1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
|
// Copyright (c) 2018-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#include "db/error_handler.h"
#include "db/db_impl/db_impl.h"
#include "db/event_helpers.h"
#include "file/sst_file_manager_impl.h"
#include "logging/logging.h"
#include "port/lang.h"
namespace ROCKSDB_NAMESPACE {
// Maps to help decide the severity of an error based on the
// BackgroundErrorReason, Code, SubCode and whether db_options.paranoid_checks
// is set or not. There are 3 maps, going from most specific to least specific
// (i.e from all 4 fields in a tuple to only the BackgroundErrorReason and
// paranoid_checks). The less specific map serves as a catch all in case we miss
// a specific error code or subcode.
std::map<std::tuple<BackgroundErrorReason, Status::Code, Status::SubCode, bool>,
Status::Severity>
ErrorSeverityMap = {
// Errors during BG compaction
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, Status::SubCode::kNoSpace,
true),
Status::Severity::kSoftError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, Status::SubCode::kNoSpace,
false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, Status::SubCode::kSpaceLimit,
true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, Status::SubCode::kIOFenced,
true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, Status::SubCode::kIOFenced,
false),
Status::Severity::kFatalError},
// Errors during BG flush
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
Status::SubCode::kNoSpace, true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
Status::SubCode::kNoSpace, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
Status::SubCode::kSpaceLimit, true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
Status::SubCode::kIOFenced, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
Status::SubCode::kIOFenced, false),
Status::Severity::kFatalError},
// Errors during Write
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kIOError, Status::SubCode::kNoSpace,
true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kIOError, Status::SubCode::kNoSpace,
false),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kIOError, Status::SubCode::kIOFenced,
true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kIOError, Status::SubCode::kIOFenced,
false),
Status::Severity::kFatalError},
// Errors during MANIFEST write
{std::make_tuple(BackgroundErrorReason::kManifestWrite,
Status::Code::kIOError, Status::SubCode::kNoSpace,
true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kManifestWrite,
Status::Code::kIOError, Status::SubCode::kNoSpace,
false),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kManifestWrite,
Status::Code::kIOError, Status::SubCode::kIOFenced,
true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kManifestWrite,
Status::Code::kIOError, Status::SubCode::kIOFenced,
false),
Status::Severity::kFatalError},
// Errors during BG flush with WAL disabled
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, Status::SubCode::kNoSpace,
true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, Status::SubCode::kNoSpace,
false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, Status::SubCode::kSpaceLimit,
true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, Status::SubCode::kIOFenced,
true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, Status::SubCode::kIOFenced,
false),
Status::Severity::kFatalError},
// Errors during MANIFEST write when WAL is disabled
{std::make_tuple(BackgroundErrorReason::kManifestWriteNoWAL,
Status::Code::kIOError, Status::SubCode::kNoSpace,
true),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kManifestWriteNoWAL,
Status::Code::kIOError, Status::SubCode::kNoSpace,
false),
Status::Severity::kHardError},
{std::make_tuple(BackgroundErrorReason::kManifestWriteNoWAL,
Status::Code::kIOError, Status::SubCode::kIOFenced,
true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kManifestWriteNoWAL,
Status::Code::kIOError, Status::SubCode::kIOFenced,
false),
Status::Severity::kFatalError},
};
std::map<std::tuple<BackgroundErrorReason, Status::Code, bool>,
Status::Severity>
DefaultErrorSeverityMap = {
// Errors during BG compaction
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kCorruption, true),
Status::Severity::kUnrecoverableError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kCorruption, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kCompaction,
Status::Code::kIOError, false),
Status::Severity::kNoError},
// Errors during BG flush
{std::make_tuple(BackgroundErrorReason::kFlush,
Status::Code::kCorruption, true),
Status::Severity::kUnrecoverableError},
