1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction_picker_level.h"
#include <string>
#include <utility>
#include <vector>
#include "db/version_edit.h"
#include "logging/log_buffer.h"
#include "test_util/sync_point.h"
namespace ROCKSDB_NAMESPACE {
bool LevelCompactionPicker::NeedsCompaction(
const VersionStorageInfo* vstorage) const {
if (!vstorage->ExpiredTtlFiles().empty()) {
return true;
}
if (!vstorage->FilesMarkedForPeriodicCompaction().empty()) {
return true;
}
if (!vstorage->BottommostFilesMarkedForCompaction().empty()) {
return true;
}
if (!vstorage->FilesMarkedForCompaction().empty()) {
return true;
}
if (!vstorage->FilesMarkedForForcedBlobGC().empty()) {
return true;
}
for (int i = 0; i <= vstorage->MaxInputLevel(); i++) {
if (vstorage->CompactionScore(i) >= 1) {
return true;
}
}
return false;
}
namespace {
enum class CompactToNextLevel {
kNo, // compact to the same level as the input file
kYes, // compact to the next level except the last level to the same level
kSkipLastLevel, // compact to the next level but skip the last level
};
// A class to build a leveled compaction step-by-step.
class LevelCompactionBuilder {
public:
LevelCompactionBuilder(const std::string& cf_name,
VersionStorageInfo* vstorage,
CompactionPicker* compaction_picker,
LogBuffer* log_buffer,
const MutableCFOptions& mutable_cf_options,
const ImmutableOptions& ioptions,
const MutableDBOptions& mutable_db_options)
: cf_name_(cf_name),
vstorage_(vstorage),
compaction_picker_(compaction_picker),
log_buffer_(log_buffer),
mutable_cf_options_(mutable_cf_options),
ioptions_(ioptions),
mutable_db_options_(mutable_db_options) {}
// Pick and return a compaction.
Compaction* PickCompaction();
// Pick the initial files to compact to the next level. (or together
// in Intra-L0 compactions)
void SetupInitialFiles();
// If the initial files are from L0 level, pick other L0
// files if needed.
bool SetupOtherL0FilesIfNeeded();
// Compaction with round-robin compaction priority allows more files to be
// picked to form a large compaction
void SetupOtherFilesWithRoundRobinExpansion();
// Based on initial files, setup other files need to be compacted
// in this compaction, accordingly.
bool SetupOtherInputsIfNeeded();
Compaction* GetCompaction();
// From `start_level_`, pick files to compact to `output_level_`.
// Returns false if there is no file to compact.
// If it returns true, inputs->files.size() will be exactly one for
// all compaction priorities except round-robin. For round-robin,
// multiple consecutive files may be put into inputs->files.
// If level is 0 and there is already a compaction on that level, this
// function will return false.
bool PickFileToCompact();
// Return true if a L0 trivial move is picked up.
bool TryPickL0TrivialMove();
// For L0->L0, picks the longest span of files that aren't currently
// undergoing compaction for which work-per-deleted-file decreases. The span
// always starts from the newest L0 file.
//
// Intra-L0 compaction is independent of all other files, so it can be
// performed even when L0->base_level compactions are blocked.
//
// Returns true if `inputs` is populated with a span of files to be compacted;
// otherwise, returns false.
bool PickIntraL0Compaction();
// When total L0 size is small compared to Lbase, try to pick intra-L0
// compaction starting from the newest L0 file. This helps to prevent
// L0->Lbase compaction with large write-amp.
//
// Returns true iff an intra-L0 compaction is picked.
// `start_level_inputs_` and `output_level_` will be updated accordingly if
// a compaction is picked.
bool PickSizeBasedIntraL0Compaction();
// Return true if TrivialMove is extended. `start_index` is the index of
// the initial file picked, which should already be in `start_level_inputs_`.
bool TryExtendNonL0TrivialMove(int start_index,
bool only_expand_right = false);
// Picks a file from level_files to compact.
// level_files is a vector of (level, file metadata) in ascending order of
// level. If compact_to_next_level is true, compact the file to the next
// level, otherwise, compact to the same level as the input file.
