File: compaction_picker_level.cc

package info (click to toggle)
rocksdb 9.10.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 46,052 kB
  • sloc: cpp: 500,768; java: 42,992; ansic: 9,789; python: 8,373; perl: 5,822; sh: 4,921; makefile: 2,386; asm: 550; xml: 342
file content (987 lines) | stat: -rw-r--r-- 38,415 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/compaction/compaction_picker_level.h"

#include <string>
#include <utility>
#include <vector>

#include "db/version_edit.h"
#include "logging/log_buffer.h"
#include "test_util/sync_point.h"

namespace ROCKSDB_NAMESPACE {

bool LevelCompactionPicker::NeedsCompaction(
    const VersionStorageInfo* vstorage) const {
  if (!vstorage->ExpiredTtlFiles().empty()) {
    return true;
  }
  if (!vstorage->FilesMarkedForPeriodicCompaction().empty()) {
    return true;
  }
  if (!vstorage->BottommostFilesMarkedForCompaction().empty()) {
    return true;
  }
  if (!vstorage->FilesMarkedForCompaction().empty()) {
    return true;
  }
  if (!vstorage->FilesMarkedForForcedBlobGC().empty()) {
    return true;
  }
  for (int i = 0; i <= vstorage->MaxInputLevel(); i++) {
    if (vstorage->CompactionScore(i) >= 1) {
      return true;
    }
  }
  return false;
}

namespace {

enum class CompactToNextLevel {
  kNo,   // compact to the same level as the input file
  kYes,  // compact to the next level except the last level to the same level
  kSkipLastLevel,  // compact to the next level but skip the last level
};

// A class to build a leveled compaction step-by-step.
class LevelCompactionBuilder {
 public:
  LevelCompactionBuilder(const std::string& cf_name,
                         VersionStorageInfo* vstorage,
                         CompactionPicker* compaction_picker,
                         LogBuffer* log_buffer,
                         const MutableCFOptions& mutable_cf_options,
                         const ImmutableOptions& ioptions,
                         const MutableDBOptions& mutable_db_options)
      : cf_name_(cf_name),
        vstorage_(vstorage),
        compaction_picker_(compaction_picker),
        log_buffer_(log_buffer),
        mutable_cf_options_(mutable_cf_options),
        ioptions_(ioptions),
        mutable_db_options_(mutable_db_options) {}

  // Pick and return a compaction.
  Compaction* PickCompaction();

  // Pick the initial files to compact to the next level. (or together
  // in Intra-L0 compactions)
  void SetupInitialFiles();

  // If the initial files are from L0 level, pick other L0
  // files if needed.
  bool SetupOtherL0FilesIfNeeded();

  // Compaction with round-robin compaction priority allows more files to be
  // picked to form a large compaction
  void SetupOtherFilesWithRoundRobinExpansion();
  // Based on initial files, setup other files need to be compacted
  // in this compaction, accordingly.
  bool SetupOtherInputsIfNeeded();

  Compaction* GetCompaction();

  // From `start_level_`, pick files to compact to `output_level_`.
  // Returns false if there is no file to compact.
  // If it returns true, inputs->files.size() will be exactly one for
  // all compaction priorities except round-robin. For round-robin,
  // multiple consecutive files may be put into inputs->files.
  // If level is 0 and there is already a compaction on that level, this
  // function will return false.
  bool PickFileToCompact();

  // Return true if a L0 trivial move is picked up.
  bool TryPickL0TrivialMove();

  // For L0->L0, picks the longest span of files that aren't currently
  // undergoing compaction for which work-per-deleted-file decreases. The span
  // always starts from the newest L0 file.
  //
  // Intra-L0 compaction is independent of all other files, so it can be
  // performed even when L0->base_level compactions are blocked.
  //
  // Returns true if `inputs` is populated with a span of files to be compacted;
  // otherwise, returns false.
  bool PickIntraL0Compaction();

  // When total L0 size is small compared to Lbase, try to pick intra-L0
  // compaction starting from the newest L0 file. This helps to prevent
  // L0->Lbase compaction with large write-amp.
  //
  // Returns true iff an intra-L0 compaction is picked.
  // `start_level_inputs_` and `output_level_` will be updated accordingly if
  // a compaction is picked.
  bool PickSizeBasedIntraL0Compaction();

  // Return true if TrivialMove is extended. `start_index` is the index of
  // the initial file picked, which should already be in `start_level_inputs_`.
  bool TryExtendNonL0TrivialMove(int start_index,
                                 bool only_expand_right = false);

