1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <array>
#include <vector>
#include "db/flush_scheduler.h"
#include "db/kv_checksum.h"
#include "db/trim_history_scheduler.h"
#include "db/write_thread.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/types.h"
#include "rocksdb/write_batch.h"
#include "util/autovector.h"
#include "util/cast_util.h"
namespace ROCKSDB_NAMESPACE {
class MemTable;
class FlushScheduler;
class ColumnFamilyData;
class ColumnFamilyMemTables {
public:
virtual ~ColumnFamilyMemTables() {}
virtual bool Seek(uint32_t column_family_id) = 0;
// returns true if the update to memtable should be ignored
// (useful when recovering from log whose updates have already
// been processed)
virtual uint64_t GetLogNumber() const = 0;
virtual MemTable* GetMemTable() const = 0;
virtual ColumnFamilyHandle* GetColumnFamilyHandle() = 0;
virtual ColumnFamilyData* current() { return nullptr; }
};
class ColumnFamilyMemTablesDefault : public ColumnFamilyMemTables {
public:
explicit ColumnFamilyMemTablesDefault(MemTable* mem)
: ok_(false), mem_(mem) {}
bool Seek(uint32_t column_family_id) override {
ok_ = (column_family_id == 0);
return ok_;
}
uint64_t GetLogNumber() const override { return 0; }
MemTable* GetMemTable() const override {
assert(ok_);
return mem_;
}
ColumnFamilyHandle* GetColumnFamilyHandle() override { return nullptr; }
private:
bool ok_;
MemTable* mem_;
};
struct WriteBatch::ProtectionInfo {
// `WriteBatch` usually doesn't contain a huge number of keys so protecting
// with a fixed, non-configurable eight bytes per key may work well enough.
autovector<ProtectionInfoKVOC64> entries_;
size_t GetBytesPerKey() const { return 8; }
};
// WriteBatchInternal provides static methods for manipulating a
// WriteBatch that we don't want in the public WriteBatch interface.
class WriteBatchInternal {
public:
// WriteBatch header has an 8-byte sequence number followed by a 4-byte count.
static constexpr size_t kHeader = 12;
// WriteBatch methods with column_family_id instead of ColumnFamilyHandle*
static Status Put(WriteBatch* batch, uint32_t column_family_id,
const Slice& key, const Slice& value);
static Status Put(WriteBatch* batch, uint32_t column_family_id,
const SliceParts& key, const SliceParts& value);
static Status TimedPut(WriteBatch* batch, uint32_t column_family_id,
const Slice& key, const Slice& value,
uint64_t unix_write_time);
static Status PutEntity(WriteBatch* batch, uint32_t column_family_id,
const Slice& key, const WideColumns& columns);
static Status Delete(WriteBatch* batch, uint32_t column_family_id,
const SliceParts& key);
static Status Delete(WriteBatch* batch, uint32_t column_family_id,
const Slice& key);
static Status SingleDelete(WriteBatch* batch, uint32_t column_family_id,
const SliceParts& key);
static Status SingleDelete(WriteBatch* batch, uint32_t column_family_id,
const Slice& key);
static Status DeleteRange(WriteBatch* b, uint32_t column_family_id,
const Slice& begin_key, const Slice& end_key);
static Status DeleteRange(WriteBatch* b, uint32_t column_family_id,
const SliceParts& begin_key,
const SliceParts& end_key);
static Status Merge(WriteBatch* batch, uint32_t column_family_id,
const Slice& key, const Slice& value);
static Status Merge(WriteBatch* batch, uint32_t column_family_id,
const SliceParts& key, const SliceParts& value);
static Status PutBlobIndex(WriteBatch* batch, uint32_t column_family_id,
const Slice& key, const Slice& value);
static ValueType GetBeginPrepareType(bool write_after_commit,
bool unprepared_batch);
static Status InsertBeginPrepare(WriteBatch* batch,
const bool write_after_commit = true,
bool unprepared_batch = false);
static Status InsertEndPrepare(WriteBatch* batch, const Slice& xid);
static Status MarkEndPrepare(WriteBatch* batch, const Slice& xid,
const bool write_after_commit = true,
const bool unprepared_batch = false);
static Status MarkRollback(WriteBatch* batch, const Slice& xid);
static Status MarkCommit(WriteBatch* batch, const Slice& xid);
static Status MarkCommitWithTimestamp(WriteBatch* batch, const Slice& xid,
const Slice& commit_ts);
static Status InsertNoop(WriteBatch* batch);
// Return the number of entries in the batch.
