "l", "m"}, 0, 2, 3);
Insert("g", Cache::Priority::BOTTOM);
ValidateLRUList({"d", "e", "f", "g", "l", "m"}, 0, 2, 4);
// High-pri entries will be inserted to the tail of full list.
Insert("o", Cache::Priority::HIGH);
ValidateLRUList({"e", "f", "g", "l", "m", "o"}, 1, 2, 3);
Insert("p", Cache::Priority::HIGH);
ValidateLRUList({"f", "g", "l", "m", "o", "p"}, 2, 2, 2);
}
TEST_F(LRUCacheTest, EntriesWithPriority) {
// Allocate 2 cache entries to high-pri pool and 2 to low-pri pool.
NewCache(6, /* high_pri_pool_ratio */ 0.35, /* low_pri_pool_ratio */ 0.35);
Insert("a", Cache::Priority::LOW);
Insert("b", Cache::Priority::LOW);
ValidateLRUList({"a", "b"}, 0, 2, 0);
// Low-pri entries can overflow to bottom-pri pool.
Insert("c", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c"}, 0, 2, 1);
// Bottom-pri entries can take high-pri pool capacity if available
Insert("t", Cache::Priority::LOW);
Insert("u", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c", "t", "u"}, 0, 2, 3);
Insert("v", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c", "t", "u", "v"}, 0, 2, 4);
Insert("w", Cache::Priority::LOW);
ValidateLRUList({"b", "c", "t", "u", "v", "w"}, 0, 2, 4);
Insert("X", Cache::Priority::HIGH);
Insert("Y", Cache::Priority::HIGH);
ValidateLRUList({"t", "u", "v", "w", "X", "Y"}, 2, 2, 2);
// After lookup, the high-pri entry 'X' got spilled over to the low-pri pool.
// The low-pri entry 'v' got spilled over to the bottom-pri pool.
Insert("Z", Cache::Priority::HIGH);
ValidateLRUList({"u", "v", "w", "X", "Y", "Z"}, 2, 2, 2);
// Low-pri entries will be inserted to head of low-pri pool.
Insert("a", Cache::Priority::LOW);
ValidateLRUList({"v", "w", "X", "a", "Y", "Z"}, 2, 2, 2);
// After lookup, the high-pri entry 'Y' got spilled over to the low-pri pool.
// The low-pri entry 'X' got spilled over to the bottom-pri pool.
ASSERT_TRUE(Lookup("v"));
ValidateLRUList({"w", "X", "a", "Y", "Z", "v"}, 2, 2, 2);
// After lookup, the high-pri entry 'Z' got spilled over to the low-pri pool.
// The low-pri entry 'a' got spilled over to the bottom-pri pool.
ASSERT_TRUE(Lookup("X"));
ValidateLRUList({"w", "a", "Y", "Z", "v", "X"}, 2, 2, 2);
// After lookup, the low pri entry 'Z' got promoted back to high-pri pool. The
// high-pri entry 'v' got spilled over to the low-pri pool.
ASSERT_TRUE(Lookup("Z"));
ValidateLRUList({"w", "a", "Y", "v", "X", "Z"}, 2, 2, 2);
Erase("Y");
ValidateLRUList({"w", "a", "v", "X", "Z"}, 2, 1, 2);
Erase("X");
ValidateLRUList({"w", "a", "v", "Z"}, 1, 1, 2);
Insert("d", Cache::Priority::LOW);
Insert("e", Cache::Priority::LOW);
ValidateLRUList({"w", "a", "v", "d", "e", "Z"}, 1, 2, 3);
Insert("f", Cache::Priority::LOW);
Insert("g", Cache::Priority::LOW);
ValidateLRUList({"v", "d", "e", "f", "g", "Z"}, 1, 2, 3);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"v", "e", "f", "g", "Z", "d"}, 2, 2, 2);
// Erase some entries.
Erase("e");
Erase("f");
Erase("Z");
ValidateLRUList({"v", "g", "d"}, 1, 1, 1);
// Bottom-pri entries can take low- and high-pri pool capacity if available
Insert("o", Cache::Priority::BOTTOM);
ValidateLRUList({"v", "o", "g", "d"}, 1, 1, 2);
Insert("p", Cache::Priority::BOTTOM);
ValidateLRUList({"v", "o", "p", "g", "d"}, 1, 1, 3);
Insert("q", Cache::Priority::BOTTOM);
ValidateLRUList({"v", "o", "p", "q", "g", "d"}, 1, 1, 4);
// High-pri entries can overflow to low-pri pool, and bottom-pri entries will
// be evicted.
Insert("x", Cache::Priority::HIGH);
ValidateLRUList({"o", "p", "q", "g", "d", "x"}, 2, 1, 3);
Insert("y", Cache::Priority::HIGH);
ValidateLRUList({"p", "q", "g", "d", "x", "y"}, 2, 2, 2);
Insert("z", Cache::Priority::HIGH);
ValidateLRUList({"q", "g", "d", "x", "y", "z"}, 2, 2, 2);
// 'g' is bottom-pri before this lookup, it will be inserted to head of
// high-pri pool after lookup.
ASSERT_TRUE(Lookup("g"));
ValidateLRUList({"q", "d", "x", "y", "z", "g"}, 2, 2, 2);
// High-pri entries will be inserted to head of high-pri pool after lookup.
ASSERT_TRUE(Lookup("z"));
ValidateLRUList({"q", "d", "x", "y", "g", "z"}, 2, 2, 2);
// Bottom-pri entries will be inserted to head of high-pri pool after lookup.
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"q", "x", "y", "g", "z", "d"}, 2, 2, 2);
// Bottom-pri entries will be inserted to the tail of bottom-pri list.
Insert("m", Cache::Priority::BOTTOM);
ValidateLRUList({"x", "m", "y", "g", "z", "d"}, 2, 2, 2);
// Bottom-pri entries will be inserted to head of high-pri pool after lookup.
ASSERT_TRUE(Lookup("m"));
ValidateLRUList({"x", "y", "g", "z", "d", "m"}, 2, 2, 2);
}
namespace clock_cache {
template <class ClockCache>
class ClockCacheTest : public testing::Test {
public:
using Shard = typename ClockCache::Shard;
using Table = typename Shard::Table;
using TableOpts = typename Table::Opts;
ClockCacheTest() = default;
~ClockCacheTest() override { DeleteShard(); }
void DeleteShard() {
if (shard_ != nullptr) {
shard_->~ClockCacheShard();
port::cacheline_aligned_free(shard_);
shard_ = nullptr;
}
}
void NewShard(size_t capacity, bool strict_capacity_limit = true,
int eviction_effort_cap = 30) {
DeleteShard();
shard_ = static_cast<Shard*>(port::cacheline_aligned_alloc(sizeof(Shard)));
TableOpts opts{1 /*value_size*/, eviction_effort_cap};
new (shard_)
Shard(capacity, strict_capacity_limit, kDontChargeCacheMetadata,
/*allocator*/ nullptr, &eviction_callback_, &hash_seed_, opts);
}
Status Insert(const UniqueId64x2& hashed_key,
Cache::Priority priority = Cache::Priority::LOW) {
return shard_->Insert(TestKey(hashed_key), hashed_key, nullptr /*value*/,
&kNoopCacheItemHelper, 1 /*charge*/,
nullptr /*handle*/, priority);
}
Status Insert(char key, Cache::Priority priority = Cache::Priority::LOW) {
return Insert(TestHashedKey(key), priority);
}
Status InsertWithLen(char key, size_t len) {
std::string skey(len, key);
return shard_->Insert(skey, TestHashedKey(key), nullptr /*value*/,
&kNoopCacheItemHelper, 1 /*charge*/,
nullptr /*handle*/, Cache::Priority::LOW);
}
bool Lookup(const Slice& key, const UniqueId64x2& hashed_key,
bool useful = true) {
auto handle = shard_->Lookup(key, hashed_key);
if (handle) {
shard_->Release(handle, useful, /*erase_if_last_ref=*/false);
return true;
}
return false;
}
bool Lookup(const UniqueId64x2& hashed_key, bool useful = true) {
return Lookup(TestKey(hashed_key), hashed_key, useful);
}
bool Lookup(char key, bool useful = true) {
return Lookup(TestHashedKey(key), useful);
}
void Erase(char key) {
UniqueId64x2 hashed_key = TestHashedKey(key);
shard_->Erase(TestKey(hashed_key), hashed_key);
}
static inline Slice TestKey(const UniqueId64x2& hashed_key) {
return Slice(reinterpret_cast<const char*>(&hashed_key), 16U);
}
// A bad hash function for testing / stressing collision handling
static inline UniqueId64x2 TestHashedKey(char key) {
// For testing hash near-collision behavior, put the variance in
// hashed_key in bits that are unlikely to be used as hash bits.
return {(static_cast<uint64_t>(key) << 56) + 1234U, 5678U};
}
// A reasonable hash function, for testing "typical behavior" etc.