  // Picks a file from level_files to compact.
  // level_files is a vector of (level, file metadata) in ascending order of
  // level. If compact_to_next_level is true, compact the file to the next
  // level, otherwise, compact to the same level as the input file.
  // If skip_last_level is true, skip the last level.
  void PickFileToCompact(
      const autovector<std::pair<int, FileMetaData*>>& level_files,
      CompactToNextLevel compact_to_next_level);

  const std::string& cf_name_;
  VersionStorageInfo* vstorage_;
  CompactionPicker* compaction_picker_;
  LogBuffer* log_buffer_;
  int start_level_ = -1;
  int output_level_ = -1;
  int parent_index_ = -1;
  int base_index_ = -1;
  double start_level_score_ = 0;
  bool is_manual_ = false;
  bool is_l0_trivial_move_ = false;
  CompactionInputFiles start_level_inputs_;
  std::vector<CompactionInputFiles> compaction_inputs_;
  CompactionInputFiles output_level_inputs_;
  std::vector<FileMetaData*> grandparents_;
  CompactionReason compaction_reason_ = CompactionReason::kUnknown;

  const MutableCFOptions& mutable_cf_options_;
  const ImmutableOptions& ioptions_;
  const MutableDBOptions& mutable_db_options_;
  // Pick a path ID to place a newly generated file, with its level
  static uint32_t GetPathId(const ImmutableCFOptions& ioptions,
                            const MutableCFOptions& mutable_cf_options,
                            int level);

  static const int kMinFilesForIntraL0Compaction = 4;
};

void LevelCompactionBuilder::PickFileToCompact(
    const autovector<std::pair<int, FileMetaData*>>& level_files,
    CompactToNextLevel compact_to_next_level) {
  for (auto& level_file : level_files) {
    // If it's being compacted it has nothing to do here.
    // If this assert() fails that means that some function marked some
    // files as being_compacted, but didn't call ComputeCompactionScore()
    assert(!level_file.second->being_compacted);
    start_level_ = level_file.first;
    if ((compact_to_next_level == CompactToNextLevel::kSkipLastLevel &&
         start_level_ == vstorage_->num_non_empty_levels() - 1) ||
        (start_level_ == 0 &&
         !compaction_picker_->level0_compactions_in_progress()->empty())) {
      continue;
    }

    // Compact to the next level only if the file is not in the last level and
    // compact_to_next_level is kYes or kSkipLastLevel.
    if (compact_to_next_level != CompactToNextLevel::kNo &&
        (start_level_ < vstorage_->num_non_empty_levels() - 1)) {
      output_level_ =
          (start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
    } else {
      output_level_ = start_level_;
    }
    start_level_inputs_.files = {level_file.second};
    start_level_inputs_.level = start_level_;
    if (compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
                                                   &start_level_inputs_)) {
      return;
    }
  }
  start_level_inputs_.files.clear();
}

void LevelCompactionBuilder::SetupInitialFiles() {
  // Find the compactions by size on all levels.
  bool skipped_l0_to_base = false;
  for (int i = 0; i < compaction_picker_->NumberLevels() - 1; i++) {
    start_level_score_ = vstorage_->CompactionScore(i);
    start_level_ = vstorage_->CompactionScoreLevel(i);
    assert(i == 0 || start_level_score_ <= vstorage_->CompactionScore(i - 1));
    if (start_level_score_ >= 1) {
      if (skipped_l0_to_base && start_level_ == vstorage_->base_level()) {
        // If L0->base_level compaction is pending, don't schedule further
        // compaction from base level. Otherwise L0->base_level compaction
        // may starve.
        continue;
      }
      output_level_ =
          (start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
      bool picked_file_to_compact = PickFileToCompact();
      TEST_SYNC_POINT_CALLBACK("PostPickFileToCompact",
                               &picked_file_to_compact);
      if (picked_file_to_compact) {
        // found the compaction!
        if (start_level_ == 0) {
          // L0 score = `num L0 files` / `level0_file_num_compaction_trigger`
          compaction_reason_ = CompactionReason::kLevelL0FilesNum;
        } else {
          // L1+ score = `Level files size` / `MaxBytesForLevel`
          compaction_reason_ = CompactionReason::kLevelMaxLevelSize;
        }
        break;
      } else {
        // didn't find the compaction, clear the inputs
        start_level_inputs_.clear();
        if (start_level_ == 0) {
          skipped_l0_to_base = true;
          // L0->base_level may be blocked due to ongoing L0->base_level
          // compactions. It may also be blocked by an ongoing compaction from
          // base_level downwards.
          //
          // In these cases, to reduce L0 file count and thus reduce likelihood
          // of write stalls, we can attempt compacting a span of files within
          // L0.
          if (PickIntraL0Compaction()) {
            output_level_ = 0;
            compaction_reason_ = CompactionReason::kLevelL0FilesNum;
            break;
          }
        }
      }
    } else {
      // Compaction scores are sorted in descending order, no further scores
      // will be >= 1.
      break;
    }
  }
  if (!start_level_inputs_.empty()) {
    return;
  }