// If skip_last_level is true, skip the last level.
void PickFileToCompact(
const autovector<std::pair<int, FileMetaData*>>& level_files,
CompactToNextLevel compact_to_next_level);
const std::string& cf_name_;
VersionStorageInfo* vstorage_;
CompactionPicker* compaction_picker_;
LogBuffer* log_buffer_;
int start_level_ = -1;
int output_level_ = -1;
int parent_index_ = -1;
int base_index_ = -1;
double start_level_score_ = 0;
bool is_manual_ = false;
bool is_l0_trivial_move_ = false;
CompactionInputFiles start_level_inputs_;
std::vector<CompactionInputFiles> compaction_inputs_;
CompactionInputFiles output_level_inputs_;
std::vector<FileMetaData*> grandparents_;
CompactionReason compaction_reason_ = CompactionReason::kUnknown;
const MutableCFOptions& mutable_cf_options_;
const ImmutableOptions& ioptions_;
const MutableDBOptions& mutable_db_options_;
// Pick a path ID to place a newly generated file, with its level
static uint32_t GetPathId(const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options,
int level);
static const int kMinFilesForIntraL0Compaction = 4;
};
void LevelCompactionBuilder::PickFileToCompact(
const autovector<std::pair<int, FileMetaData*>>& level_files,
CompactToNextLevel compact_to_next_level) {
for (auto& level_file : level_files) {
// If it's being compacted it has nothing to do here.
// If this assert() fails that means that some function marked some
// files as being_compacted, but didn't call ComputeCompactionScore()
assert(!level_file.second->being_compacted);
start_level_ = level_file.first;
if ((compact_to_next_level == CompactToNextLevel::kSkipLastLevel &&
start_level_ == vstorage_->num_non_empty_levels() - 1) ||
(start_level_ == 0 &&
!compaction_picker_->level0_compactions_in_progress()->empty())) {
continue;
}
// Compact to the next level only if the file is not in the last level and
// compact_to_next_level is kYes or kSkipLastLevel.
if (compact_to_next_level != CompactToNextLevel::kNo &&
(start_level_ < vstorage_->num_non_empty_levels() - 1)) {
output_level_ =
(start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
} else {
output_level_ = start_level_;
}
start_level_inputs_.files = {level_file.second};
start_level_inputs_.level = start_level_;
if (compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&start_level_inputs_)) {
return;
}
}
start_level_inputs_.files.clear();
}
void LevelCompactionBuilder::SetupInitialFiles() {
// Find the compactions by size on all levels.
bool skipped_l0_to_base = false;
for (int i = 0; i < compaction_picker_->NumberLevels() - 1; i++) {
start_level_score_ = vstorage_->CompactionScore(i);
start_level_ = vstorage_->CompactionScoreLevel(i);
assert(i == 0 || start_level_score_ <= vstorage_->CompactionScore(i - 1));
if (start_level_score_ >= 1) {
if (skipped_l0_to_base && start_level_ == vstorage_->base_level()) {
// If L0->base_level compaction is pending, don't schedule further
// compaction from base level. Otherwise L0->base_level compaction
// may starve.
continue;
}
output_level_ =
(start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
bool picked_file_to_compact = PickFileToCompact();
TEST_SYNC_POINT_CALLBACK("PostPickFileToCompact",
&picked_file_to_compact);
if (picked_file_to_compact) {
// found the compaction!
if (start_level_ == 0) {
// L0 score = `num L0 files` / `level0_file_num_compaction_trigger`
compaction_reason_ = CompactionReason::kLevelL0FilesNum;
} else {
// L1+ score = `Level files size` / `MaxBytesForLevel`
compaction_reason_ = CompactionReason::kLevelMaxLevelSize;
}
break;
} else {
// didn't find the compaction, clear the inputs
start_level_inputs_.clear();
if (start_level_ == 0) {
skipped_l0_to_base = true;
// L0->base_level may be blocked due to ongoing L0->base_level
// compactions. It may also be blocked by an ongoing compaction from
// base_level downwards.