{std::make_tuple(BackgroundErrorReason::kFlush,
Status::Code::kCorruption, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kFlush, Status::Code::kIOError,
false),
Status::Severity::kNoError},
// Errors during Write
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kCorruption, true),
Status::Severity::kUnrecoverableError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kCorruption, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kIOError, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback,
Status::Code::kIOError, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kManifestWrite,
Status::Code::kIOError, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kManifestWrite,
Status::Code::kIOError, false),
Status::Severity::kFatalError},
// Errors during BG flush with WAL disabled
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kCorruption, true),
Status::Severity::kUnrecoverableError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kCorruption, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kFlushNoWAL,
Status::Code::kIOError, false),
Status::Severity::kNoError},
{std::make_tuple(BackgroundErrorReason::kManifestWriteNoWAL,
Status::Code::kIOError, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kManifestWriteNoWAL,
Status::Code::kIOError, false),
Status::Severity::kFatalError},
};
std::map<std::tuple<BackgroundErrorReason, bool>, Status::Severity>
DefaultReasonMap = {
// Errors during BG compaction
{std::make_tuple(BackgroundErrorReason::kCompaction, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kCompaction, false),
Status::Severity::kNoError},
// Errors during BG flush
{std::make_tuple(BackgroundErrorReason::kFlush, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kFlush, false),
Status::Severity::kNoError},
// Errors during Write
{std::make_tuple(BackgroundErrorReason::kWriteCallback, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kWriteCallback, false),
Status::Severity::kFatalError},
// Errors during Memtable update
{std::make_tuple(BackgroundErrorReason::kMemTable, true),
Status::Severity::kFatalError},
{std::make_tuple(BackgroundErrorReason::kMemTable, false),
Status::Severity::kFatalError},
};
void ErrorHandler::CancelErrorRecovery() {
db_mutex_->AssertHeld();
// We'll release the lock before calling sfm, so make sure no new
// recovery gets scheduled at that point
auto_recovery_ = false;
SstFileManagerImpl* sfm =
static_cast<SstFileManagerImpl*>(db_options_.sst_file_manager.get());
if (sfm) {
// This may or may not cancel a pending recovery
db_mutex_->Unlock();
bool cancelled = sfm->CancelErrorRecovery(this);
db_mutex_->Lock();
if (cancelled) {
recovery_in_prog_ = false;
}
}
// If auto recovery is also runing to resume from the retryable error,
// we should wait and end the auto recovery.
EndAutoRecovery();
}
// This is the main function for looking at an error during a background
// operation and deciding the severity, and error recovery strategy. The high
// level algorithm is as follows -
// 1. Classify the severity of the error based on the ErrorSeverityMap,
// DefaultErrorSeverityMap and DefaultReasonMap defined earlier
// 2. Call a Status code specific override function to adjust the severity
// if needed. The reason for this is our ability to recover may depend on
// the exact options enabled in DBOptions
// 3. Determine if auto recovery is possible. A listener notification callback
// is called, which can disable the auto recovery even if we decide its
// feasible
// 4. For Status::NoSpace() errors, rely on SstFileManagerImpl to control
// the actual recovery. If no sst file manager is specified in DBOptions,
// a default one is allocated during DB::Open(), so there will always be
// one.
// This can also get called as part of a recovery operation. In that case, we
// also track the error separately in recovery_error_ so we can tell in the
// end whether recovery succeeded or not
void ErrorHandler::HandleKnownErrors(const Status& bg_err,
BackgroundErrorReason reason) {
db_mutex_->AssertHeld();
if (bg_err.ok()) {
return;
}
ROCKS_LOG_INFO(db_options_.info_log,
"ErrorHandler: Set regular background error\n");
bool paranoid = db_options_.paranoid_checks;
Status::Severity sev = Status::Severity::kFatalError;
Status new_bg_err;
DBRecoverContext context;
bool found = false;
{
auto entry = ErrorSeverityMap.find(
std::make_tuple(reason, bg_err.code(), bg_err.subcode(), paranoid));
if (entry != ErrorSeverityMap.end()) {
sev = entry->second;
found = true;
}
}
if (!found) {
auto entry = DefaultErrorSeverityMap.find(
std::make_tuple(reason, bg_err.code(), paranoid));
if (entry != DefaultErrorSeverityMap.end()) {