  // if we didn't find a compaction, check if there are any files marked for
  // compaction
  parent_index_ = base_index_ = -1;

  compaction_picker_->PickFilesMarkedForCompaction(
      cf_name_, vstorage_, &start_level_, &output_level_, &start_level_inputs_,
      /*skip_marked_file*/ [](const FileMetaData* /* file */) {
        return false;
      });
  if (!start_level_inputs_.empty()) {
    compaction_reason_ = CompactionReason::kFilesMarkedForCompaction;
    return;
  }

  // Bottommost Files Compaction on deleting tombstones
  PickFileToCompact(vstorage_->BottommostFilesMarkedForCompaction(),
                    CompactToNextLevel::kNo);
  if (!start_level_inputs_.empty()) {
    compaction_reason_ = CompactionReason::kBottommostFiles;
    return;
  }

  // TTL Compaction
  if (ioptions_.compaction_pri == kRoundRobin &&
      !vstorage_->ExpiredTtlFiles().empty()) {
    auto expired_files = vstorage_->ExpiredTtlFiles();
    // the expired files list should already be sorted by level
    start_level_ = expired_files.front().first;
#ifndef NDEBUG
    for (const auto& file : expired_files) {
      assert(start_level_ <= file.first);
    }
#endif
    if (start_level_ > 0) {
      output_level_ = start_level_ + 1;
      if (PickFileToCompact()) {
        compaction_reason_ = CompactionReason::kRoundRobinTtl;
        return;
      }
    }
  }

  PickFileToCompact(vstorage_->ExpiredTtlFiles(),
                    CompactToNextLevel::kSkipLastLevel);
  if (!start_level_inputs_.empty()) {
    compaction_reason_ = CompactionReason::kTtl;
    return;
  }

  // Periodic Compaction
  PickFileToCompact(vstorage_->FilesMarkedForPeriodicCompaction(),
                    ioptions_.level_compaction_dynamic_level_bytes
                        ? CompactToNextLevel::kYes
                        : CompactToNextLevel::kNo);
  if (!start_level_inputs_.empty()) {
    compaction_reason_ = CompactionReason::kPeriodicCompaction;
    return;
  }

  // Forced blob garbage collection
  PickFileToCompact(vstorage_->FilesMarkedForForcedBlobGC(),
                    CompactToNextLevel::kNo);
  if (!start_level_inputs_.empty()) {
    compaction_reason_ = CompactionReason::kForcedBlobGC;
    return;
  }
}

bool LevelCompactionBuilder::SetupOtherL0FilesIfNeeded() {
  if (start_level_ == 0 && output_level_ != 0 && !is_l0_trivial_move_) {
    return compaction_picker_->GetOverlappingL0Files(
        vstorage_, &start_level_inputs_, output_level_, &parent_index_);
  }
  return true;
}

void LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion() {
  // We only expand when the start level is not L0 under round robin
  assert(start_level_ >= 1);

  // For round-robin compaction priority, we have 3 constraints when picking
  // multiple files.
  // Constraint 1: We can only pick consecutive files
  //  -> Constraint 1a: When a file is being compacted (or some input files
  //                    are being compacted after expanding, we cannot
  //                    choose it and have to stop choosing more files
  //  -> Constraint 1b: When we reach the last file (with largest keys), we
  //                    cannot choose more files (the next file will be the
  //                    first one)
  // Constraint 2: We should ensure the total compaction bytes (including the
  //               overlapped files from the next level) is no more than
  //               mutable_cf_options_.max_compaction_bytes
  // Constraint 3: We try our best to pick as many files as possible so that
  //               the post-compaction level size is less than
  //               MaxBytesForLevel(start_level_)
  // Constraint 4: We do not expand if it is possible to apply a trivial move
  // Constraint 5 (TODO): Try to pick minimal files to split into the target
  //               number of subcompactions
  TEST_SYNC_POINT("LevelCompactionPicker::RoundRobin");