//
// In these cases, to reduce L0 file count and thus reduce likelihood
// of write stalls, we can attempt compacting a span of files within
// L0.
if (PickIntraL0Compaction()) {
output_level_ = 0;
compaction_reason_ = CompactionReason::kLevelL0FilesNum;
break;
}
}
}
} else {
// Compaction scores are sorted in descending order, no further scores
// will be >= 1.
break;
}
}
if (!start_level_inputs_.empty()) {
return;
}
// if we didn't find a compaction, check if there are any files marked for
// compaction
parent_index_ = base_index_ = -1;
compaction_picker_->PickFilesMarkedForCompaction(
cf_name_, vstorage_, &start_level_, &output_level_, &start_level_inputs_,
/*skip_marked_file*/ [](const FileMetaData* /* file */) {
return false;
});
if (!start_level_inputs_.empty()) {
compaction_reason_ = CompactionReason::kFilesMarkedForCompaction;
return;
}
// Bottommost Files Compaction on deleting tombstones
PickFileToCompact(vstorage_->BottommostFilesMarkedForCompaction(),
CompactToNextLevel::kNo);
if (!start_level_inputs_.empty()) {
compaction_reason_ = CompactionReason::kBottommostFiles;
return;
}
// TTL Compaction
if (ioptions_.compaction_pri == kRoundRobin &&
!vstorage_->ExpiredTtlFiles().empty()) {
auto expired_files = vstorage_->ExpiredTtlFiles();
// the expired files list should already be sorted by level
start_level_ = expired_files.front().first;
#ifndef NDEBUG
for (const auto& file : expired_files) {
assert(start_level_ <= file.first);
}
#endif
if (start_level_ > 0) {
output_level_ = start_level_ + 1;
if (PickFileToCompact()) {
compaction_reason_ = CompactionReason::kRoundRobinTtl;
return;
}
}
}
PickFileToCompact(vstorage_->ExpiredTtlFiles(),
CompactToNextLevel::kSkipLastLevel);
if (!start_level_inputs_.empty()) {
compaction_reason_ = CompactionReason::kTtl;
return;
}
// Periodic Compaction
PickFileToCompact(vstorage_->FilesMarkedForPeriodicCompaction(),
ioptions_.level_compaction_dynamic_level_bytes
? CompactToNextLevel::kYes
: CompactToNextLevel::kNo);
if (!start_level_inputs_.empty()) {
compaction_reason_ = CompactionReason::kPeriodicCompaction;
return;
}
// Forced blob garbage collection
PickFileToCompact(vstorage_->FilesMarkedForForcedBlobGC(),
CompactToNextLevel::kNo);
if (!start_level_inputs_.empty()) {
compaction_reason_ = CompactionReason::kForcedBlobGC;
return;
}
}
bool LevelCompactionBuilder::SetupOtherL0FilesIfNeeded() {
if (start_level_ == 0 && output_level_ != 0 && !is_l0_trivial_move_) {
return compaction_picker_->GetOverlappingL0Files(
vstorage_, &start_level_inputs_, output_level_, &parent_index_);
}
return true;
}
void LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion() {
// We only expand when the start level is not L0 under round robin
assert(start_level_ >= 1);
// For round-robin compaction priority, we have 3 constraints when picking
// multiple files.