sev = entry->second;
found = true;
}
}
if (!found) {
auto entry = DefaultReasonMap.find(std::make_tuple(reason, paranoid));
if (entry != DefaultReasonMap.end()) {
sev = entry->second;
}
}
new_bg_err = Status(bg_err, sev);
// Check if recovery is currently in progress. If it is, we will save this
// error so we can check it at the end to see if recovery succeeded or not
if (recovery_in_prog_ && recovery_error_.ok()) {
recovery_error_ = status_to_io_status(Status(new_bg_err));
}
bool auto_recovery = auto_recovery_;
if (new_bg_err.severity() >= Status::Severity::kFatalError && auto_recovery) {
auto_recovery = false;
}
// Allow some error specific overrides
if (new_bg_err.subcode() == IOStatus::SubCode::kNoSpace ||
new_bg_err.subcode() == IOStatus::SubCode::kSpaceLimit) {
new_bg_err = OverrideNoSpaceError(new_bg_err, &auto_recovery);
}
if (!new_bg_err.ok()) {
Status s = new_bg_err;
EventHelpers::NotifyOnBackgroundError(db_options_.listeners, reason, &s,
db_mutex_, &auto_recovery);
if (!s.ok() && (s.severity() > bg_error_.severity())) {
bg_error_ = s;
} else {
// This error is less severe than previously encountered error. Don't
// take any further action
return;
}
}
recover_context_ = context;
if (auto_recovery) {
recovery_in_prog_ = true;
// Kick-off error specific recovery
if (new_bg_err.subcode() == IOStatus::SubCode::kNoSpace ||
new_bg_err.subcode() == IOStatus::SubCode::kSpaceLimit) {
RecoverFromNoSpace();
}
}
if (bg_error_.severity() >= Status::Severity::kHardError) {
is_db_stopped_.store(true, std::memory_order_release);
}
}
// This is the main function for looking at IO related error during the
// background operations. The main logic is:
// File scope IO error is treated as retryable IO error in the write path. In
// RocksDB, If a file has write IO error and it is at file scope, RocksDB never
// write to the same file again. RocksDB will create a new file and rewrite the
// whole content. Thus, it is retryable.
// There are three main categories of error handling:
// 1) if the error is caused by data loss, the error is mapped to
// unrecoverable error. Application/user must take action to handle
// this situation (File scope case is excluded).
// 2) if the error is a Retryable IO error (i.e., it is a file scope IO error,
// or its retryable flag is set and not a data loss error), auto resume (
// DBImpl::ResumeImpl) may be called and the auto resume can be controlled
// by resume count and resume interval options. There are three sub-cases:
// a) if the error happens during compaction, it is mapped to a soft error.
// the compaction thread will reschedule a new compaction. This doesn't
// call auto resume.
// b) if the error happens during flush and also WAL is empty, it is mapped
// to a soft error. Note that, it includes the case that IO error happens
// in SST or manifest write during flush. Auto resume will be called.
// c) all other errors are mapped to hard error. Auto resume will be called.
// 3) for other cases, HandleKnownErrors(const Status& bg_err,
// BackgroundErrorReason reason) will be called to handle other error cases
// such as delegating to SstFileManager to handle no space error.
void ErrorHandler::SetBGError(const Status& bg_status,
BackgroundErrorReason reason, bool wal_related) {
db_mutex_->AssertHeld();
Status tmp_status = bg_status;
IOStatus bg_io_err = status_to_io_status(std::move(tmp_status));
if (bg_io_err.ok()) {
return;
}
ROCKS_LOG_WARN(db_options_.info_log, "Background IO error %s, reason %d",
bg_io_err.ToString().c_str(), static_cast<int>(reason));
RecordStats({ERROR_HANDLER_BG_ERROR_COUNT, ERROR_HANDLER_BG_IO_ERROR_COUNT},
{} /* int_histograms */);
Status new_bg_io_err = bg_io_err;
DBRecoverContext context;
if (bg_io_err.GetScope() != IOStatus::IOErrorScope::kIOErrorScopeFile &&
bg_io_err.GetDataLoss()) {
// First, data loss (non file scope) is treated as unrecoverable error. So
// it can directly overwrite any existing bg_error_.
bool auto_recovery = false;
Status bg_err(new_bg_io_err, Status::Severity::kUnrecoverableError);
CheckAndSetRecoveryAndBGError(bg_err);
ROCKS_LOG_INFO(
db_options_.info_log,
"ErrorHandler: Set background IO error as unrecoverable error\n");
EventHelpers::NotifyOnBackgroundError(db_options_.listeners, reason,
&bg_err, db_mutex_, &auto_recovery);
recover_context_ = context;
return;
}
if (wal_related) {
assert(reason == BackgroundErrorReason::kWriteCallback ||
reason == BackgroundErrorReason::kMemTable ||
reason == BackgroundErrorReason::kFlush);
}
if (db_options_.manual_wal_flush && wal_related && bg_io_err.IsIOError()) {
// With manual_wal_flush, a WAL write failure can drop buffered WAL writes.