  // Only expand the inputs when we have selected a file in start_level_inputs_
  if (start_level_inputs_.size() == 0) {
    return;
  }

  uint64_t start_lvl_bytes_no_compacting = 0;
  uint64_t curr_bytes_to_compact = 0;
  uint64_t start_lvl_max_bytes_to_compact = 0;
  const std::vector<FileMetaData*>& level_files =
      vstorage_->LevelFiles(start_level_);
  // Constraint 3 (pre-calculate the ideal max bytes to compact)
  for (auto f : level_files) {
    if (!f->being_compacted) {
      start_lvl_bytes_no_compacting += f->fd.GetFileSize();
    }
  }
  if (start_lvl_bytes_no_compacting >
      vstorage_->MaxBytesForLevel(start_level_)) {
    start_lvl_max_bytes_to_compact = start_lvl_bytes_no_compacting -
                                     vstorage_->MaxBytesForLevel(start_level_);
  }

  size_t start_index = vstorage_->FilesByCompactionPri(start_level_)[0];
  InternalKey smallest, largest;
  // Constraint 4 (No need to check again later)
  compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
  CompactionInputFiles output_level_inputs;
  output_level_inputs.level = output_level_;
  vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
                                  &output_level_inputs.files);
  if (output_level_inputs.empty()) {
    if (TryExtendNonL0TrivialMove((int)start_index,
                                  true /* only_expand_right */)) {
      return;
    }
  }
  // Constraint 3
  if (start_level_inputs_[0]->fd.GetFileSize() >=
      start_lvl_max_bytes_to_compact) {
    return;
  }
  CompactionInputFiles tmp_start_level_inputs;
  tmp_start_level_inputs = start_level_inputs_;
  // TODO (zichen): Future parallel round-robin may also need to update this
  // Constraint 1b (only expand till the end)
  for (size_t i = start_index + 1; i < level_files.size(); i++) {
    auto* f = level_files[i];
    if (f->being_compacted) {
      // Constraint 1a
      return;
    }

    tmp_start_level_inputs.files.push_back(f);
    if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
                                                    &tmp_start_level_inputs) ||
        compaction_picker_->FilesRangeOverlapWithCompaction(
            {tmp_start_level_inputs}, output_level_,
            Compaction::EvaluatePenultimateLevel(vstorage_, mutable_cf_options_,
                                                 ioptions_, start_level_,
                                                 output_level_))) {
      // Constraint 1a
      tmp_start_level_inputs.clear();
      return;
    }

    curr_bytes_to_compact = 0;
    for (auto start_lvl_f : tmp_start_level_inputs.files) {
      curr_bytes_to_compact += start_lvl_f->fd.GetFileSize();
    }

    // Check whether any output level files are locked
    compaction_picker_->GetRange(tmp_start_level_inputs, &smallest, &largest);
    vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
                                    &output_level_inputs.files);
    if (!output_level_inputs.empty() &&
        !compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
                                                    &output_level_inputs)) {
      // Constraint 1a
      tmp_start_level_inputs.clear();
      return;
    }

    uint64_t start_lvl_curr_bytes_to_compact = curr_bytes_to_compact;
    for (auto output_lvl_f : output_level_inputs.files) {
      curr_bytes_to_compact += output_lvl_f->fd.GetFileSize();
    }
    if (curr_bytes_to_compact > mutable_cf_options_.max_compaction_bytes) {
      // Constraint 2
      tmp_start_level_inputs.clear();
      return;
    }

    start_level_inputs_.files = tmp_start_level_inputs.files;
    // Constraint 3
    if (start_lvl_curr_bytes_to_compact > start_lvl_max_bytes_to_compact) {
      return;
    }
  }
}

bool LevelCompactionBuilder::SetupOtherInputsIfNeeded() {
  // Setup input files from output level. For output to L0, we only compact
  // spans of files that do not interact with any pending compactions, so don't
  // need to consider other levels.
  if (output_level_ != 0) {
    output_level_inputs_.level = output_level_;
    bool round_robin_expanding =
        ioptions_.compaction_pri == kRoundRobin &&
        compaction_reason_ == CompactionReason::kLevelMaxLevelSize;
    if (round_robin_expanding) {
      SetupOtherFilesWithRoundRobinExpansion();
    }
    if (!is_l0_trivial_move_ &&
        !compaction_picker_->SetupOtherInputs(
            cf_name_, mutable_cf_options_, vstorage_, &start_level_inputs_,
            &output_level_inputs_, &parent_index_, base_index_,
            round_robin_expanding)) {
      return false;
    }

    compaction_inputs_.push_back(start_level_inputs_);
    if (!output_level_inputs_.empty()) {
      compaction_inputs_.push_back(output_level_inputs_);
    }