// Constraint 1: We can only pick consecutive files
// -> Constraint 1a: When a file is being compacted (or some input files
// are being compacted after expanding, we cannot
// choose it and have to stop choosing more files
// -> Constraint 1b: When we reach the last file (with largest keys), we
// cannot choose more files (the next file will be the
// first one)
// Constraint 2: We should ensure the total compaction bytes (including the
// overlapped files from the next level) is no more than
// mutable_cf_options_.max_compaction_bytes
// Constraint 3: We try our best to pick as many files as possible so that
// the post-compaction level size is less than
// MaxBytesForLevel(start_level_)
// Constraint 4: We do not expand if it is possible to apply a trivial move
// Constraint 5 (TODO): Try to pick minimal files to split into the target
// number of subcompactions
TEST_SYNC_POINT("LevelCompactionPicker::RoundRobin");
// Only expand the inputs when we have selected a file in start_level_inputs_
if (start_level_inputs_.size() == 0) {
return;
}
uint64_t start_lvl_bytes_no_compacting = 0;
uint64_t curr_bytes_to_compact = 0;
uint64_t start_lvl_max_bytes_to_compact = 0;
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(start_level_);
// Constraint 3 (pre-calculate the ideal max bytes to compact)
for (auto f : level_files) {
if (!f->being_compacted) {
start_lvl_bytes_no_compacting += f->fd.GetFileSize();
}
}
if (start_lvl_bytes_no_compacting >
vstorage_->MaxBytesForLevel(start_level_)) {
start_lvl_max_bytes_to_compact = start_lvl_bytes_no_compacting -
vstorage_->MaxBytesForLevel(start_level_);
}
size_t start_index = vstorage_->FilesByCompactionPri(start_level_)[0];
InternalKey smallest, largest;
// Constraint 4 (No need to check again later)
compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
CompactionInputFiles output_level_inputs;
output_level_inputs.level = output_level_;
vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
&output_level_inputs.files);
if (output_level_inputs.empty()) {
if (TryExtendNonL0TrivialMove((int)start_index,
true /* only_expand_right */)) {
return;
}
}
// Constraint 3
if (start_level_inputs_[0]->fd.GetFileSize() >=
start_lvl_max_bytes_to_compact) {
return;
}
CompactionInputFiles tmp_start_level_inputs;
tmp_start_level_inputs = start_level_inputs_;
// TODO (zichen): Future parallel round-robin may also need to update this
// Constraint 1b (only expand till the end)
for (size_t i = start_index + 1; i < level_files.size(); i++) {
auto* f = level_files[i];
if (f->being_compacted) {
// Constraint 1a
return;
}
tmp_start_level_inputs.files.push_back(f);
if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&tmp_start_level_inputs) ||
compaction_picker_->FilesRangeOverlapWithCompaction(
{tmp_start_level_inputs}, output_level_,
Compaction::EvaluatePenultimateLevel(vstorage_, mutable_cf_options_,
ioptions_, start_level_,
output_level_))) {
// Constraint 1a
tmp_start_level_inputs.clear();
return;
}
curr_bytes_to_compact = 0;
for (auto start_lvl_f : tmp_start_level_inputs.files) {
curr_bytes_to_compact += start_lvl_f->fd.GetFileSize();
}
// Check whether any output level files are locked
compaction_picker_->GetRange(tmp_start_level_inputs, &smallest, &largest);
vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
&output_level_inputs.files);
if (!output_level_inputs.empty() &&
!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&output_level_inputs)) {
// Constraint 1a
tmp_start_level_inputs.clear();
return;
}
uint64_t start_lvl_curr_bytes_to_compact = curr_bytes_to_compact;
for (auto output_lvl_f : output_level_inputs.files) {
curr_bytes_to_compact += output_lvl_f->fd.GetFileSize();
}
if (curr_bytes_to_compact > mutable_cf_options_.max_compaction_bytes) {
// Constraint 2
tmp_start_level_inputs.clear();
return;
}
start_level_inputs_.files = tmp_start_level_inputs.files;
// Constraint 3
if (start_lvl_curr_bytes_to_compact > start_lvl_max_bytes_to_compact) {
return;
}
}
}
bool LevelCompactionBuilder::SetupOtherInputsIfNeeded() {
// Setup input files from output level. For output to L0, we only compact
// spans of files that do not interact with any pending compactions, so don't
// need to consider other levels.
if (output_level_ != 0) {
output_level_inputs_.level = output_level_;
bool round_robin_expanding =
ioptions_.compaction_pri == kRoundRobin &&
compaction_reason_ == CompactionReason::kLevelMaxLevelSize;
if (round_robin_expanding) {
SetupOtherFilesWithRoundRobinExpansion();
}
if (!is_l0_trivial_move_ &&
!compaction_picker_->SetupOtherInputs(
cf_name_, mutable_cf_options_, vstorage_, &start_level_inputs_,
&output_level_inputs_, &parent_index_, base_index_,
round_robin_expanding)) {
return false;
}
compaction_inputs_.push_back(start_level_inputs_);
if (!output_level_inputs_.empty()) {
compaction_inputs_.push_back(output_level_inputs_);
}
// In some edge cases we could pick a compaction that will be compacting
// a key range that overlap with another running compaction, and both
// of them have the same output level. This could happen if
// (1) we are running a non-exclusive manual compaction
// (2) AddFile ingest a new file into the LSM tree
// We need to disallow this from happening.