// Memtables and WAL then become inconsistent. A successful memtable flush
// on one CF can cause CFs to be inconsistent upon restart. Before we fix
// the bug in auto recovery from WAL write failures that can flush one CF
// at a time, we set the error severity to fatal to disallow auto recovery.
// TODO: remove parameter `wal_related` once we can automatically recover
// from WAL write failures.
bool auto_recovery = false;
Status bg_err(new_bg_io_err, Status::Severity::kFatalError);
CheckAndSetRecoveryAndBGError(bg_err);
ROCKS_LOG_WARN(db_options_.info_log,
"ErrorHandler: A potentially WAL error happened, set "
"background IO error as fatal error\n");
EventHelpers::NotifyOnBackgroundError(db_options_.listeners, reason,
&bg_err, db_mutex_, &auto_recovery);
recover_context_ = context;
return;
}
if (bg_io_err.subcode() != IOStatus::SubCode::kNoSpace &&
(bg_io_err.GetScope() == IOStatus::IOErrorScope::kIOErrorScopeFile ||
bg_io_err.GetRetryable())) {
// Second, check if the error is a retryable IO error (file scope IO error
// is also treated as retryable IO error in RocksDB write path). if it is
// retryable error and its severity is higher than bg_error_, overwrite the
// bg_error_ with new error. In current stage, for retryable IO error of
// compaction, treat it as soft error. In other cases, treat the retryable
// IO error as hard error. Note that, all the NoSpace error should be
// handled by the SstFileManager::StartErrorRecovery(). Therefore, no matter
// it is retryable or file scope, this logic will be bypassed.
RecordStats({ERROR_HANDLER_BG_RETRYABLE_IO_ERROR_COUNT},
{} /* int_histograms */);
ROCKS_LOG_INFO(db_options_.info_log,
"ErrorHandler: Set background retryable IO error\n");
if (BackgroundErrorReason::kCompaction == reason) {
// We map the retryable IO error during compaction to soft error. Since
// compaction can reschedule by itself. We will not set the BG error in
// this case
// TODO: a better way to set or clean the retryable IO error which
// happens during compaction SST file write.
RecordStats({ERROR_HANDLER_AUTORESUME_COUNT}, {} /* int_histograms */);
ROCKS_LOG_INFO(
db_options_.info_log,
"ErrorHandler: Compaction will schedule by itself to resume\n");
bool auto_recovery = false;
EventHelpers::NotifyOnBackgroundError(db_options_.listeners, reason,
&new_bg_io_err, db_mutex_,
&auto_recovery);
// Not used in this code path.
new_bg_io_err.PermitUncheckedError();
return;
}
Status::Severity severity;
if (BackgroundErrorReason::kFlushNoWAL == reason ||
BackgroundErrorReason::kManifestWriteNoWAL == reason) {
// When the BG Retryable IO error reason is flush without WAL,
// We map it to a soft error. At the same time, all the background work
// should be stopped except the BG work from recovery. Therefore, we
// set the soft_error_no_bg_work_ to true. At the same time, since DB
// continues to receive writes when BG error is soft error, to avoid
// to many small memtable being generated during auto resume, the flush
// reason is set to kErrorRecoveryRetryFlush.