    // In some edge cases we could pick a compaction that will be compacting
    // a key range that overlap with another running compaction, and both
    // of them have the same output level. This could happen if
    // (1) we are running a non-exclusive manual compaction
    // (2) AddFile ingest a new file into the LSM tree
    // We need to disallow this from happening.
    if (compaction_picker_->FilesRangeOverlapWithCompaction(
            compaction_inputs_, output_level_,
            Compaction::EvaluatePenultimateLevel(vstorage_, mutable_cf_options_,
                                                 ioptions_, start_level_,
                                                 output_level_))) {
      // This compaction output could potentially conflict with the output
      // of a currently running compaction, we cannot run it.
      return false;
    }
    if (!is_l0_trivial_move_) {
      compaction_picker_->GetGrandparents(vstorage_, start_level_inputs_,
                                          output_level_inputs_, &grandparents_);
    }
  } else {
    compaction_inputs_.push_back(start_level_inputs_);
  }
  return true;
}

Compaction* LevelCompactionBuilder::PickCompaction() {
  // Pick up the first file to start compaction. It may have been extended
  // to a clean cut.
  SetupInitialFiles();
  if (start_level_inputs_.empty()) {
    return nullptr;
  }
  assert(start_level_ >= 0 && output_level_ >= 0);

  // If it is a L0 -> base level compaction, we need to set up other L0
  // files if needed.
  if (!SetupOtherL0FilesIfNeeded()) {
    return nullptr;
  }

  // Pick files in the output level and expand more files in the start level
  // if needed.
  if (!SetupOtherInputsIfNeeded()) {
    return nullptr;
  }

  // Form a compaction object containing the files we picked.
  Compaction* c = GetCompaction();

  TEST_SYNC_POINT_CALLBACK("LevelCompactionPicker::PickCompaction:Return", c);

  return c;
}

Compaction* LevelCompactionBuilder::GetCompaction() {
  // TryPickL0TrivialMove() does not apply to the case when compacting L0 to an
  // empty output level. So L0 files is picked in PickFileToCompact() by
  // compaction score. We may still be able to do trivial move when this file
  // does not overlap with other L0s. This happens when
  // compaction_inputs_[0].size() == 1 since SetupOtherL0FilesIfNeeded() did not
  // pull in more L0s.
  assert(!compaction_inputs_.empty());
  bool l0_files_might_overlap =
      start_level_ == 0 && !is_l0_trivial_move_ &&
      (compaction_inputs_.size() > 1 || compaction_inputs_[0].size() > 1);
  auto c = new Compaction(
      vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_,
      std::move(compaction_inputs_), output_level_,
      MaxFileSizeForLevel(mutable_cf_options_, output_level_,
                          ioptions_.compaction_style, vstorage_->base_level(),
                          ioptions_.level_compaction_dynamic_level_bytes),
      mutable_cf_options_.max_compaction_bytes,
      GetPathId(ioptions_, mutable_cf_options_, output_level_),
      GetCompressionType(vstorage_, mutable_cf_options_, output_level_,
                         vstorage_->base_level()),
      GetCompressionOptions(mutable_cf_options_, vstorage_, output_level_),
      mutable_cf_options_.default_write_temperature,
      /* max_subcompactions */ 0, std::move(grandparents_),
      /* earliest_snapshot */ std::nullopt, /* snapshot_checker */ nullptr,
      is_manual_,
      /* trim_ts */ "", start_level_score_, false /* deletion_compaction */,
      l0_files_might_overlap, compaction_reason_);

  // If it's level 0 compaction, make sure we don't execute any other level 0
  // compactions in parallel
  compaction_picker_->RegisterCompaction(c);

  // Creating a compaction influences the compaction score because the score
  // takes running compactions into account (by skipping files that are already
  // being compacted). Since we just changed compaction score, we recalculate it
  // here
  vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_);
  return c;
}

/*
 * Find the optimal path to place a file
 * Given a level, finds the path where levels up to it will fit in levels
 * up to and including this path
 */
uint32_t LevelCompactionBuilder::GetPathId(
    const ImmutableCFOptions& ioptions,
    const MutableCFOptions& mutable_cf_options, int level) {
  uint32_t p = 0;
  assert(!ioptions.cf_paths.empty());

  // size remaining in the most recent path
  uint64_t current_path_size = ioptions.cf_paths[0].target_size;

  uint64_t level_size;
  int cur_level = 0;

  // max_bytes_for_level_base denotes L1 size.
  // We estimate L0 size to be the same as L1.
  level_size = mutable_cf_options.max_bytes_for_level_base;