if (compaction_picker_->FilesRangeOverlapWithCompaction(
compaction_inputs_, output_level_,
Compaction::EvaluatePenultimateLevel(vstorage_, mutable_cf_options_,
ioptions_, start_level_,
output_level_))) {
// This compaction output could potentially conflict with the output
// of a currently running compaction, we cannot run it.
return false;
}
if (!is_l0_trivial_move_) {
compaction_picker_->GetGrandparents(vstorage_, start_level_inputs_,
output_level_inputs_, &grandparents_);
}
} else {
compaction_inputs_.push_back(start_level_inputs_);
}
return true;
}
Compaction* LevelCompactionBuilder::PickCompaction() {
// Pick up the first file to start compaction. It may have been extended
// to a clean cut.
SetupInitialFiles();
if (start_level_inputs_.empty()) {
return nullptr;
}
assert(start_level_ >= 0 && output_level_ >= 0);
// If it is a L0 -> base level compaction, we need to set up other L0
// files if needed.
if (!SetupOtherL0FilesIfNeeded()) {
return nullptr;
}
// Pick files in the output level and expand more files in the start level
// if needed.
if (!SetupOtherInputsIfNeeded()) {
return nullptr;
}
// Form a compaction object containing the files we picked.
Compaction* c = GetCompaction();
TEST_SYNC_POINT_CALLBACK("LevelCompactionPicker::PickCompaction:Return", c);
return c;
}
Compaction* LevelCompactionBuilder::GetCompaction() {
// TryPickL0TrivialMove() does not apply to the case when compacting L0 to an
// empty output level. So L0 files is picked in PickFileToCompact() by
// compaction score. We may still be able to do trivial move when this file
// does not overlap with other L0s. This happens when
// compaction_inputs_[0].size() == 1 since SetupOtherL0FilesIfNeeded() did not
// pull in more L0s.
assert(!compaction_inputs_.empty());
bool l0_files_might_overlap =
start_level_ == 0 && !is_l0_trivial_move_ &&
(compaction_inputs_.size() > 1 || compaction_inputs_[0].size() > 1);
auto c = new Compaction(
vstorage_, ioptions_, mutable_cf_options_, mutable_db_options_,
std::move(compaction_inputs_), output_level_,
MaxFileSizeForLevel(mutable_cf_options_, output_level_,
ioptions_.compaction_style, vstorage_->base_level(),
ioptions_.level_compaction_dynamic_level_bytes),
mutable_cf_options_.max_compaction_bytes,
GetPathId(ioptions_, mutable_cf_options_, output_level_),
GetCompressionType(vstorage_, mutable_cf_options_, output_level_,
vstorage_->base_level()),
GetCompressionOptions(mutable_cf_options_, vstorage_, output_level_),
mutable_cf_options_.default_write_temperature,
/* max_subcompactions */ 0, std::move(grandparents_),
/* earliest_snapshot */ std::nullopt, /* snapshot_checker */ nullptr,
is_manual_,
/* trim_ts */ "", start_level_score_, false /* deletion_compaction */,
l0_files_might_overlap, compaction_reason_);
// If it's level 0 compaction, make sure we don't execute any other level 0
// compactions in parallel
compaction_picker_->RegisterCompaction(c);
// Creating a compaction influences the compaction score because the score
// takes running compactions into account (by skipping files that are already
// being compacted). Since we just changed compaction score, we recalculate it
// here
vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_);
return c;
}
/*
* Find the optimal path to place a file
* Given a level, finds the path where levels up to it will fit in levels
* up to and including this path
*/
uint32_t LevelCompactionBuilder::GetPathId(
const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options, int level) {
uint32_t p = 0;
assert(!ioptions.cf_paths.empty());
// size remaining in the most recent path
uint64_t current_path_size = ioptions.cf_paths[0].target_size;
uint64_t level_size;
int cur_level = 0;
// max_bytes_for_level_base denotes L1 size.