severity = Status::Severity::kSoftError;
soft_error_no_bg_work_ = true;
context.flush_reason = FlushReason::kErrorRecoveryRetryFlush;
} else {
severity = Status::Severity::kHardError;
}
Status bg_err(new_bg_io_err, severity);
CheckAndSetRecoveryAndBGError(bg_err);
recover_context_ = context;
bool auto_recovery = db_options_.max_bgerror_resume_count > 0;
EventHelpers::NotifyOnBackgroundError(db_options_.listeners, reason,
&new_bg_io_err, db_mutex_,
&auto_recovery);
StartRecoverFromRetryableBGIOError(bg_io_err);
return;
}
HandleKnownErrors(new_bg_io_err, reason);
}
void ErrorHandler::AddFilesToQuarantine(
autovector<const autovector<uint64_t>*> files_to_quarantine) {
db_mutex_->AssertHeld();
std::ostringstream quarantine_files_oss;
bool is_first_one = true;
for (const auto* files : files_to_quarantine) {
assert(files);
for (uint64_t file_number : *files) {
files_to_quarantine_.push_back(file_number);
quarantine_files_oss << (is_first_one ? "" : ", ") << file_number;
is_first_one = false;
}
}
ROCKS_LOG_INFO(db_options_.info_log,
"ErrorHandler: added file numbers %s to quarantine.\n",
quarantine_files_oss.str().c_str());
}
void ErrorHandler::ClearFilesToQuarantine() {
db_mutex_->AssertHeld();
files_to_quarantine_.clear();
ROCKS_LOG_INFO(db_options_.info_log,
"ErrorHandler: cleared files in quarantine.\n");
}
Status ErrorHandler::OverrideNoSpaceError(const Status& bg_error,
bool* auto_recovery) {
if (bg_error.severity() >= Status::Severity::kFatalError) {
return bg_error;
}
if (db_options_.sst_file_manager.get() == nullptr) {
// We rely on SFM to poll for enough disk space and recover
*auto_recovery = false;
return bg_error;
}
if (db_options_.allow_2pc &&
(bg_error.severity() <= Status::Severity::kSoftError)) {
// Don't know how to recover, as the contents of the current WAL file may
// be inconsistent, and it may be needed for 2PC. If 2PC is not enabled,
// we can just flush the memtable and discard the log
*auto_recovery = false;
return Status(bg_error, Status::Severity::kFatalError);
}
{
uint64_t free_space;
if (db_options_.env->GetFreeSpace(db_options_.db_paths[0].path,
&free_space) == Status::NotSupported()) {
*auto_recovery = false;
}
}
return bg_error;
}
void ErrorHandler::RecoverFromNoSpace() {
SstFileManagerImpl* sfm =
static_cast<SstFileManagerImpl*>(db_options_.sst_file_manager.get());
// Inform SFM of the error, so it can kick-off the recovery
if (sfm) {
sfm->StartErrorRecovery(this, bg_error_);
}
}
Status ErrorHandler::ClearBGError() {
db_mutex_->AssertHeld();
// Signal that recovery succeeded
if (recovery_error_.ok()) {
assert(files_to_quarantine_.empty());
Status old_bg_error = bg_error_;
// old_bg_error is only for notifying listeners, so may not be checked
old_bg_error.PermitUncheckedError();
// Clear and check the recovery IO and BG error
is_db_stopped_.store(false, std::memory_order_release);
bg_error_ = Status::OK();
recovery_error_ = IOStatus::OK();
bg_error_.PermitUncheckedError();
recovery_error_.PermitUncheckedError();
recovery_in_prog_ = false;
soft_error_no_bg_work_ = false;
EventHelpers::NotifyOnErrorRecoveryEnd(db_options_.listeners, old_bg_error,
bg_error_, db_mutex_);
}
return recovery_error_;
}
Status ErrorHandler::RecoverFromBGError(bool is_manual) {
InstrumentedMutexLock l(db_mutex_);
bool no_bg_work_original_flag = soft_error_no_bg_work_;
if (is_manual) {
// If its a manual recovery and there's a background recovery in progress
// return busy status
if (recovery_in_prog_) {
return Status::Busy("Recovery already in progress");
}
recovery_in_prog_ = true;
// In manual resume, we allow the bg work to run. If it is a auto resume,
// the bg work should follow this tag.
soft_error_no_bg_work_ = false;
// In manual resume, if the bg error is a soft error and also requires
// no bg work, the error must be recovered by call the flush with
// flush reason: kErrorRecoveryRetryFlush. In other case, the flush
// reason is set to kErrorRecovery.