static uint32_t Count(const WriteBatch* batch);
// Set the count for the number of entries in the batch.
static void SetCount(WriteBatch* batch, uint32_t n);
// Return the sequence number for the start of this batch.
static SequenceNumber Sequence(const WriteBatch* batch);
// Store the specified number as the sequence number for the start of
// this batch.
static void SetSequence(WriteBatch* batch, SequenceNumber seq);
// Returns the offset of the first entry in the batch.
// This offset is only valid if the batch is not empty.
static size_t GetFirstOffset(WriteBatch* batch);
static Slice Contents(const WriteBatch* batch) { return Slice(batch->rep_); }
static size_t ByteSize(const WriteBatch* batch) { return batch->rep_.size(); }
static Status SetContents(WriteBatch* batch, const Slice& contents);
static Status CheckSlicePartsLength(const SliceParts& key,
const SliceParts& value);
// Inserts batches[i] into memtable, for i in 0..num_batches-1 inclusive.
//
// If ignore_missing_column_families == true. WriteBatch
// referencing non-existing column family will be ignored.
// If ignore_missing_column_families == false, processing of the
// batches will be stopped if a reference is found to a non-existing
// column family and InvalidArgument() will be returned. The writes
// in batches may be only partially applied at that point.
//
// If log_number is non-zero, the memtable will be updated only if
// memtables->GetLogNumber() >= log_number.
//
// If flush_scheduler is non-null, it will be invoked if the memtable
// should be flushed.
//
// Under concurrent use, the caller is responsible for making sure that
// the memtables object itself is thread-local.
static Status InsertInto(
WriteThread::WriteGroup& write_group, SequenceNumber sequence,
ColumnFamilyMemTables* memtables, FlushScheduler* flush_scheduler,
TrimHistoryScheduler* trim_history_scheduler,
bool ignore_missing_column_families = false, uint64_t log_number = 0,
DB* db = nullptr, bool concurrent_memtable_writes = false,
bool seq_per_batch = false, bool batch_per_txn = true);
// Convenience form of InsertInto when you have only one batch
// next_seq returns the seq after last sequence number used in MemTable insert
static Status InsertInto(
const WriteBatch* batch, ColumnFamilyMemTables* memtables,
FlushScheduler* flush_scheduler,
TrimHistoryScheduler* trim_history_scheduler,
bool ignore_missing_column_families = false, uint64_t log_number = 0,
DB* db = nullptr, bool concurrent_memtable_writes = false,
SequenceNumber* next_seq = nullptr, bool* has_valid_writes = nullptr,
bool seq_per_batch = false, bool batch_per_txn = true);
static Status InsertInto(WriteThread::Writer* writer, SequenceNumber sequence,
ColumnFamilyMemTables* memtables,
FlushScheduler* flush_scheduler,
TrimHistoryScheduler* trim_history_scheduler,
bool ignore_missing_column_families = false,
uint64_t log_number = 0, DB* db = nullptr,
bool concurrent_memtable_writes = false,
bool seq_per_batch = false, size_t batch_cnt = 0,
bool batch_per_txn = true,
bool hint_per_batch = false);
// Appends src write batch to dst write batch and updates count in dst
// write batch. Returns OK if the append is successful. Checks number of
// checksum against count in dst and src write batches, and returns Corruption
// if the count is inconsistent.
static Status Append(WriteBatch* dst, const WriteBatch* src,
const bool WAL_only = false);
// Returns the byte size of appending a WriteBatch with ByteSize
// leftByteSize and a WriteBatch with ByteSize rightByteSize
static size_t AppendedByteSize(size_t leftByteSize, size_t rightByteSize);
// Iterate over [begin, end) range of a write batch
static Status Iterate(const WriteBatch* wb, WriteBatch::Handler* handler,
size_t begin, size_t end);
// This write batch includes the latest state that should be persisted. Such
// state meant to be used only during recovery.