  // Last path is the fallback
  while (p < ioptions.cf_paths.size() - 1) {
    if (level_size <= current_path_size) {
      if (cur_level == level) {
        // Does desired level fit in this path?
        return p;
      } else {
        current_path_size -= level_size;
        if (cur_level > 0) {
          if (ioptions.level_compaction_dynamic_level_bytes) {
            // Currently, level_compaction_dynamic_level_bytes is ignored when
            // multiple db paths are specified. https://github.com/facebook/
            // rocksdb/blob/main/db/column_family.cc.
            // Still, adding this check to avoid accidentally using
            // max_bytes_for_level_multiplier_additional
            level_size = static_cast<uint64_t>(
                level_size * mutable_cf_options.max_bytes_for_level_multiplier);
          } else {
            level_size = static_cast<uint64_t>(
                level_size * mutable_cf_options.max_bytes_for_level_multiplier *
                mutable_cf_options.MaxBytesMultiplerAdditional(cur_level));
          }
        }
        cur_level++;
        continue;
      }
    }
    p++;
    current_path_size = ioptions.cf_paths[p].target_size;
  }
  return p;
}

bool LevelCompactionBuilder::TryPickL0TrivialMove() {
  if (vstorage_->base_level() <= 0) {
    return false;
  }
  if (start_level_ == 0 && mutable_cf_options_.compression_per_level.empty() &&
      !vstorage_->LevelFiles(output_level_).empty() &&
      ioptions_.db_paths.size() <= 1) {
    // Try to pick trivial move from L0 to L1. We start from the oldest
    // file. We keep expanding to newer files if it would form a
    // trivial move.
    // For now we don't support it with
    // mutable_cf_options_.compression_per_level to prevent the logic
    // of determining whether L0 can be trivial moved to the next level.
    // We skip the case where output level is empty, since in this case, at
    // least the oldest file would qualify for trivial move, and this would
    // be a surprising behavior with few benefits.

    // We search from the oldest file from the newest. In theory, there are
    // files in the middle can form trivial move too, but it is probably
    // uncommon and we ignore these cases for simplicity.
    const std::vector<FileMetaData*>& level_files =
        vstorage_->LevelFiles(start_level_);

    InternalKey my_smallest, my_largest;
    for (auto it = level_files.rbegin(); it != level_files.rend(); ++it) {
      CompactionInputFiles output_level_inputs;
      output_level_inputs.level = output_level_;
      FileMetaData* file = *it;
      if (it == level_files.rbegin()) {
        my_smallest = file->smallest;
        my_largest = file->largest;
      } else {
        if (compaction_picker_->icmp()->Compare(file->largest, my_smallest) <
            0) {
          my_smallest = file->smallest;
        } else if (compaction_picker_->icmp()->Compare(file->smallest,
                                                       my_largest) > 0) {
          my_largest = file->largest;
        } else {
          break;
        }
      }
      vstorage_->GetOverlappingInputs(output_level_, &my_smallest, &my_largest,
                                      &output_level_inputs.files);
      if (output_level_inputs.empty()) {
        assert(!file->being_compacted);
        start_level_inputs_.files.push_back(file);
      } else {
        break;
      }
    }
  }

  if (!start_level_inputs_.empty()) {
    // Sort files by key range. Not sure it's 100% necessary but it's cleaner
    // to always keep files sorted by key the key ranges don't overlap.
    std::sort(start_level_inputs_.files.begin(),
              start_level_inputs_.files.end(),
              [icmp = compaction_picker_->icmp()](FileMetaData* f1,
                                                  FileMetaData* f2) -> bool {
                return (icmp->Compare(f1->smallest, f2->smallest) < 0);
              });