// We estimate L0 size to be the same as L1.
level_size = mutable_cf_options.max_bytes_for_level_base;
// Last path is the fallback
while (p < ioptions.cf_paths.size() - 1) {
if (level_size <= current_path_size) {
if (cur_level == level) {
// Does desired level fit in this path?
return p;
} else {
current_path_size -= level_size;
if (cur_level > 0) {
if (ioptions.level_compaction_dynamic_level_bytes) {
// Currently, level_compaction_dynamic_level_bytes is ignored when
// multiple db paths are specified. https://github.com/facebook/
// rocksdb/blob/main/db/column_family.cc.
// Still, adding this check to avoid accidentally using
// max_bytes_for_level_multiplier_additional
level_size = static_cast<uint64_t>(
level_size * mutable_cf_options.max_bytes_for_level_multiplier);
} else {
level_size = static_cast<uint64_t>(
level_size * mutable_cf_options.max_bytes_for_level_multiplier *
mutable_cf_options.MaxBytesMultiplerAdditional(cur_level));
}
}
cur_level++;
continue;
}
}
p++;
current_path_size = ioptions.cf_paths[p].target_size;
}
return p;
}
bool LevelCompactionBuilder::TryPickL0TrivialMove() {
if (vstorage_->base_level() <= 0) {
return false;
}
if (start_level_ == 0 && mutable_cf_options_.compression_per_level.empty() &&
!vstorage_->LevelFiles(output_level_).empty() &&
ioptions_.db_paths.size() <= 1) {
// Try to pick trivial move from L0 to L1. We start from the oldest
// file. We keep expanding to newer files if it would form a
// trivial move.
// For now we don't support it with
// mutable_cf_options_.compression_per_level to prevent the logic
// of determining whether L0 can be trivial moved to the next level.
// We skip the case where output level is empty, since in this case, at
// least the oldest file would qualify for trivial move, and this would
// be a surprising behavior with few benefits.
// We search from the oldest file from the newest. In theory, there are
// files in the middle can form trivial move too, but it is probably
// uncommon and we ignore these cases for simplicity.
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(start_level_);
InternalKey my_smallest, my_largest;
for (auto it = level_files.rbegin(); it != level_files.rend(); ++it) {
CompactionInputFiles output_level_inputs;
output_level_inputs.level = output_level_;
FileMetaData* file = *it;
if (it == level_files.rbegin()) {
my_smallest = file->smallest;
my_largest = file->largest;
} else {
if (compaction_picker_->icmp()->Compare(file->largest, my_smallest) <
0) {
my_smallest = file->smallest;
} else if (compaction_picker_->icmp()->Compare(file->smallest,
my_largest) > 0) {
my_largest = file->largest;
} else {
break;
}
}
vstorage_->GetOverlappingInputs(output_level_, &my_smallest, &my_largest,
&output_level_inputs.files);
if (output_level_inputs.empty()) {
assert(!file->being_compacted);
start_level_inputs_.files.push_back(file);
} else {
break;
}
}
}
if (!start_level_inputs_.empty()) {
// Sort files by key range. Not sure it's 100% necessary but it's cleaner
// to always keep files sorted by key the key ranges don't overlap.
std::sort(start_level_inputs_.files.begin(),
start_level_inputs_.files.end(),
[icmp = compaction_picker_->icmp()](FileMetaData* f1,
FileMetaData* f2) -> bool {
return (icmp->Compare(f1->smallest, f2->smallest) < 0);
});
is_l0_trivial_move_ = true;
return true;
}
return false;
}
bool LevelCompactionBuilder::TryExtendNonL0TrivialMove(int start_index,
bool only_expand_right) {
if (start_level_inputs_.size() == 1 &&
(ioptions_.db_paths.empty() || ioptions_.db_paths.size() == 1) &&
(mutable_cf_options_.compression_per_level.empty())) {
// Only file of `index`, and it is likely a trivial move. Try to
// expand if it is still a trivial move, but not beyond
// max_compaction_bytes or 4 files, so that we don't create too
// much compaction pressure for the next level.
// Ignore if there are more than one DB path, as it would be hard
// to predict whether it is a trivial move.