template <typename T>
static inline UniqueId64x2 CheapHash(T i) {
return {static_cast<uint64_t>(i) * uint64_t{0x85EBCA77C2B2AE63},
static_cast<uint64_t>(i) * uint64_t{0xC2B2AE3D27D4EB4F}};
}
Shard* shard_ = nullptr;
private:
Cache::EvictionCallback eviction_callback_;
uint32_t hash_seed_ = 0;
};
using ClockCacheTypes =
::testing::Types<AutoHyperClockCache, FixedHyperClockCache>;
TYPED_TEST_CASE(ClockCacheTest, ClockCacheTypes);
TYPED_TEST(ClockCacheTest, Misc) {
this->NewShard(3);
// NOTE: templated base class prevents simple naming of inherited members,
// so lots of `this->`
auto& shard = *this->shard_;
// Key size stuff
EXPECT_OK(this->InsertWithLen('a', 16));
EXPECT_NOK(this->InsertWithLen('b', 15));
EXPECT_OK(this->InsertWithLen('b', 16));
EXPECT_NOK(this->InsertWithLen('c', 17));
EXPECT_NOK(this->InsertWithLen('d', 1000));
EXPECT_NOK(this->InsertWithLen('e', 11));
EXPECT_NOK(this->InsertWithLen('f', 0));
// Some of this is motivated by code coverage
std::string wrong_size_key(15, 'x');
EXPECT_FALSE(this->Lookup(wrong_size_key, this->TestHashedKey('x')));
EXPECT_FALSE(shard.Ref(nullptr));
EXPECT_FALSE(shard.Release(nullptr));
shard.Erase(wrong_size_key, this->TestHashedKey('x')); // no-op
}
TYPED_TEST(ClockCacheTest, Limits) {
constexpr size_t kCapacity = 64;
this->NewShard(kCapacity, false /*strict_capacity_limit*/);
auto& shard = *this->shard_;
using HandleImpl = typename ClockCacheTest<TypeParam>::Shard::HandleImpl;
for (bool strict_capacity_limit : {false, true, false}) {
SCOPED_TRACE("strict_capacity_limit = " +
std::to_string(strict_capacity_limit));
// Also tests switching between strict limit and not
shard.SetStrictCapacityLimit(strict_capacity_limit);
UniqueId64x2 hkey = this->TestHashedKey('x');
// Single entry charge beyond capacity
{
Status s = shard.Insert(this->TestKey(hkey), hkey, nullptr /*value*/,
&kNoopCacheItemHelper, kCapacity + 2 /*charge*/,
nullptr /*handle*/, Cache::Priority::LOW);
if (strict_capacity_limit) {
EXPECT_TRUE(s.IsMemoryLimit());
} else {
EXPECT_OK(s);
}
}
// Single entry fills capacity
{
HandleImpl* h;
ASSERT_OK(shard.Insert(this->TestKey(hkey), hkey, nullptr /*value*/,
&kNoopCacheItemHelper, kCapacity /*charge*/, &h,
Cache::Priority::LOW));
// Try to insert more
Status s = this->Insert('a');
if (strict_capacity_limit) {
EXPECT_TRUE(s.IsMemoryLimit());
} else {
EXPECT_OK(s);
}
// Release entry filling capacity.
// Cover useful = false case.
shard.Release(h, false /*useful*/, false /*erase_if_last_ref*/);
}
// Insert more than table size can handle to exceed occupancy limit.
// (Cleverly using mostly zero-charge entries, but some non-zero to
// verify usage tracking on detached entries.)
{
size_t n = kCapacity * 5 + 1;
std::unique_ptr<HandleImpl* []> ha { new HandleImpl* [n] {} };
Status s;
for (size_t i = 0; i < n && s.ok(); ++i) {
hkey[1] = i;
s = shard.Insert(this->TestKey(hkey), hkey, nullptr /*value*/,
&kNoopCacheItemHelper,
(i + kCapacity < n) ? 0 : 1 /*charge*/, &ha[i],
Cache::Priority::LOW);
if (i == 0) {
EXPECT_OK(s);
}
}
if (strict_capacity_limit) {
EXPECT_TRUE(s.IsMemoryLimit());
} else {
EXPECT_OK(s);
}
// Same result if not keeping a reference
s = this->Insert('a');
if (strict_capacity_limit) {
EXPECT_TRUE(s.IsMemoryLimit());
} else {
EXPECT_OK(s);
}
EXPECT_EQ(shard.GetOccupancyCount(), shard.GetOccupancyLimit());
// Regardless, we didn't allow table to actually get full
EXPECT_LT(shard.GetOccupancyCount(), shard.GetTableAddressCount());
// Release handles
for (size_t i = 0; i < n; ++i) {
if (ha[i]) {
shard.Release(ha[i]);
}
}
}
}
}
TYPED_TEST(ClockCacheTest, ClockEvictionTest) {
for (bool strict_capacity_limit : {false, true}) {
SCOPED_TRACE("strict_capacity_limit = " +
std::to_string(strict_capacity_limit));
this->NewShard(6, strict_capacity_limit);
auto& shard = *this->shard_;
EXPECT_OK(this->Insert('a', Cache::Priority::BOTTOM));
EXPECT_OK(this->Insert('b', Cache::Priority::LOW));
EXPECT_OK(this->Insert('c', Cache::Priority::HIGH));
EXPECT_OK(this->Insert('d', Cache::Priority::BOTTOM));
EXPECT_OK(this->Insert('e', Cache::Priority::LOW));
EXPECT_OK(this->Insert('f', Cache::Priority::HIGH));
EXPECT_TRUE(this->Lookup('a', /*use*/ false));
EXPECT_TRUE(this->Lookup('b', /*use*/ false));
EXPECT_TRUE(this->Lookup('c', /*use*/ false));
EXPECT_TRUE(this->Lookup('d', /*use*/ false));
EXPECT_TRUE(this->Lookup('e', /*use*/ false));
EXPECT_TRUE(this->Lookup('f', /*use*/ false));
// Ensure bottom are evicted first, even if new entries are low
EXPECT_OK(this->Insert('g', Cache::Priority::LOW));
EXPECT_OK(this->Insert('h', Cache::Priority::LOW));
EXPECT_FALSE(this->Lookup('a', /*use*/ false));
EXPECT_TRUE(this->Lookup('b', /*use*/ false));
EXPECT_TRUE(this->Lookup('c', /*use*/ false));
EXPECT_FALSE(this->Lookup('d', /*use*/ false));
EXPECT_TRUE(this->Lookup('e', /*use*/ false));
EXPECT_TRUE(this->Lookup('f', /*use*/ false));
// Mark g & h useful
EXPECT_TRUE(this->Lookup('g', /*use*/ true));
EXPECT_TRUE(this->Lookup('h', /*use*/ true));
// Then old LOW entries
EXPECT_OK(this->Insert('i', Cache::Priority::LOW));
EXPECT_OK(this->Insert('j', Cache::Priority::LOW));
EXPECT_FALSE(this->Lookup('b', /*use*/ false));
EXPECT_TRUE(this->Lookup('c', /*use*/ false));
EXPECT_FALSE(this->Lookup('e', /*use*/ false));
EXPECT_TRUE(this->Lookup('f', /*use*/ false));
// Mark g & h useful once again
EXPECT_TRUE(this->Lookup('g', /*use*/ true));
EXPECT_TRUE(this->Lookup('h', /*use*/ true));
EXPECT_TRUE(this->Lookup('i', /*use*/ false));
EXPECT_TRUE(this->Lookup('j', /*use*/ false));
// Then old HIGH entries
EXPECT_OK(this->Insert('k', Cache::Priority::LOW));
EXPECT_OK(this->Insert('l', Cache::Priority::LOW));
EXPECT_FALSE(this->Lookup('c', /*use*/ false));
EXPECT_FALSE(this->Lookup('f', /*use*/ false));
EXPECT_TRUE(this->Lookup('g', /*use*/ false));
EXPECT_TRUE(this->Lookup('h', /*use*/ false));
EXPECT_TRUE(this->Lookup('i', /*use*/ false));
EXPECT_TRUE(this->Lookup('j', /*use*/ false));
EXPECT_TRUE(this->Lookup('k', /*use*/ false));
EXPECT_TRUE(this->Lookup('l', /*use*/ false));
// Then the (roughly) least recently useful
EXPECT_OK(this->Insert('m', Cache::Priority::HIGH));
EXPECT_OK(this->Insert('n', Cache::Priority::HIGH));
EXPECT_TRUE(this->Lookup('g', /*use*/ false));
EXPECT_TRUE(this->Lookup('h', /*use*/ false));
EXPECT_FALSE(this->Lookup('i', /*use*/ false));
EXPECT_FALSE(this->Lookup('j', /*use*/ false));
EXPECT_TRUE(this->Lookup('k', /*use*/ false));
EXPECT_TRUE(this->Lookup('l', /*use*/ false));
// Now try changing capacity down
shard.SetCapacity(4);
// Insert to ensure evictions happen
EXPECT_OK(this->Insert('o', Cache::Priority::LOW));
EXPECT_OK(this->Insert('p', Cache::Priority::LOW));
EXPECT_FALSE(this->Lookup('g', /*use*/ false));
EXPECT_FALSE(this->Lookup('h', /*use*/ false));
EXPECT_FALSE(this->Lookup('k', /*use*/ false));
EXPECT_FALSE(this->Lookup('l', /*use*/ false));
EXPECT_TRUE(this->Lookup('m', /*use*/ false));
EXPECT_TRUE(this->Lookup('n', /*use*/ false));
EXPECT_TRUE(this->Lookup('o', /*use*/ false));
EXPECT_TRUE(this->Lookup('p', /*use*/ false));
// Now try changing capacity up
EXPECT_TRUE(this->Lookup('m', /*use*/ true));
EXPECT_TRUE(this->Lookup('n', /*use*/ true));
shard.SetCapacity(6);
EXPECT_OK(this->Insert('q', Cache::Priority::HIGH));
EXPECT_OK(this->Insert('r', Cache::Priority::HIGH));
EXPECT_OK(this->Insert('s', Cache::Priority::HIGH));
EXPECT_OK(this->Insert('t', Cache::Priority::HIGH));
EXPECT_FALSE(this->Lookup('o', /*use*/ false));
EXPECT_FALSE(this->Lookup('p', /*use*/ false));
EXPECT_TRUE(this->Lookup('m', /*use*/ false));
EXPECT_TRUE(this->Lookup('n', /*use*/ false));
EXPECT_TRUE(this->Lookup('q', /*use*/ false));
EXPECT_TRUE(this->Lookup('r', /*use*/ false));
EXPECT_TRUE(this->Lookup('s', /*use*/ false));
EXPECT_TRUE(this->Lookup('t', /*use*/ false));
}
}
TYPED_TEST(ClockCacheTest, ClockEvictionEffortCapTest) {
using HandleImpl = typename ClockCacheTest<TypeParam>::Shard::HandleImpl;
for (bool strict_capacity_limit : {true, false}) {
SCOPED_TRACE("strict_capacity_limit = " +
std::to_string(strict_capacity_limit));
for (int eec : {-42, 0, 1, 10, 100, 1000}) {
SCOPED_TRACE("eviction_effort_cap = " + std::to_string(eec));
constexpr size_t kCapacity = 1000;
// Start with much larger capacity to ensure that we can go way over
// capacity without reaching table occupancy limit.