    is_l0_trivial_move_ = true;
    return true;
  }
  return false;
}

bool LevelCompactionBuilder::TryExtendNonL0TrivialMove(int start_index,
                                                       bool only_expand_right) {
  if (start_level_inputs_.size() == 1 &&
      (ioptions_.db_paths.empty() || ioptions_.db_paths.size() == 1) &&
      (mutable_cf_options_.compression_per_level.empty())) {
    // Only file of `index`, and it is likely a trivial move. Try to
    // expand if it is still a trivial move, but not beyond
    // max_compaction_bytes or 4 files, so that we don't create too
    // much compaction pressure for the next level.
    // Ignore if there are more than one DB path, as it would be hard
    // to predict whether it is a trivial move.
    const std::vector<FileMetaData*>& level_files =
        vstorage_->LevelFiles(start_level_);
    const size_t kMaxMultiTrivialMove = 4;
    FileMetaData* initial_file = start_level_inputs_.files[0];
    size_t total_size = initial_file->fd.GetFileSize();
    CompactionInputFiles output_level_inputs;
    output_level_inputs.level = output_level_;
    // Expand towards right
    for (int i = start_index + 1;
         i < static_cast<int>(level_files.size()) &&
         start_level_inputs_.size() < kMaxMultiTrivialMove;
         i++) {
      FileMetaData* next_file = level_files[i];
      if (next_file->being_compacted) {
        break;
      }
      vstorage_->GetOverlappingInputs(output_level_, &(initial_file->smallest),
                                      &(next_file->largest),
                                      &output_level_inputs.files);
      if (!output_level_inputs.empty()) {
        break;
      }
      if (i < static_cast<int>(level_files.size()) - 1 &&
          compaction_picker_->icmp()
                  ->user_comparator()
                  ->CompareWithoutTimestamp(
                      next_file->largest.user_key(),
                      level_files[i + 1]->smallest.user_key()) == 0) {
        TEST_SYNC_POINT_CALLBACK(
            "LevelCompactionBuilder::TryExtendNonL0TrivialMove:NoCleanCut",
            nullptr);
        // Not a clean up after adding the next file. Skip.
        break;
      }
      total_size += next_file->fd.GetFileSize();
      if (total_size > mutable_cf_options_.max_compaction_bytes) {
        break;
      }
      start_level_inputs_.files.push_back(next_file);
    }
    // Expand towards left
    if (!only_expand_right) {
      for (int i = start_index - 1;
           i >= 0 && start_level_inputs_.size() < kMaxMultiTrivialMove; i--) {
        FileMetaData* next_file = level_files[i];
        if (next_file->being_compacted) {
          break;
        }
        vstorage_->GetOverlappingInputs(output_level_, &(next_file->smallest),
                                        &(initial_file->largest),
                                        &output_level_inputs.files);
        if (!output_level_inputs.empty()) {
          break;
        }
        if (i > 0 && compaction_picker_->icmp()
                             ->user_comparator()
                             ->CompareWithoutTimestamp(
                                 next_file->smallest.user_key(),
                                 level_files[i - 1]->largest.user_key()) == 0) {
          // Not a clean up after adding the next file. Skip.
          break;
        }
        total_size += next_file->fd.GetFileSize();
        if (total_size > mutable_cf_options_.max_compaction_bytes) {
          break;
        }
        // keep `files` sorted in increasing order by key range
        start_level_inputs_.files.insert(start_level_inputs_.files.begin(),
                                         next_file);
      }
    }
    return start_level_inputs_.size() > 1;
  }
  return false;
}

bool LevelCompactionBuilder::PickFileToCompact() {
  // level 0 files are overlapping. So we cannot pick more
  // than one concurrent compactions at this level. This
  // could be made better by looking at key-ranges that are
  // being compacted at level 0.
  if (start_level_ == 0 &&
      !compaction_picker_->level0_compactions_in_progress()->empty()) {
    if (PickSizeBasedIntraL0Compaction()) {
      return true;
    }
    TEST_SYNC_POINT("LevelCompactionPicker::PickCompactionBySize:0");
    return false;
  }

  start_level_inputs_.clear();
  start_level_inputs_.level = start_level_;

  assert(start_level_ >= 0);

  if (TryPickL0TrivialMove()) {
    return true;
  }
  if (start_level_ == 0 && PickSizeBasedIntraL0Compaction()) {
    return true;
  }

  const std::vector<FileMetaData*>& level_files =
      vstorage_->LevelFiles(start_level_);

  // Pick the file with the highest score in this level that is not already
  // being compacted.
  const std::vector<int>& file_scores =
      vstorage_->FilesByCompactionPri(start_level_);

  unsigned int cmp_idx;
  for (cmp_idx = vstorage_->NextCompactionIndex(start_level_);
       cmp_idx < file_scores.size(); cmp_idx++) {
    int index = file_scores[cmp_idx];
    auto* f = level_files[index];

    // do not pick a file to compact if it is being compacted
    // from n-1 level.
    if (f->being_compacted) {
      if (ioptions_.compaction_pri == kRoundRobin) {
        // TODO(zichen): this file may be involved in one compaction from
        // an upper level, cannot advance the cursor for round-robin policy.
        // Currently, we do not pick any file to compact in this case. We
        // should fix this later to ensure a compaction is picked but the
        // cursor shall not be advanced.
        return false;
      }
      continue;
    }

    start_level_inputs_.files.push_back(f);
    if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
                                                    &start_level_inputs_) ||
        compaction_picker_->FilesRangeOverlapWithCompaction(
            {start_level_inputs_}, output_level_,
            Compaction::EvaluatePenultimateLevel(vstorage_, mutable_cf_options_,
                                                 ioptions_, start_level_,
                                                 output_level_))) {
      // A locked (pending compaction) input-level file was pulled in due to
      // user-key overlap.
      start_level_inputs_.clear();

      if (ioptions_.compaction_pri == kRoundRobin) {
        return false;
      }
      continue;
    }