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(start_level_);
const size_t kMaxMultiTrivialMove = 4;
FileMetaData* initial_file = start_level_inputs_.files[0];
size_t total_size = initial_file->fd.GetFileSize();
CompactionInputFiles output_level_inputs;
output_level_inputs.level = output_level_;
// Expand towards right
for (int i = start_index + 1;
i < static_cast<int>(level_files.size()) &&
start_level_inputs_.size() < kMaxMultiTrivialMove;
i++) {
FileMetaData* next_file = level_files[i];
if (next_file->being_compacted) {
break;
}
vstorage_->GetOverlappingInputs(output_level_, &(initial_file->smallest),
&(next_file->largest),
&output_level_inputs.files);
if (!output_level_inputs.empty()) {
break;
}
if (i < static_cast<int>(level_files.size()) - 1 &&
compaction_picker_->icmp()
->user_comparator()
->CompareWithoutTimestamp(
next_file->largest.user_key(),
level_files[i + 1]->smallest.user_key()) == 0) {
TEST_SYNC_POINT_CALLBACK(
"LevelCompactionBuilder::TryExtendNonL0TrivialMove:NoCleanCut",
nullptr);
// Not a clean up after adding the next file. Skip.
break;
}
total_size += next_file->fd.GetFileSize();
if (total_size > mutable_cf_options_.max_compaction_bytes) {
break;
}
start_level_inputs_.files.push_back(next_file);
}
// Expand towards left
if (!only_expand_right) {
for (int i = start_index - 1;
i >= 0 && start_level_inputs_.size() < kMaxMultiTrivialMove; i--) {
FileMetaData* next_file = level_files[i];
if (next_file->being_compacted) {
break;
}
vstorage_->GetOverlappingInputs(output_level_, &(next_file->smallest),
&(initial_file->largest),
&output_level_inputs.files);
if (!output_level_inputs.empty()) {
break;
}
if (i > 0 && compaction_picker_->icmp()
->user_comparator()
->CompareWithoutTimestamp(
next_file->smallest.user_key(),
level_files[i - 1]->largest.user_key()) == 0) {
// Not a clean up after adding the next file. Skip.
break;
}
total_size += next_file->fd.GetFileSize();
if (total_size > mutable_cf_options_.max_compaction_bytes) {
break;
}
// keep `files` sorted in increasing order by key range
start_level_inputs_.files.insert(start_level_inputs_.files.begin(),
next_file);
}
}
return start_level_inputs_.size() > 1;
}
return false;
}
bool LevelCompactionBuilder::PickFileToCompact() {
// level 0 files are overlapping. So we cannot pick more
// than one concurrent compactions at this level. This
// could be made better by looking at key-ranges that are
// being compacted at level 0.
if (start_level_ == 0 &&
!compaction_picker_->level0_compactions_in_progress()->empty()) {
if (PickSizeBasedIntraL0Compaction()) {
return true;
}
TEST_SYNC_POINT("LevelCompactionPicker::PickCompactionBySize:0");
return false;
}
start_level_inputs_.clear();
start_level_inputs_.level = start_level_;
assert(start_level_ >= 0);
if (TryPickL0TrivialMove()) {
return true;
}
if (start_level_ == 0 && PickSizeBasedIntraL0Compaction()) {
return true;
}
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(start_level_);
// Pick the file with the highest score in this level that is not already
// being compacted.
const std::vector<int>& file_scores =
vstorage_->FilesByCompactionPri(start_level_);
unsigned int cmp_idx;
for (cmp_idx = vstorage_->NextCompactionIndex(start_level_);
cmp_idx < file_scores.size(); cmp_idx++) {
int index = file_scores[cmp_idx];
auto* f = level_files[index];
// do not pick a file to compact if it is being compacted
// from n-1 level.
if (f->being_compacted) {
if (ioptions_.compaction_pri == kRoundRobin) {
// TODO(zichen): this file may be involved in one compaction from
// an upper level, cannot advance the cursor for round-robin policy.
// Currently, we do not pick any file to compact in this case. We
// should fix this later to ensure a compaction is picked but the
// cursor shall not be advanced.
return false;
}
continue;
}
start_level_inputs_.files.push_back(f);
if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&start_level_inputs_) ||
compaction_picker_->FilesRangeOverlapWithCompaction(
{start_level_inputs_}, output_level_,
Compaction::EvaluatePenultimateLevel(vstorage_, mutable_cf_options_,
ioptions_, start_level_,
output_level_))) {
// A locked (pending compaction) input-level file was pulled in due to
// user-key overlap.
start_level_inputs_.clear();
if (ioptions_.compaction_pri == kRoundRobin) {
return false;
}
continue;
}
// Now that input level is fully expanded, we check whether any output
// files are locked due to pending compaction.