this->NewShard(3 * kCapacity, strict_capacity_limit, eec);
auto& shard = *this->shard_;
shard.SetCapacity(kCapacity);
// Nearly fill the cache with pinned entries, then add a bunch of
// non-pinned entries. eviction_effort_cap should affect how many
// evictable entries are present beyond the cache capacity, despite
// being evictable.
constexpr size_t kCount = kCapacity - 1;
std::unique_ptr<HandleImpl* []> ha { new HandleImpl* [kCount] {} };
for (size_t i = 0; i < 2 * kCount; ++i) {
UniqueId64x2 hkey = this->CheapHash(i);
ASSERT_OK(shard.Insert(
this->TestKey(hkey), hkey, nullptr /*value*/, &kNoopCacheItemHelper,
1 /*charge*/, i < kCount ? &ha[i] : nullptr, Cache::Priority::LOW));
}
if (strict_capacity_limit) {
// If strict_capacity_limit is enabled, the cache will never exceed its
// capacity
EXPECT_EQ(shard.GetOccupancyCount(), kCapacity);
} else {
// Rough inverse relationship between cap and possible memory
// explosion, which shows up as increased table occupancy count.
int effective_eec = std::max(int{1}, eec) + 1;
EXPECT_NEAR(shard.GetOccupancyCount() * 1.0,
kCount * (1 + 1.4 / effective_eec),
kCount * (0.6 / effective_eec) + 1.0);
}
for (size_t i = 0; i < kCount; ++i) {
shard.Release(ha[i]);
}
}
}
}
namespace {
struct DeleteCounter {
int deleted = 0;
};
const Cache::CacheItemHelper kDeleteCounterHelper{
CacheEntryRole::kMisc,
[](Cache::ObjectPtr value, MemoryAllocator* /*alloc*/) {
static_cast<DeleteCounter*>(value)->deleted += 1;
}};
} // namespace
// Testing calls to CorrectNearOverflow in Release
TYPED_TEST(ClockCacheTest, ClockCounterOverflowTest) {
this->NewShard(6, /*strict_capacity_limit*/ false);
auto& shard = *this->shard_;
using HandleImpl = typename ClockCacheTest<TypeParam>::Shard::HandleImpl;
HandleImpl* h;
DeleteCounter val;
UniqueId64x2 hkey = this->TestHashedKey('x');
ASSERT_OK(shard.Insert(this->TestKey(hkey), hkey, &val, &kDeleteCounterHelper,
1, &h, Cache::Priority::HIGH));
// Some large number outstanding
shard.TEST_RefN(h, 123456789);
// Simulate many lookup/ref + release, plenty to overflow counters
for (int i = 0; i < 10000; ++i) {
shard.TEST_RefN(h, 1234567);
shard.TEST_ReleaseN(h, 1234567);
}
// Mark it invisible (to reach a different CorrectNearOverflow() in Release)
shard.Erase(this->TestKey(hkey), hkey);
// Simulate many more lookup/ref + release (one-by-one would be too
// expensive for unit test)
for (int i = 0; i < 10000; ++i) {
shard.TEST_RefN(h, 1234567);
shard.TEST_ReleaseN(h, 1234567);
}
// Free all but last 1
shard.TEST_ReleaseN(h, 123456789);
// Still alive
ASSERT_EQ(val.deleted, 0);
// Free last ref, which will finalize erasure
shard.Release(h);
// Deleted
ASSERT_EQ(val.deleted, 1);
}
TYPED_TEST(ClockCacheTest, ClockTableFull) {
// Force clock cache table to fill up (not usually allowed) in order
// to test full probe sequence that is theoretically possible due to
// parallel operations
this->NewShard(6, /*strict_capacity_limit*/ false);
auto& shard = *this->shard_;
using HandleImpl = typename ClockCacheTest<TypeParam>::Shard::HandleImpl;
size_t size = shard.GetTableAddressCount();
ASSERT_LE(size + 3, 256); // for using char keys
// Modify occupancy and capacity limits to attempt insert on full
shard.TEST_MutableOccupancyLimit() = size + 100;
shard.SetCapacity(size + 100);
DeleteCounter val;
std::vector<HandleImpl*> handles;
// NOTE: the three extra insertions should create standalone entries
for (size_t i = 0; i < size + 3; ++i) {
UniqueId64x2 hkey = this->TestHashedKey(static_cast<char>(i));
ASSERT_OK(shard.Insert(this->TestKey(hkey), hkey, &val,
&kDeleteCounterHelper, 1, &handles.emplace_back(),
Cache::Priority::HIGH));
}
for (size_t i = 0; i < size + 3; ++i) {
UniqueId64x2 hkey = this->TestHashedKey(static_cast<char>(i));
HandleImpl* h = shard.Lookup(this->TestKey(hkey), hkey);
if (i < size) {
ASSERT_NE(h, nullptr);
shard.Release(h);
} else {
// Standalone entries not visible by lookup
ASSERT_EQ(h, nullptr);
}
}
for (size_t i = 0; i < size + 3; ++i) {
ASSERT_NE(handles[i], nullptr);
shard.Release(handles[i]);
if (i < size) {
// Everything still in cache
ASSERT_EQ(val.deleted, 0);
} else {
// Standalone entries freed on release
ASSERT_EQ(val.deleted, i + 1 - size);
}
}
for (size_t i = size + 3; i > 0; --i) {
UniqueId64x2 hkey = this->TestHashedKey(static_cast<char>(i - 1));
shard.Erase(this->TestKey(hkey), hkey);
if (i - 1 > size) {
ASSERT_EQ(val.deleted, 3);
} else {
ASSERT_EQ(val.deleted, 3 + size - (i - 1));
}
}
}
// This test is mostly to exercise some corner case logic, by forcing two
// keys to have the same hash, and more
TYPED_TEST(ClockCacheTest, CollidingInsertEraseTest) {
this->NewShard(6, /*strict_capacity_limit*/ false);
auto& shard = *this->shard_;
using HandleImpl = typename ClockCacheTest<TypeParam>::Shard::HandleImpl;
DeleteCounter val;
UniqueId64x2 hkey1 = this->TestHashedKey('x');
Slice key1 = this->TestKey(hkey1);
UniqueId64x2 hkey2 = this->TestHashedKey('y');
Slice key2 = this->TestKey(hkey2);
UniqueId64x2 hkey3 = this->TestHashedKey('z');
Slice key3 = this->TestKey(hkey3);
HandleImpl* h1;
ASSERT_OK(shard.Insert(key1, hkey1, &val, &kDeleteCounterHelper, 1, &h1,
Cache::Priority::HIGH));
HandleImpl* h2;
ASSERT_OK(shard.Insert(key2, hkey2, &val, &kDeleteCounterHelper, 1, &h2,
Cache::Priority::HIGH));
HandleImpl* h3;
ASSERT_OK(shard.Insert(key3, hkey3, &val, &kDeleteCounterHelper, 1, &h3,
Cache::Priority::HIGH));
// Can repeatedly lookup+release despite the hash collision
HandleImpl* tmp_h;
for (bool erase_if_last_ref : {true, false}) { // but not last ref
tmp_h = shard.Lookup(key1, hkey1);
ASSERT_EQ(h1, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
tmp_h = shard.Lookup(key2, hkey2);
ASSERT_EQ(h2, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
tmp_h = shard.Lookup(key3, hkey3);
ASSERT_EQ(h3, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
}
// Make h1 invisible
shard.Erase(key1, hkey1);
// Redundant erase
shard.Erase(key1, hkey1);
// All still alive
ASSERT_EQ(val.deleted, 0);
// Invisible to Lookup
tmp_h = shard.Lookup(key1, hkey1);
ASSERT_EQ(nullptr, tmp_h);
// Can still find h2, h3
for (bool erase_if_last_ref : {true, false}) { // but not last ref
tmp_h = shard.Lookup(key2, hkey2);
ASSERT_EQ(h2, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
tmp_h = shard.Lookup(key3, hkey3);
ASSERT_EQ(h3, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
}
// Also Insert with invisible entry there
ASSERT_OK(shard.Insert(key1, hkey1, &val, &kDeleteCounterHelper, 1, nullptr,
Cache::Priority::HIGH));
tmp_h = shard.Lookup(key1, hkey1);
// Found but distinct handle
ASSERT_NE(nullptr, tmp_h);
ASSERT_NE(h1, tmp_h);
ASSERT_TRUE(shard.Release(tmp_h, /*erase_if_last_ref*/ true));
// tmp_h deleted
ASSERT_EQ(val.deleted--, 1);
// Release last ref on h1 (already invisible)
ASSERT_TRUE(shard.Release(h1, /*erase_if_last_ref*/ false));
// h1 deleted
ASSERT_EQ(val.deleted--, 1);
h1 = nullptr;
// Can still find h2, h3
for (bool erase_if_last_ref : {true, false}) { // but not last ref
tmp_h = shard.Lookup(key2, hkey2);
ASSERT_EQ(h2, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
tmp_h = shard.Lookup(key3, hkey3);
ASSERT_EQ(h3, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
}
// Release last ref on h2
ASSERT_FALSE(shard.Release(h2, /*erase_if_last_ref*/ false));
// h2 still not deleted (unreferenced in cache)
ASSERT_EQ(val.deleted, 0);
// Can still find it
tmp_h = shard.Lookup(key2, hkey2);
ASSERT_EQ(h2, tmp_h);
// Release last ref on h2, with erase
ASSERT_TRUE(shard.Release(h2, /*erase_if_last_ref*/ true));
// h2 deleted
ASSERT_EQ(val.deleted--, 1);
tmp_h = shard.Lookup(key2, hkey2);
ASSERT_EQ(nullptr, tmp_h);
// Can still find h3
for (bool erase_if_last_ref : {true, false}) { // but not last ref
tmp_h = shard.Lookup(key3, hkey3);
ASSERT_EQ(h3, tmp_h);
ASSERT_FALSE(shard.Release(tmp_h, erase_if_last_ref));
}
// Release last ref on h3, without erase
ASSERT_FALSE(shard.Release(h3, /*erase_if_last_ref*/ false));
// h3 still not deleted (unreferenced in cache)
ASSERT_EQ(val.deleted, 0);
// Explicit erase
shard.Erase(key3, hkey3);
// h3 deleted
ASSERT_EQ(val.deleted--, 1);
tmp_h = shard.Lookup(key3, hkey3);
ASSERT_EQ(nullptr, tmp_h);
}
// This uses the public API to effectively test CalcHashBits etc.