if (no_bg_work_original_flag) {
recover_context_.flush_reason = FlushReason::kErrorRecoveryRetryFlush;
} else {
recover_context_.flush_reason = FlushReason::kErrorRecovery;
}
}
if (bg_error_.severity() == Status::Severity::kSoftError &&
recover_context_.flush_reason == FlushReason::kErrorRecovery) {
// Simply clear the background error and return
recovery_error_ = IOStatus::OK();
return ClearBGError();
}
// Reset recovery_error_. We will use this to record any errors that happen
// during the recovery process. While recovering, the only operations that
// can generate background errors should be the flush operations
recovery_error_ = IOStatus::OK();
recovery_error_.PermitUncheckedError();
Status s = db_->ResumeImpl(recover_context_);
if (s.ok()) {
soft_error_no_bg_work_ = false;
} else {
soft_error_no_bg_work_ = no_bg_work_original_flag;
}
// For manual recover, shutdown, and fatal error cases, set
// recovery_in_prog_ to false. For automatic background recovery, leave it
// as is regardless of success or failure as it will be retried
if (is_manual || s.IsShutdownInProgress() ||
bg_error_.severity() >= Status::Severity::kFatalError) {
recovery_in_prog_ = false;
}
return s;
}
void ErrorHandler::StartRecoverFromRetryableBGIOError(
const IOStatus& io_error) {
db_mutex_->AssertHeld();
if (bg_error_.ok() || io_error.ok()) {
return;
}
if (db_options_.max_bgerror_resume_count <= 0 || recovery_in_prog_) {
// Auto resume BG error is not enabled
return;
}
if (end_recovery_) {
// Can temporarily release db mutex
EventHelpers::NotifyOnErrorRecoveryEnd(db_options_.listeners, bg_error_,
Status::ShutdownInProgress(),
db_mutex_);
db_mutex_->AssertHeld();
return;
}
RecordStats({ERROR_HANDLER_AUTORESUME_COUNT}, {} /* int_histograms */);
ROCKS_LOG_INFO(
db_options_.info_log,
"ErrorHandler: Call StartRecoverFromRetryableBGIOError to resume\n");
// Needs to be set in the same lock hold as setting BG error, otherwise
// intervening writes could see a BG error without a recovery and bail out.
recovery_in_prog_ = true;
if (recovery_thread_) {
// Ensure only one thread can execute the join().
std::unique_ptr<port::Thread> old_recovery_thread(
std::move(recovery_thread_));
// In this case, if recovery_in_prog_ is false, current thread should
// wait the previous recover thread to finish and create a new thread
// to recover from the bg error.
db_mutex_->Unlock();
TEST_SYNC_POINT(
"StartRecoverFromRetryableBGIOError:BeforeWaitingForOtherThread");
old_recovery_thread->join();
TEST_SYNC_POINT(
"StartRecoverFromRetryableBGIOError:AfterWaitingForOtherThread");
db_mutex_->Lock();
}
recovery_thread_.reset(
new port::Thread(&ErrorHandler::RecoverFromRetryableBGIOError, this));
}
// Automatic recover from Retryable BG IO error. Must be called after db
// mutex is released.
void ErrorHandler::RecoverFromRetryableBGIOError() {
assert(recovery_in_prog_);
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:BeforeStart");
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:BeforeStart2");
InstrumentedMutexLock l(db_mutex_);
if (end_recovery_) {
EventHelpers::NotifyOnErrorRecoveryEnd(db_options_.listeners, bg_error_,
Status::ShutdownInProgress(),
db_mutex_);
recovery_in_prog_ = false;
return;
}
DBRecoverContext context = recover_context_;
context.flush_after_recovery = true;
int resume_count = db_options_.max_bgerror_resume_count;
uint64_t wait_interval = db_options_.bgerror_resume_retry_interval;
uint64_t retry_count = 0;
// Recover from the retryable error. Create a separate thread to do it.
while (resume_count > 0) {
if (end_recovery_) {
EventHelpers::NotifyOnErrorRecoveryEnd(db_options_.listeners, bg_error_,
Status::ShutdownInProgress(),
db_mutex_);
recovery_in_prog_ = false;
return;
}
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:BeforeResume0");
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:BeforeResume1");
recovery_error_ = IOStatus::OK();
retry_count++;
Status s = db_->ResumeImpl(context);
RecordStats({ERROR_HANDLER_AUTORESUME_RETRY_TOTAL_COUNT},
{} /* int_histograms */);
if (s.IsShutdownInProgress() ||
bg_error_.severity() >= Status::Severity::kFatalError) {
// If DB shutdown in progress or the error severity is higher than
// Hard Error, stop auto resume and returns.