    // Now that input level is fully expanded, we check whether any output
    // files are locked due to pending compaction.
    //
    // Note we rely on ExpandInputsToCleanCut() to tell us whether any output-
    // level files are locked, not just the extra ones pulled in for user-key
    // overlap.
    InternalKey smallest, largest;
    compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
    CompactionInputFiles output_level_inputs;
    output_level_inputs.level = output_level_;
    vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
                                    &output_level_inputs.files);
    if (output_level_inputs.empty()) {
      if (start_level_ > 0 &&
          TryExtendNonL0TrivialMove(index,
                                    ioptions_.compaction_pri ==
                                        kRoundRobin /* only_expand_right */)) {
        break;
      }
    } else {
      if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
                                                      &output_level_inputs)) {
        start_level_inputs_.clear();
        if (ioptions_.compaction_pri == kRoundRobin) {
          return false;
        }
        continue;
      }
    }

    base_index_ = index;
    break;
  }

  // store where to start the iteration in the next call to PickCompaction
  if (ioptions_.compaction_pri != kRoundRobin) {
    vstorage_->SetNextCompactionIndex(start_level_, cmp_idx);
  }
  return start_level_inputs_.size() > 0;
}

bool LevelCompactionBuilder::PickIntraL0Compaction() {
  start_level_inputs_.clear();
  const std::vector<FileMetaData*>& level_files =
      vstorage_->LevelFiles(0 /* level */);
  if (level_files.size() <
          static_cast<size_t>(
              mutable_cf_options_.level0_file_num_compaction_trigger + 2) ||
      level_files[0]->being_compacted) {
    // If L0 isn't accumulating much files beyond the regular trigger, don't
    // resort to L0->L0 compaction yet.
    return false;
  }
  return FindIntraL0Compaction(level_files, kMinFilesForIntraL0Compaction,
                               std::numeric_limits<uint64_t>::max(),
                               mutable_cf_options_.max_compaction_bytes,
                               &start_level_inputs_);
}

bool LevelCompactionBuilder::PickSizeBasedIntraL0Compaction() {
  assert(start_level_ == 0);
  int base_level = vstorage_->base_level();
  if (base_level <= 0) {
    return false;
  }
  const std::vector<FileMetaData*>& l0_files =
      vstorage_->LevelFiles(/*level=*/0);
  size_t min_num_file =
      std::max(2, mutable_cf_options_.level0_file_num_compaction_trigger);
  if (l0_files.size() < min_num_file) {
    return false;
  }
  uint64_t l0_size = 0;
  for (const auto& file : l0_files) {
    assert(file->compensated_file_size >= file->fd.GetFileSize());
    // Compact down L0s with more deletions.
    l0_size += file->compensated_file_size;
  }

  // Avoid L0->Lbase compactions that are inefficient for write-amp.
  const double kMultiplier =
      std::max(10.0, mutable_cf_options_.max_bytes_for_level_multiplier) * 2;
  const uint64_t min_lbase_size = MultiplyCheckOverflow(l0_size, kMultiplier);
  assert(min_lbase_size >= l0_size);
  const std::vector<FileMetaData*>& lbase_files =
      vstorage_->LevelFiles(/*level=*/base_level);
  uint64_t lbase_size = 0;
  for (const auto& file : lbase_files) {
    lbase_size += file->fd.GetFileSize();
    if (lbase_size > min_lbase_size) {
      break;
    }
  }
  if (lbase_size <= min_lbase_size) {
    return false;
  }

  start_level_inputs_.clear();
  start_level_inputs_.level = 0;
  for (const auto& file : l0_files) {
    if (file->being_compacted) {
      break;
    }
    start_level_inputs_.files.push_back(file);
  }
  if (start_level_inputs_.files.size() < min_num_file) {
    start_level_inputs_.clear();
    return false;
  }
  output_level_ = 0;
  return true /* picked an intra-L0 compaction */;
}
}  // namespace

Compaction* LevelCompactionPicker::PickCompaction(
    const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
    const MutableDBOptions& mutable_db_options,
    const std::vector<SequenceNumber>& /*existing_snapshots */,
    const SnapshotChecker* /*snapshot_checker*/, VersionStorageInfo* vstorage,
    LogBuffer* log_buffer) {
  LevelCompactionBuilder builder(cf_name, vstorage, this, log_buffer,
                                 mutable_cf_options, ioptions_,
                                 mutable_db_options);
  return builder.PickCompaction();
}
}  // namespace ROCKSDB_NAMESPACE