TYPED_TEST(ClockCacheTest, TableSizesTest) {
for (size_t est_val_size : {1U, 5U, 123U, 2345U, 345678U}) {
SCOPED_TRACE("est_val_size = " + std::to_string(est_val_size));
for (double est_count : {1.1, 2.2, 511.9, 512.1, 2345.0}) {
SCOPED_TRACE("est_count = " + std::to_string(est_count));
size_t capacity = static_cast<size_t>(est_val_size * est_count);
// kDontChargeCacheMetadata
auto cache = HyperClockCacheOptions(
capacity, est_val_size, /*num shard_bits*/ -1,
/*strict_capacity_limit*/ false,
/*memory_allocator*/ nullptr, kDontChargeCacheMetadata)
.MakeSharedCache();
// Table sizes are currently only powers of two
EXPECT_GE(cache->GetTableAddressCount(),
est_count / FixedHyperClockTable::kLoadFactor);
EXPECT_LE(cache->GetTableAddressCount(),
est_count / FixedHyperClockTable::kLoadFactor * 2.0);
EXPECT_EQ(cache->GetUsage(), 0);
// kFullChargeMetaData
// Because table sizes are currently only powers of two, sizes get
// really weird when metadata is a huge portion of capacity. For example,
// doubling the table size could cut by 90% the space available to
// values. Therefore, we omit those weird cases for now.
if (est_val_size >= 512) {
cache = HyperClockCacheOptions(
capacity, est_val_size, /*num shard_bits*/ -1,
/*strict_capacity_limit*/ false,
/*memory_allocator*/ nullptr, kFullChargeCacheMetadata)
.MakeSharedCache();
double est_count_after_meta =
(capacity - cache->GetUsage()) * 1.0 / est_val_size;
EXPECT_GE(cache->GetTableAddressCount(),
est_count_after_meta / FixedHyperClockTable::kLoadFactor);
EXPECT_LE(
cache->GetTableAddressCount(),
est_count_after_meta / FixedHyperClockTable::kLoadFactor * 2.0);
}
}
}
}
} // namespace clock_cache
class TestSecondaryCache : public SecondaryCache {
public:
// Specifies what action to take on a lookup for a particular key
enum ResultType {
SUCCESS,
// Fail lookup immediately
FAIL,
// Defer the result. It will returned after Wait/WaitAll is called
DEFER,
// Defer the result and eventually return failure
DEFER_AND_FAIL
};
using ResultMap = std::unordered_map<std::string, ResultType>;
explicit TestSecondaryCache(size_t capacity, bool insert_saved = false)
: cache_(NewLRUCache(capacity, 0, false, 0.5 /* high_pri_pool_ratio */,
nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata)),
num_inserts_(0),
num_lookups_(0),
inject_failure_(false),
insert_saved_(insert_saved) {}
const char* Name() const override { return "TestSecondaryCache"; }
void InjectFailure() { inject_failure_ = true; }
void ResetInjectFailure() { inject_failure_ = false; }
Status Insert(const Slice& key, Cache::ObjectPtr value,
const Cache::CacheItemHelper* helper,
bool /*force_insert*/) override {
if (inject_failure_) {
return Status::Corruption("Insertion Data Corrupted");
}
CheckCacheKeyCommonPrefix(key);
size_t size;
char* buf;
Status s;
num_inserts_++;
size = (*helper->size_cb)(value);
buf = new char[size + sizeof(uint64_t)];
EncodeFixed64(buf, size);
s = (*helper->saveto_cb)(value, 0, size, buf + sizeof(uint64_t));
if (!s.ok()) {
delete[] buf;
return s;
}
return cache_.Insert(key, buf, size);
}
Status InsertSaved(const Slice& key, const Slice& saved,
CompressionType /*type*/ = kNoCompression,
CacheTier /*source*/ = CacheTier::kVolatileTier) override {
if (insert_saved_) {
return Insert(key, const_cast<Slice*>(&saved), &kSliceCacheItemHelper,
/*force_insert=*/true);
} else {
return Status::OK();
}
}
std::unique_ptr<SecondaryCacheResultHandle> Lookup(
const Slice& key, const Cache::CacheItemHelper* helper,
Cache::CreateContext* create_context, bool /*wait*/,
bool /*advise_erase*/, Statistics* /*stats*/,
bool& kept_in_sec_cache) override {
std::string key_str = key.ToString();
TEST_SYNC_POINT_CALLBACK("TestSecondaryCache::Lookup", &key_str);
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle;
kept_in_sec_cache = false;
ResultType type = ResultType::SUCCESS;
auto iter = result_map_.find(key.ToString());
if (iter != result_map_.end()) {
type = iter->second;
}
if (type == ResultType::FAIL) {
return secondary_handle;
}
TypedHandle* handle = cache_.Lookup(key);
num_lookups_++;
if (handle) {
Cache::ObjectPtr value = nullptr;
size_t charge = 0;
Status s;
if (type != ResultType::DEFER_AND_FAIL) {
char* ptr = cache_.Value(handle);
size_t size = DecodeFixed64(ptr);
ptr += sizeof(uint64_t);
s = helper->create_cb(Slice(ptr, size), kNoCompression,
CacheTier::kVolatileTier, create_context,
/*alloc*/ nullptr, &value, &charge);
}
if (s.ok()) {
secondary_handle.reset(new TestSecondaryCacheResultHandle(
cache_.get(), handle, value, charge, type));
kept_in_sec_cache = true;
} else {
cache_.Release(handle);
}
}
return secondary_handle;
}
bool SupportForceErase() const override { return false; }
void Erase(const Slice& /*key*/) override {}
void WaitAll(std::vector<SecondaryCacheResultHandle*> handles) override {
for (SecondaryCacheResultHandle* handle : handles) {
TestSecondaryCacheResultHandle* sec_handle =
static_cast<TestSecondaryCacheResultHandle*>(handle);
sec_handle->SetReady();
}
}
std::string GetPrintableOptions() const override { return ""; }
void SetResultMap(ResultMap&& map) { result_map_ = std::move(map); }
uint32_t num_inserts() { return num_inserts_; }
uint32_t num_lookups() { return num_lookups_; }
void CheckCacheKeyCommonPrefix(const Slice& key) {
Slice current_prefix(key.data(), OffsetableCacheKey::kCommonPrefixSize);
if (ckey_prefix_.empty()) {
ckey_prefix_ = current_prefix.ToString();
} else {
EXPECT_EQ(ckey_prefix_, current_prefix.ToString());
}
}
private:
class TestSecondaryCacheResultHandle : public SecondaryCacheResultHandle {
public:
TestSecondaryCacheResultHandle(Cache* cache, Cache::Handle* handle,
Cache::ObjectPtr value, size_t size,
ResultType type)
: cache_(cache),
handle_(handle),
value_(value),
size_(size),
is_ready_(true) {
if (type != ResultType::SUCCESS) {
is_ready_ = false;
}
}
~TestSecondaryCacheResultHandle() override { cache_->Release(handle_); }
bool IsReady() override { return is_ready_; }
void Wait() override {}
Cache::ObjectPtr Value() override {
assert(is_ready_);
return value_;
}
size_t Size() override { return Value() ? size_ : 0; }
void SetReady() { is_ready_ = true; }
private:
Cache* cache_;
Cache::Handle* handle_;
Cache::ObjectPtr value_;
size_t size_;
bool is_ready_;
};
using SharedCache =
BasicTypedSharedCacheInterface<char[], CacheEntryRole::kMisc>;
using TypedHandle = SharedCache::TypedHandle;
SharedCache cache_;
uint32_t num_inserts_;
uint32_t num_lookups_;
bool inject_failure_;
bool insert_saved_;
std::string ckey_prefix_;
ResultMap result_map_;
};
using secondary_cache_test_util::GetTestingCacheTypes;
using secondary_cache_test_util::WithCacheTypeParam;
class BasicSecondaryCacheTest : public testing::Test,
public WithCacheTypeParam {};
INSTANTIATE_TEST_CASE_P(BasicSecondaryCacheTest, BasicSecondaryCacheTest,
GetTestingCacheTypes());
class DBSecondaryCacheTest : public DBTestBase, public WithCacheTypeParam {
public:
DBSecondaryCacheTest()
: DBTestBase("db_secondary_cache_test", /*env_do_fsync=*/true) {
fault_fs_.reset(new FaultInjectionTestFS(env_->GetFileSystem()));
fault_env_.reset(new CompositeEnvWrapper(env_, fault_fs_));
}
std::shared_ptr<FaultInjectionTestFS> fault_fs_;
std::unique_ptr<Env> fault_env_;
};
INSTANTIATE_TEST_CASE_P(DBSecondaryCacheTest, DBSecondaryCacheTest,
GetTestingCacheTypes());
TEST_P(BasicSecondaryCacheTest, BasicTest) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(4096, true);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
std::shared_ptr<Statistics> stats = CreateDBStatistics();
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k3 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
Random rnd(301);
// Start with warming k3
std::string str3 = rnd.RandomString(1021);
ASSERT_OK(secondary_cache->InsertSaved(k3.AsSlice(), str3));
std::string str1 = rnd.RandomString(1021);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert(k1.AsSlice(), item1, GetHelper(), str1.length()));
std::string str2 = rnd.RandomString(1021);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert(k2.AsSlice(), item2, GetHelper(), str2.length()));