//
// Note we rely on ExpandInputsToCleanCut() to tell us whether any output-
// level files are locked, not just the extra ones pulled in for user-key
// overlap.
InternalKey smallest, largest;
compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
CompactionInputFiles output_level_inputs;
output_level_inputs.level = output_level_;
vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
&output_level_inputs.files);
if (output_level_inputs.empty()) {
if (start_level_ > 0 &&
TryExtendNonL0TrivialMove(index,
ioptions_.compaction_pri ==
kRoundRobin /* only_expand_right */)) {
break;
}
} else {
if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&output_level_inputs)) {
start_level_inputs_.clear();
if (ioptions_.compaction_pri == kRoundRobin) {
return false;
}
continue;
}
}
base_index_ = index;
break;
}
// store where to start the iteration in the next call to PickCompaction
if (ioptions_.compaction_pri != kRoundRobin) {
vstorage_->SetNextCompactionIndex(start_level_, cmp_idx);
}
return start_level_inputs_.size() > 0;
}
bool LevelCompactionBuilder::PickIntraL0Compaction() {
start_level_inputs_.clear();
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(0 /* level */);
if (level_files.size() <
static_cast<size_t>(
mutable_cf_options_.level0_file_num_compaction_trigger + 2) ||
level_files[0]->being_compacted) {
// If L0 isn't accumulating much files beyond the regular trigger, don't
// resort to L0->L0 compaction yet.
return false;
}
return FindIntraL0Compaction(level_files, kMinFilesForIntraL0Compaction,
std::numeric_limits<uint64_t>::max(),
mutable_cf_options_.max_compaction_bytes,
&start_level_inputs_);
}
bool LevelCompactionBuilder::PickSizeBasedIntraL0Compaction() {
assert(start_level_ == 0);
int base_level = vstorage_->base_level();
if (base_level <= 0) {
return false;
}
const std::vector<FileMetaData*>& l0_files =
vstorage_->LevelFiles(/*level=*/0);
size_t min_num_file =
std::max(2, mutable_cf_options_.level0_file_num_compaction_trigger);
if (l0_files.size() < min_num_file) {
return false;
}
uint64_t l0_size = 0;
for (const auto& file : l0_files) {
assert(file->compensated_file_size >= file->fd.GetFileSize());
// Compact down L0s with more deletions.
l0_size += file->compensated_file_size;
}
// Avoid L0->Lbase compactions that are inefficient for write-amp.
const double kMultiplier =
std::max(10.0, mutable_cf_options_.max_bytes_for_level_multiplier) * 2;
const uint64_t min_lbase_size = MultiplyCheckOverflow(l0_size, kMultiplier);
assert(min_lbase_size >= l0_size);
const std::vector<FileMetaData*>& lbase_files =
vstorage_->LevelFiles(/*level=*/base_level);
uint64_t lbase_size = 0;
for (const auto& file : lbase_files) {
lbase_size += file->fd.GetFileSize();
if (lbase_size > min_lbase_size) {
break;
}
}
if (lbase_size <= min_lbase_size) {
return false;
}
start_level_inputs_.clear();
start_level_inputs_.level = 0;
for (const auto& file : l0_files) {
if (file->being_compacted) {
break;
}
start_level_inputs_.files.push_back(file);
}
if (start_level_inputs_.files.size() < min_num_file) {
start_level_inputs_.clear();
return false;
}
output_level_ = 0;
return true /* picked an intra-L0 compaction */;
}
} // namespace
Compaction* LevelCompactionPicker::PickCompaction(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
const MutableDBOptions& mutable_db_options,
const std::vector<SequenceNumber>& /*existing_snapshots */,
const SnapshotChecker* /*snapshot_checker*/, VersionStorageInfo* vstorage,
LogBuffer* log_buffer) {
LevelCompactionBuilder builder(cf_name, vstorage, this, log_buffer,
mutable_cf_options, ioptions_,
mutable_db_options);
return builder.PickCompaction();
}
} // namespace ROCKSDB_NAMESPACE
|