recovery_in_prog_ = false;
RecordStats({} /* ticker_types */,
{{ERROR_HANDLER_AUTORESUME_RETRY_COUNT, retry_count}});
EventHelpers::NotifyOnErrorRecoveryEnd(db_options_.listeners, bg_error_,
bg_error_, db_mutex_);
return;
}
if (!recovery_error_.ok() &&
recovery_error_.severity() <= Status::Severity::kHardError &&
recovery_error_.GetRetryable()) {
// If new BG IO error happens during auto recovery and it is retryable
// and its severity is Hard Error or lower, the auto resmue sleep for
// a period of time and redo auto resume if it is allowed.
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:BeforeWait0");
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:BeforeWait1");
int64_t wait_until = db_options_.clock->NowMicros() + wait_interval;
cv_.TimedWait(wait_until);
} else {
// There are three possibility: 1) recovery_error_ is set during resume
// and the error is not retryable, 2) recover is successful, 3) other
// error happens during resume and cannot be resumed here.
if (recovery_error_.ok() && s.ok()) {
// recover from the retryable IO error and no other BG errors. Clean
// the bg_error and notify user.
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:RecoverSuccess");
RecordStats({ERROR_HANDLER_AUTORESUME_SUCCESS_COUNT},
{{ERROR_HANDLER_AUTORESUME_RETRY_COUNT, retry_count}});
return;
} else {
// In this case: 1) recovery_error_ is more serious or not retryable
// 2) other error happens. The auto recovery stops.
recovery_in_prog_ = false;
RecordStats({} /* ticker_types */,
{{ERROR_HANDLER_AUTORESUME_RETRY_COUNT, retry_count}});
EventHelpers::NotifyOnErrorRecoveryEnd(
db_options_.listeners, bg_error_,
!recovery_error_.ok() ? recovery_error_ : s, db_mutex_);
return;
}
}
resume_count--;
}
recovery_in_prog_ = false;
EventHelpers::NotifyOnErrorRecoveryEnd(
db_options_.listeners, bg_error_,
Status::Aborted("Exceeded resume retry count"), db_mutex_);
TEST_SYNC_POINT("RecoverFromRetryableBGIOError:LoopOut");
RecordStats({} /* ticker_types */,
{{ERROR_HANDLER_AUTORESUME_RETRY_COUNT, retry_count}});
}
void ErrorHandler::CheckAndSetRecoveryAndBGError(const Status& bg_err) {
if (recovery_in_prog_ && recovery_error_.ok()) {
recovery_error_ = status_to_io_status(Status(bg_err));
}
if (bg_err.severity() > bg_error_.severity()) {
bg_error_ = bg_err;
}
if (bg_error_.severity() >= Status::Severity::kHardError) {
is_db_stopped_.store(true, std::memory_order_release);
}
}
void ErrorHandler::EndAutoRecovery() {
db_mutex_->AssertHeld();
if (!end_recovery_) {
end_recovery_ = true;
}
if (recovery_thread_) {
// Ensure only one thread can execute the join().
std::unique_ptr<port::Thread> old_recovery_thread(
std::move(recovery_thread_));
db_mutex_->Unlock();
cv_.SignalAll();
old_recovery_thread->join();
db_mutex_->Lock();
}
TEST_SYNC_POINT("PostEndAutoRecovery");
}
void ErrorHandler::RecordStats(
const std::vector<Tickers>& ticker_types,
const std::vector<std::tuple<Histograms, uint64_t>>& int_histograms) {
if (bg_error_stats_ == nullptr) {
return;
}
for (const auto& ticker_type : ticker_types) {
RecordTick(bg_error_stats_.get(), ticker_type);
}
for (const auto& hist : int_histograms) {
RecordInHistogram(bg_error_stats_.get(), std::get<0>(hist),
std::get<1>(hist));
}
}
} // namespace ROCKSDB_NAMESPACE
|