get_perf_context()->Reset();
Cache::Handle* handle;
handle = cache->Lookup(k2.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW, stats.get());
ASSERT_NE(handle, nullptr);
ASSERT_EQ(static_cast<TestItem*>(cache->Value(handle))->Size(), str2.size());
cache->Release(handle);
// This lookup should promote k1 and demote k2
handle = cache->Lookup(k1.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW, stats.get());
ASSERT_NE(handle, nullptr);
ASSERT_EQ(static_cast<TestItem*>(cache->Value(handle))->Size(), str1.size());
cache->Release(handle);
// This lookup should promote k3 and demote k1
handle = cache->Lookup(k3.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW, stats.get());
ASSERT_NE(handle, nullptr);
ASSERT_EQ(static_cast<TestItem*>(cache->Value(handle))->Size(), str3.size());
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 3u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_HITS),
secondary_cache->num_lookups());
PerfContext perf_ctx = *get_perf_context();
ASSERT_EQ(perf_ctx.secondary_cache_hit_count, secondary_cache->num_lookups());
cache.reset();
secondary_cache.reset();
}
TEST_P(BasicSecondaryCacheTest, StatsTest) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(4096, true);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
std::shared_ptr<Statistics> stats = CreateDBStatistics();
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k3 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
Random rnd(301);
// Start with warming secondary cache
std::string str1 = rnd.RandomString(1020);
std::string str2 = rnd.RandomString(1020);
std::string str3 = rnd.RandomString(1020);
ASSERT_OK(secondary_cache->InsertSaved(k1.AsSlice(), str1));
ASSERT_OK(secondary_cache->InsertSaved(k2.AsSlice(), str2));
ASSERT_OK(secondary_cache->InsertSaved(k3.AsSlice(), str3));
get_perf_context()->Reset();
Cache::Handle* handle;
handle = cache->Lookup(k1.AsSlice(), GetHelper(CacheEntryRole::kFilterBlock),
/*context*/ this, Cache::Priority::LOW, stats.get());
ASSERT_NE(handle, nullptr);
ASSERT_EQ(static_cast<TestItem*>(cache->Value(handle))->Size(), str1.size());
cache->Release(handle);
handle = cache->Lookup(k2.AsSlice(), GetHelper(CacheEntryRole::kIndexBlock),
/*context*/ this, Cache::Priority::LOW, stats.get());
ASSERT_NE(handle, nullptr);
ASSERT_EQ(static_cast<TestItem*>(cache->Value(handle))->Size(), str2.size());
cache->Release(handle);
handle = cache->Lookup(k3.AsSlice(), GetHelper(CacheEntryRole::kDataBlock),
/*context*/ this, Cache::Priority::LOW, stats.get());
ASSERT_NE(handle, nullptr);
ASSERT_EQ(static_cast<TestItem*>(cache->Value(handle))->Size(), str3.size());
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 3u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_HITS),
secondary_cache->num_lookups());
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_FILTER_HITS), 1);
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_INDEX_HITS), 1);
ASSERT_EQ(stats->getTickerCount(SECONDARY_CACHE_DATA_HITS), 1);
PerfContext perf_ctx = *get_perf_context();
ASSERT_EQ(perf_ctx.secondary_cache_hit_count, secondary_cache->num_lookups());
cache.reset();
secondary_cache.reset();
}
TEST_P(BasicSecondaryCacheTest, BasicFailTest) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048, true);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
auto item1 = std::make_unique<TestItem>(str1.data(), str1.length());
// NOTE: changed to assert helper != nullptr for efficiency / code size
// ASSERT_TRUE(cache->Insert(k1.AsSlice(), item1.get(), nullptr,
// str1.length()).IsInvalidArgument());
ASSERT_OK(
cache->Insert(k1.AsSlice(), item1.get(), GetHelper(), str1.length()));
item1.release(); // Appease clang-analyze "potential memory leak"
Cache::Handle* handle;
handle = cache->Lookup(k2.AsSlice(), nullptr, /*context*/ this,
Cache::Priority::LOW);
ASSERT_EQ(handle, nullptr);
handle = cache->Lookup(k2.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_EQ(handle, nullptr);
Cache::AsyncLookupHandle async_handle;
async_handle.key = k2.AsSlice();
async_handle.helper = GetHelper();
async_handle.create_context = this;
async_handle.priority = Cache::Priority::LOW;
cache->StartAsyncLookup(async_handle);
cache->Wait(async_handle);
handle = async_handle.Result();
ASSERT_EQ(handle, nullptr);
cache.reset();
secondary_cache.reset();
}
TEST_P(BasicSecondaryCacheTest, SaveFailTest) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048, true);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert(k1.AsSlice(), item1, GetHelperFail(), str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_OK(cache->Insert(k2.AsSlice(), item2, GetHelperFail(), str2.length()));
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
Cache::Handle* handle;
handle = cache->Lookup(k2.AsSlice(), GetHelperFail(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should fail, since k1 demotion would have failed
handle = cache->Lookup(k1.AsSlice(), GetHelperFail(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_EQ(handle, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
handle = cache->Lookup(k2.AsSlice(), GetHelperFail(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_P(BasicSecondaryCacheTest, CreateFailTest) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048, true);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert(k1.AsSlice(), item1, GetHelper(), str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert(k2.AsSlice(), item2, GetHelper(), str2.length()));
Cache::Handle* handle;
SetFailCreate(true);
handle = cache->Lookup(k2.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should fail, since k1 creation would have failed
handle = cache->Lookup(k1.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_EQ(handle, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
handle = cache->Lookup(k2.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_P(BasicSecondaryCacheTest, FullCapacityTest) {
for (bool strict_capacity_limit : {false, true}) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048, true);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 0 /* num_shard_bits */,
strict_capacity_limit, secondary_cache);
CacheKey k1 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
CacheKey k2 = CacheKey::CreateUniqueForCacheLifetime(cache.get());
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert(k1.AsSlice(), item1, GetHelper(), str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert(k2.AsSlice(), item2, GetHelper(), str2.length()));
Cache::Handle* handle2;
handle2 = cache->Lookup(k2.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_NE(handle2, nullptr);
// k1 lookup fails without secondary cache support
Cache::Handle* handle1;
handle1 = cache->Lookup(
k1.AsSlice(),
GetHelper(CacheEntryRole::kDataBlock, /*secondary_compatible=*/false),
/*context*/ this, Cache::Priority::LOW);
ASSERT_EQ(handle1, nullptr);
// k1 promotion can fail with strict_capacit_limit=true, but Lookup still
// succeeds using a standalone handle
handle1 = cache->Lookup(k1.AsSlice(), GetHelper(),
/*context*/ this, Cache::Priority::LOW);
ASSERT_NE(handle1, nullptr);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
// Releasing k2's handle first, k2 is evicted from primary iff k1 promotion
// was charged to the cache (except HCC doesn't erase in Release() over
// capacity)
// FIXME: Insert to secondary from Release disabled
cache->Release(handle2);
cache->Release(handle1);
handle2 = cache->Lookup(
k2.AsSlice(),
GetHelper(CacheEntryRole::kDataBlock, /*secondary_compatible=*/false),
/*context*/ this, Cache::Priority::LOW);
if (strict_capacity_limit || IsHyperClock()) {
ASSERT_NE(handle2, nullptr);
cache->Release(handle2);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
} else {
ASSERT_EQ(handle2, nullptr);
// FIXME: Insert to secondary from Release disabled
// ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
}
cache.reset();
secondary_cache.reset();
}
}
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
// if we try to insert block_1 to the block cache, it will always fails. Only
// block_2 will be successfully inserted into the block cache.
// CORRECTION: this is not quite right. block_1 can be inserted into the block
// cache because strict_capacity_limit=false, but it is removed from the cache
// in Release() because of being over-capacity, without demoting to secondary
// cache. FixedHyperClockCache doesn't check capacity on release (for
// efficiency) so can demote the over-capacity item to secondary cache. Also, we
// intend to add support for demotion in Release, but that currently causes too
// much unit test churn.
TEST_P(DBSecondaryCacheTest, TestSecondaryCacheCorrectness1) {
if (IsHyperClock()) {
// See CORRECTION above
ROCKSDB_GTEST_BYPASS("Test depends on LRUCache-specific behaviors");
return;
}
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Note that, block_1 is never successfully
// inserted to the block cache. Here are 2 lookups in the secondary cache
// for block_1 and block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. Meta blocks are always cached. When block_1 is read
// out, block_2 is evicted from block cache and inserted to secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// The first data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
// be inserted successfully due to the size. Currently, cache only has
// the meta blocks.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// The second data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
// in the secondary cache. Now block cache has block_2
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block_2 is in the block cache. There is a block cache hit. No need to
// lookup or insert the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
Destroy(options);
}
// In this test, the block cache size is set to 6100, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
// insert and cache block_1 in the block cache (this is the different place
// from TestSecondaryCacheCorrectness1)
TEST_P(DBSecondaryCacheTest, TestSecondaryCacheCorrectness2) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS("Test depends on LRUCache-specific behaviors");
return;
}
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(6100 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = true;
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Thefore, block_1 is evicted from block
// cache and successfully inserted to the secondary cache. Here are 2
// lookups in the secondary cache for block_1 and block_2.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. After Flush, only block_2 is cached in block cache
// and block_1 is in the secondary cache. So when read block_1, it is
// read out from secondary cache and inserted to block cache. At the same
// time, block_2 is inserted to secondary cache. Now, secondary cache has
// both block_1 and block_2. After compaction, block_1 is in the cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is cached in block cache
// there is no secondary cache lookup.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_2 which is not in the block cache. So
// it will lookup the secondary cache for block_2 and cache it in the
// block_cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_2 which is already in the block cache.
// No need to lookup secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is not in block cache
// there is one econdary cache lookup. Then, block_1 is cached in the
// block cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is cached in block cache
// there is no secondary cache lookup.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
Destroy(options);
}
// The block cache size is set to 1024*1024, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
// cache all the blocks in the block cache and there is not secondary cache
// insertion. 2 lookup is needed for the blocks.
TEST_P(DBSecondaryCacheTest, NoSecondaryCacheInsertion) {
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.paranoid_file_checks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1000);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. Now, block cache is large enough, it cache
// both block_1 and block_2. When first time read block_1 and block_2
// there are cache misses. So 2 secondary cache lookups are needed for
// the 2 blocks
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will iterate the whole SST file. Since all the data blocks
// are in the block cache. No need to lookup the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
std::string v = Get(Key(0));
ASSERT_EQ(1000, v.size());
// Since the block cache is large enough, all the blocks are cached. we
// do not need to lookup the seondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Destroy(options);
}
TEST_P(DBSecondaryCacheTest, SecondaryCacheIntensiveTesting) {
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(8 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1000);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
Compact("a", "z");
Random r_index(47);
std::string v;
for (int i = 0; i < 1000; i++) {
uint32_t key_i = r_index.Next() % N;
v = Get(Key(key_i));
}
// We have over 200 data blocks there will be multiple insertion
// and lookups.
ASSERT_GE(secondary_cache->num_inserts(), 1u);
ASSERT_GE(secondary_cache->num_lookups(), 1u);
Destroy(options);
}
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
// if we try to insert block_1 to the block cache, it will always fails. Only
// block_2 will be successfully inserted into the block cache.
TEST_P(DBSecondaryCacheTest, SecondaryCacheFailureTest) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS("Test depends on LRUCache-specific behaviors");
return;
}
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.paranoid_file_checks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB will do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Note that, block_1 is never successfully
// inserted to the block cache. Here are 2 lookups in the secondary cache
// for block_1 and block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
// Fail the insertion, in LRU cache, the secondary insertion returned status
// is not checked, therefore, the DB will not be influenced.
secondary_cache->InjectFailure();
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. Meta blocks are always cached. When block_1 is read
// out, block_2 is evicted from block cache and inserted to secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// The first data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
// be inserted successfully due to the size. Currently, cache only has
// the meta blocks.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// The second data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
// in the secondary cache. Now block cache has block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block_2 is in the block cache. There is a block cache hit. No need to
// lookup or insert the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
secondary_cache->ResetInjectFailure();
Destroy(options);
}
TEST_P(BasicSecondaryCacheTest, BasicWaitAllTest) {
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(32 * 1024);
std::shared_ptr<Cache> cache =
NewCache(1024 /* capacity */, 2 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
const int num_keys = 32;
OffsetableCacheKey ock{"foo", "bar", 1};
Random rnd(301);
std::vector<std::string> values;
for (int i = 0; i < num_keys; ++i) {
std::string str = rnd.RandomString(1020);
values.emplace_back(str);
TestItem* item = new TestItem(str.data(), str.length());
ASSERT_OK(cache->Insert(ock.WithOffset(i).AsSlice(), item, GetHelper(),
str.length()));
}
// Force all entries to be evicted to the secondary cache
if (IsHyperClock()) {
// HCC doesn't respond immediately to SetCapacity
for (int i = 9000; i < 9030; ++i) {
ASSERT_OK(cache->Insert(ock.WithOffset(i).AsSlice(), nullptr,
&kNoopCacheItemHelper, 256));
}
} else {
cache->SetCapacity(0);
}
ASSERT_EQ(secondary_cache->num_inserts(), 32u);
cache->SetCapacity(32 * 1024);
secondary_cache->SetResultMap(
{{ock.WithOffset(3).AsSlice().ToString(),
TestSecondaryCache::ResultType::DEFER},
{ock.WithOffset(4).AsSlice().ToString(),
TestSecondaryCache::ResultType::DEFER_AND_FAIL},
{ock.WithOffset(5).AsSlice().ToString(),
TestSecondaryCache::ResultType::FAIL}});
std::array<Cache::AsyncLookupHandle, 6> async_handles;
std::array<CacheKey, 6> cache_keys;
for (size_t i = 0; i < async_handles.size(); ++i) {
auto& ah = async_handles[i];
cache_keys[i] = ock.WithOffset(i);
ah.key = cache_keys[i].AsSlice();
ah.helper = GetHelper();
ah.create_context = this;
ah.priority = Cache::Priority::LOW;
cache->StartAsyncLookup(ah);
}
cache->WaitAll(async_handles.data(), async_handles.size());
for (size_t i = 0; i < async_handles.size(); ++i) {
SCOPED_TRACE("i = " + std::to_string(i));
Cache::Handle* result = async_handles[i].Result();
if (i == 4 || i == 5) {
ASSERT_EQ(result, nullptr);
continue;
} else {
ASSERT_NE(result, nullptr);
TestItem* item = static_cast<TestItem*>(cache->Value(result));
ASSERT_EQ(item->ToString(), values[i]);
}
cache->Release(result);
}
cache.reset();
secondary_cache.reset();
}
// In this test, we have one KV pair per data block. We indirectly determine
// the cache key associated with each data block (and thus each KV) by using
// a sync point callback in TestSecondaryCache::Lookup. We then control the
// lookup result by setting the ResultMap.
TEST_P(DBSecondaryCacheTest, TestSecondaryCacheMultiGet) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS("Test depends on LRUCache-specific behaviors");
return;
}
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(1 << 20 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
table_options.cache_index_and_filter_blocks = false;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = true;
DestroyAndReopen(options);
Random rnd(301);
const int N = 8;
std::vector<std::string> keys;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(4000);
keys.emplace_back(p_v);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB does the paranoid check for the new
// SST file. This will try to lookup all data blocks in the secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 8u);
cache->SetCapacity(0);
ASSERT_EQ(secondary_cache->num_inserts(), 8u);
cache->SetCapacity(1 << 20);
std::vector<std::string> cache_keys;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"TestSecondaryCache::Lookup", [&cache_keys](void* key) -> void {
cache_keys.emplace_back(*(static_cast<std::string*>(key)));
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 0; i < N; ++i) {
std::string v = Get(Key(i));
ASSERT_EQ(4000, v.size());
ASSERT_EQ(v, keys[i]);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(secondary_cache->num_lookups(), 16u);
cache->SetCapacity(0);
cache->SetCapacity(1 << 20);
ASSERT_EQ(Get(Key(2)), keys[2]);
ASSERT_EQ(Get(Key(7)), keys[7]);
secondary_cache->SetResultMap(
{{cache_keys[3], TestSecondaryCache::ResultType::DEFER},
{cache_keys[4], TestSecondaryCache::ResultType::DEFER_AND_FAIL},
{cache_keys[5], TestSecondaryCache::ResultType::FAIL}});
std::vector<std::string> mget_keys(
{Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7)});
std::vector<PinnableSlice> values(mget_keys.size());
std::vector<Status> s(keys.size());
std::vector<Slice> key_slices;
for (const std::string& key : mget_keys) {
key_slices.emplace_back(key);
}
uint32_t num_lookups = secondary_cache->num_lookups();
dbfull()->MultiGet(ReadOptions(), dbfull()->DefaultColumnFamily(),
key_slices.size(), key_slices.data(), values.data(),
s.data(), false);
ASSERT_EQ(secondary_cache->num_lookups(), num_lookups + 5);
for (int i = 0; i < N; ++i) {
ASSERT_OK(s[i]);
ASSERT_EQ(values[i].ToString(), keys[i]);
values[i].Reset();
}
Destroy(options);
}
class CacheWithStats : public CacheWrapper {
public:
using CacheWrapper::CacheWrapper;
static const char* kClassName() { return "CacheWithStats"; }
const char* Name() const override { return kClassName(); }
Status Insert(const Slice& key, Cache::ObjectPtr value,
const CacheItemHelper* helper, size_t charge,
Handle** handle = nullptr, Priority priority = Priority::LOW,
const Slice& /*compressed*/ = Slice(),
CompressionType /*type*/ = kNoCompression) override {
insert_count_++;
return target_->Insert(key, value, helper, charge, handle, priority);
}
Handle* Lookup(const Slice& key, const CacheItemHelper* helper,
CreateContext* create_context, Priority priority,
Statistics* stats = nullptr) override {
lookup_count_++;
return target_->Lookup(key, helper, create_context, priority, stats);
}
uint32_t GetInsertCount() { return insert_count_; }
uint32_t GetLookupcount() { return lookup_count_; }
void ResetCount() {
insert_count_ = 0;
lookup_count_ = 0;
}
private:
uint32_t insert_count_ = 0;
uint32_t lookup_count_ = 0;
};
TEST_P(DBSecondaryCacheTest, LRUCacheDumpLoadBasic) {
std::shared_ptr<Cache> base_cache =
NewCache(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */);
std::shared_ptr<CacheWithStats> cache =
std::make_shared<CacheWithStats>(base_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
DestroyAndReopen(options);
fault_fs_->SetFailGetUniqueId(true);
Random rnd(301);
const int N = 256;
std::vector<std::string> value;
char buf[1000];
memset(buf, 'a', 1000);
value.resize(N);
for (int i = 0; i < N; i++) {
// std::string p_v = rnd.RandomString(1000);
std::string p_v(buf, 1000);
value[i] = p_v;
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
Compact("a", "z");
// do th eread for all the key value pairs, so all the blocks should be in
// cache
uint32_t start_insert = cache->GetInsertCount();
uint32_t start_lookup = cache->GetLookupcount();
std::string v;
for (int i = 0; i < N; i++) {
v = Get(Key(i));
ASSERT_EQ(v, value[i]);
}
uint32_t dump_insert = cache->GetInsertCount() - start_insert;
uint32_t dump_lookup = cache->GetLookupcount() - start_lookup;
ASSERT_EQ(63,
static_cast<int>(dump_insert)); // the insert in the block cache
ASSERT_EQ(256,
static_cast<int>(dump_lookup)); // the lookup in the block cache
// We have enough blocks in the block cache
CacheDumpOptions cd_options;
cd_options.clock = fault_env_->GetSystemClock().get();
std::string dump_path = db_->GetName() + "/cache_dump";
std::unique_ptr<CacheDumpWriter> dump_writer;
Status s = NewToFileCacheDumpWriter(fault_fs_, FileOptions(), dump_path,
&dump_writer);
ASSERT_OK(s);
std::unique_ptr<CacheDumper> cache_dumper;
s = NewDefaultCacheDumper(cd_options, cache, std::move(dump_writer),
&cache_dumper);
ASSERT_OK(s);
std::vector<DB*> db_list;
db_list.push_back(db_);
s = cache_dumper->SetDumpFilter(db_list);
ASSERT_OK(s);
s = cache_dumper->DumpCacheEntriesToWriter();
ASSERT_OK(s);
cache_dumper.reset();
// we have a new cache it is empty, then, before we do the Get, we do the
// dumpload
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048 * 1024, true);
// This time with secondary cache
base_cache = NewCache(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
cache = std::make_shared<CacheWithStats>(base_cache);
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
// start to load the data to new block cache
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
std::unique_ptr<CacheDumpReader> dump_reader;
s = NewFromFileCacheDumpReader(fault_fs_, FileOptions(), dump_path,
&dump_reader);
ASSERT_OK(s);
std::unique_ptr<CacheDumpedLoader> cache_loader;
s = NewDefaultCacheDumpedLoader(cd_options, table_options, secondary_cache,
std::move(dump_reader), &cache_loader);
ASSERT_OK(s);
s = cache_loader->RestoreCacheEntriesToSecondaryCache();
ASSERT_OK(s);
uint32_t load_insert = secondary_cache->num_inserts() - start_insert;
uint32_t load_lookup = secondary_cache->num_lookups() - start_lookup;
// check the number we inserted
ASSERT_EQ(64, static_cast<int>(load_insert));
ASSERT_EQ(0, static_cast<int>(load_lookup));
ASSERT_OK(s);
Reopen(options);
// After load, we do the Get again
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
uint32_t cache_insert = cache->GetInsertCount();
uint32_t cache_lookup = cache->GetLookupcount();
for (int i = 0; i < N; i++) {
v = Get(Key(i));
ASSERT_EQ(v, value[i]);
}
uint32_t final_insert = secondary_cache->num_inserts() - start_insert;
uint32_t final_lookup = secondary_cache->num_lookups() - start_lookup;
// no insert to secondary cache
ASSERT_EQ(0, static_cast<int>(final_insert));
// lookup the secondary to get all blocks
ASSERT_EQ(64, static_cast<int>(final_lookup));
uint32_t block_insert = cache->GetInsertCount() - cache_insert;
uint32_t block_lookup = cache->GetLookupcount() - cache_lookup;
// Check the new block cache insert and lookup, should be no insert since all
// blocks are from the secondary cache.
ASSERT_EQ(0, static_cast<int>(block_insert));
ASSERT_EQ(256, static_cast<int>(block_lookup));
fault_fs_->SetFailGetUniqueId(false);
Destroy(options);
}
TEST_P(DBSecondaryCacheTest, LRUCacheDumpLoadWithFilter) {
std::shared_ptr<Cache> base_cache =
NewCache(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */);
std::shared_ptr<CacheWithStats> cache =
std::make_shared<CacheWithStats>(base_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
std::string dbname1 = test::PerThreadDBPath("db_1");
ASSERT_OK(DestroyDB(dbname1, options));
DB* db1 = nullptr;
ASSERT_OK(DB::Open(options, dbname1, &db1));
std::string dbname2 = test::PerThreadDBPath("db_2");
ASSERT_OK(DestroyDB(dbname2, options));
DB* db2 = nullptr;
ASSERT_OK(DB::Open(options, dbname2, &db2));
fault_fs_->SetFailGetUniqueId(true);
// write the KVs to db1
Random rnd(301);
const int N = 256;
std::vector<std::string> value1;
WriteOptions wo;
char buf[1000];
memset(buf, 'a', 1000);
value1.resize(N);
for (int i = 0; i < N; i++) {
std::string p_v(buf, 1000);
value1[i] = p_v;
ASSERT_OK(db1->Put(wo, Key(i), p_v));
}
ASSERT_OK(db1->Flush(FlushOptions()));
Slice bg("a");
Slice ed("b");
ASSERT_OK(db1->CompactRange(CompactRangeOptions(), &bg, &ed));
// Write the KVs to DB2
std::vector<std::string> value2;
memset(buf, 'b', 1000);
value2.resize(N);
for (int i = 0; i < N; i++) {
std::string p_v(buf, 1000);
value2[i] = p_v;
ASSERT_OK(db2->Put(wo, Key(i), p_v));
}
ASSERT_OK(db2->Flush(FlushOptions()));
ASSERT_OK(db2->CompactRange(CompactRangeOptions(), &bg, &ed));
// do th eread for all the key value pairs, so all the blocks should be in
// cache
uint32_t start_insert = cache->GetInsertCount();
uint32_t start_lookup = cache->GetLookupcount();
ReadOptions ro;
std::string v;
for (int i = 0; i < N; i++) {
ASSERT_OK(db1->Get(ro, Key(i), &v));
ASSERT_EQ(v, value1[i]);
}
for (int i = 0; i < N; i++) {
ASSERT_OK(db2->Get(ro, Key(i), &v));
ASSERT_EQ(v, value2[i]);
}
uint32_t dump_insert = cache->GetInsertCount() - start_insert;
uint32_t dump_lookup = cache->GetLookupcount() - start_lookup;
ASSERT_EQ(128,
static_cast<int>(dump_insert)); // the insert in the block cache
ASSERT_EQ(512,
static_cast<int>(dump_lookup)); // the lookup in the block cache
// We have enough blocks in the block cache
CacheDumpOptions cd_options;
cd_options.clock = fault_env_->GetSystemClock().get();
std::string dump_path = db1->GetName() + "/cache_dump";
std::unique_ptr<CacheDumpWriter> dump_writer;
Status s = NewToFileCacheDumpWriter(fault_fs_, FileOptions(), dump_path,
&dump_writer);
ASSERT_OK(s);
std::unique_ptr<CacheDumper> cache_dumper;
s = NewDefaultCacheDumper(cd_options, cache, std::move(dump_writer),
&cache_dumper);
ASSERT_OK(s);
std::vector<DB*> db_list;
db_list.push_back(db1);
s = cache_dumper->SetDumpFilter(db_list);
ASSERT_OK(s);
s = cache_dumper->DumpCacheEntriesToWriter();
ASSERT_OK(s);
cache_dumper.reset();
// we have a new cache it is empty, then, before we do the Get, we do the
// dumpload
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048 * 1024, true);
// This time with secondary_cache
base_cache = NewCache(1024 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
cache = std::make_shared<CacheWithStats>(base_cache);
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
// Start the cache loading process
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
std::unique_ptr<CacheDumpReader> dump_reader;
s = NewFromFileCacheDumpReader(fault_fs_, FileOptions(), dump_path,
&dump_reader);
ASSERT_OK(s);
std::unique_ptr<CacheDumpedLoader> cache_loader;
s = NewDefaultCacheDumpedLoader(cd_options, table_options, secondary_cache,
std::move(dump_reader), &cache_loader);
ASSERT_OK(s);
s = cache_loader->RestoreCacheEntriesToSecondaryCache();
ASSERT_OK(s);
uint32_t load_insert = secondary_cache->num_inserts() - start_insert;
uint32_t load_lookup = secondary_cache->num_lookups() - start_lookup;
// check the number we inserted
ASSERT_EQ(64, static_cast<int>(load_insert));
ASSERT_EQ(0, static_cast<int>(load_lookup));
ASSERT_OK(s);
ASSERT_OK(db1->Close());
delete db1;
ASSERT_OK(DB::Open(options, dbname1, &db1));
// After load, we do the Get again. To validate the cache, we do not allow any
// I/O, so we set the file system to false.
IOStatus error_msg = IOStatus::IOError("Retryable IO Error");
fault_fs_->SetFilesystemActive(false, error_msg);
start_insert = secondary_cache->num_inserts();
start_lookup = secondary_cache->num_lookups();
uint32_t cache_insert = cache->GetInsertCount();
uint32_t cache_lookup = cache->GetLookupcount();
for (int i = 0; i < N; i++) {
ASSERT_OK(db1->Get(ro, Key(i), &v));
ASSERT_EQ(v, value1[i]);
}
uint32_t final_insert = secondary_cache->num_inserts() - start_insert;
uint32_t final_lookup = secondary_cache->num_lookups() - start_lookup;
// no insert to secondary cache
ASSERT_EQ(0, static_cast<int>(final_insert));
// lookup the secondary to get all blocks
ASSERT_EQ(64, static_cast<int>(final_lookup));
uint32_t block_insert = cache->GetInsertCount() - cache_insert;
uint32_t block_lookup = cache->GetLookupcount() - cache_lookup;
// Check the new block cache insert and lookup, should be no insert since all
// blocks are from the secondary cache.
ASSERT_EQ(0, static_cast<int>(block_insert));
ASSERT_EQ(256, static_cast<int>(block_lookup));
fault_fs_->SetFailGetUniqueId(false);
fault_fs_->SetFilesystemActive(true);
delete db1;
delete db2;
ASSERT_OK(DestroyDB(dbname1, options));
ASSERT_OK(DestroyDB(dbname2, options));
}
// Test the option not to use the secondary cache in a certain DB.
TEST_P(DBSecondaryCacheTest, TestSecondaryCacheOptionBasic) {
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
options.lowest_used_cache_tier = CacheTier::kVolatileTier;
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i + 70), p_v));
}
ASSERT_OK(Flush());
// Flush will trigger the paranoid check and read blocks. But only block cache
// will be read. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
Compact("a", "z");
// Compaction will also insert and evict blocks, no operations to the block
// cache. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Check the data in first block. Cache miss, direclty read from SST file.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// Check the second block.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block cache hit
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(70));
ASSERT_EQ(1007, v.size());
// Check the first block in the second SST file. Cache miss and trigger SST
// file read. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(75));
ASSERT_EQ(1007, v.size());
// Check the second block in the second SST file. Cache miss and trigger SST
// file read. No operations for secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
Destroy(options);
}
// We disable the secondary cache in DBOptions at first. Close and reopen the DB
// with new options, which set the lowest_used_cache_tier to
// kNonVolatileBlockTier. So secondary cache will be used.
TEST_P(DBSecondaryCacheTest, TestSecondaryCacheOptionChange) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS("Test depends on LRUCache-specific behaviors");
return;
}
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
options.lowest_used_cache_tier = CacheTier::kVolatileTier;
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i + 70), p_v));
}
ASSERT_OK(Flush());
// Flush will trigger the paranoid check and read blocks. But only block cache
// will be read.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
Compact("a", "z");
// Compaction will also insert and evict blocks, no operations to the block
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Check the data in first block. Cache miss, direclty read from SST file.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// Check the second block.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block cache hit
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
// Change the option to enable secondary cache after we Reopen the DB
options.lowest_used_cache_tier = CacheTier::kNonVolatileBlockTier;
Reopen(options);
v = Get(Key(70));
ASSERT_EQ(1007, v.size());
// Enable the secondary cache, trigger lookup of the first block in second SST
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
v = Get(Key(75));
ASSERT_EQ(1007, v.size());
// trigger lookup of the second block in second SST
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Destroy(options);
}
// Two DB test. We create 2 DBs sharing the same block cache and secondary
// cache. We diable the secondary cache option for DB2.
TEST_P(DBSecondaryCacheTest, TestSecondaryCacheOptionTwoDB) {
if (IsHyperClock()) {
ROCKSDB_GTEST_BYPASS("Test depends on LRUCache-specific behaviors");
return;
}
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
std::shared_ptr<Cache> cache =
NewCache(4 * 1024 /* capacity */, 0 /* num_shard_bits */,
false /* strict_capacity_limit */, secondary_cache);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
options.paranoid_file_checks = true;
std::string dbname1 = test::PerThreadDBPath("db_t_1");
ASSERT_OK(DestroyDB(dbname1, options));
DB* db1 = nullptr;
ASSERT_OK(DB::Open(options, dbname1, &db1));
std::string dbname2 = test::PerThreadDBPath("db_t_2");
ASSERT_OK(DestroyDB(dbname2, options));
DB* db2 = nullptr;
Options options2 = options;
options2.lowest_used_cache_tier = CacheTier::kVolatileTier;
ASSERT_OK(DB::Open(options2, dbname2, &db2));
fault_fs_->SetFailGetUniqueId(true);
WriteOptions wo;
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(db1->Put(wo, Key(i), p_v));
}
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 0u);
ASSERT_OK(db1->Flush(FlushOptions()));
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(db2->Put(wo, Key(i), p_v));
}
// No change in the secondary cache, since it is disabled in DB2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
ASSERT_OK(db2->Flush(FlushOptions()));
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Slice bg("a");
Slice ed("b");
ASSERT_OK(db1->CompactRange(CompactRangeOptions(), &bg, &ed));
ASSERT_OK(db2->CompactRange(CompactRangeOptions(), &bg, &ed));
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
ReadOptions ro;
std::string v;
ASSERT_OK(db1->Get(ro, Key(0), &v));
ASSERT_EQ(1007, v.size());
// DB 1 has lookup block 1 and it is miss in block cache, trigger secondary
// cache lookup
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
ASSERT_OK(db1->Get(ro, Key(5), &v));
ASSERT_EQ(1007, v.size());
// DB 1 lookup the second block and it is miss in block cache, trigger
// secondary cache lookup
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
ASSERT_OK(db2->Get(ro, Key(0), &v));
ASSERT_EQ(1007, v.size());
// For db2, it is not enabled with secondary cache, so no search in the
// secondary cache
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
ASSERT_OK(db2->Get(ro, Key(5), &v));
ASSERT_EQ(1007, v.size());
// For db2, it is not enabled with secondary cache, so no search in the
// secondary cache
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
fault_fs_->SetFailGetUniqueId(false);
fault_fs_->SetFilesystemActive(true);
delete db1;
delete db2;
ASSERT_OK(DestroyDB(dbname1, options));
ASSERT_OK(DestroyDB(dbname2, options));
}
TEST_F(LRUCacheTest, InsertAfterReducingCapacity) {
// Fix a bug in LRU cache where it may try to remove a low pri entry's
// charge from high pri pool. It causes
// Assertion failed: (high_pri_pool_usage_ >= lru_low_pri_->total_charge),
// function MaintainPoolSize, file lru_cache.cc
NewCache(/*capacity=*/10, /*high_pri_pool_ratio=*/0.2,
/*low_pri_pool_ratio=*/0.8);
// high pri pool size and usage are both 2
Insert("x", Cache::Priority::HIGH);
Insert("y", Cache::Priority::HIGH);
cache_->SetCapacity(5);
// high_pri_pool_size is 1, the next time we try to maintain pool size,
// we will move entries from high pri pool to low pri pool
// The bug was deducting this entry's charge from high pri pool usage.
Insert("aaa", Cache::Priority::LOW, /*charge=*/3);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
|