static void SetAsLatestPersistentState(WriteBatch* b);
static bool IsLatestPersistentState(const WriteBatch* b);
static void SetDefaultColumnFamilyTimestampSize(WriteBatch* wb,
size_t default_cf_ts_sz);
static std::tuple<Status, uint32_t, size_t> GetColumnFamilyIdAndTimestampSize(
WriteBatch* b, ColumnFamilyHandle* column_family);
static bool TimestampsUpdateNeeded(const WriteBatch& wb) {
return wb.needs_in_place_update_ts_;
}
static bool HasKeyWithTimestamp(const WriteBatch& wb) {
return wb.has_key_with_ts_;
}
// Update per-key value protection information on this write batch.
// If checksum is provided, the batch content is verfied against the checksum.
static Status UpdateProtectionInfo(WriteBatch* wb, size_t bytes_per_key,
uint64_t* checksum = nullptr);
};
// LocalSavePoint is similar to a scope guard
class LocalSavePoint {
public:
explicit LocalSavePoint(WriteBatch* batch)
: batch_(batch),
savepoint_(batch->GetDataSize(), batch->Count(),
batch->content_flags_.load(std::memory_order_relaxed))
#ifndef NDEBUG
,
committed_(false)
#endif
{
}
#ifndef NDEBUG
~LocalSavePoint() { assert(committed_); }
#endif
Status commit() {
#ifndef NDEBUG
committed_ = true;
#endif
if (batch_->max_bytes_ && batch_->rep_.size() > batch_->max_bytes_) {
batch_->rep_.resize(savepoint_.size);
WriteBatchInternal::SetCount(batch_, savepoint_.count);
if (batch_->prot_info_ != nullptr) {
batch_->prot_info_->entries_.resize(savepoint_.count);
}
batch_->content_flags_.store(savepoint_.content_flags,
std::memory_order_relaxed);
return Status::MemoryLimit();
}
return Status::OK();
}
private:
WriteBatch* batch_;
SavePoint savepoint_;
#ifndef NDEBUG
bool committed_;
#endif
};
template <typename TimestampSizeFuncType>
class TimestampUpdater : public WriteBatch::Handler {
public:
explicit TimestampUpdater(WriteBatch::ProtectionInfo* prot_info,
TimestampSizeFuncType&& ts_sz_func, const Slice& ts)
: prot_info_(prot_info),
ts_sz_func_(std::move(ts_sz_func)),
timestamp_(ts) {
assert(!timestamp_.empty());
}
~TimestampUpdater() override {}
Status PutCF(uint32_t cf, const Slice& key, const Slice&) override {
return UpdateTimestamp(cf, key);
}
Status DeleteCF(uint32_t cf, const Slice& key) override {
return UpdateTimestamp(cf, key);
}
Status SingleDeleteCF(uint32_t cf, const Slice& key) override {
return UpdateTimestamp(cf, key);
}
Status DeleteRangeCF(uint32_t cf, const Slice& begin_key,
const Slice& end_key) override {
Status s = UpdateTimestamp(cf, begin_key, true /* is_key */);
if (s.ok()) {
s = UpdateTimestamp(cf, end_key, false /* is_key */);
}
return s;
}
Status MergeCF(uint32_t cf, const Slice& key, const Slice&) override {
return UpdateTimestamp(cf, key);
}
Status PutBlobIndexCF(uint32_t cf, const Slice& key, const Slice&) override {
return UpdateTimestamp(cf, key);
}
Status MarkBeginPrepare(bool) override { return Status::OK(); }
Status MarkEndPrepare(const Slice&) override { return Status::OK(); }
Status MarkCommit(const Slice&) override { return Status::OK(); }
Status MarkCommitWithTimestamp(const Slice&, const Slice&) override {
return Status::OK();
}
Status MarkRollback(const Slice&) override { return Status::OK(); }
Status MarkNoop(bool /*empty_batch*/) override { return Status::OK(); }
private:
// @param is_key specifies whether the update is for key or value.
Status UpdateTimestamp(uint32_t cf, const Slice& buf, bool is_key = true) {
Status s = UpdateTimestampImpl(cf, buf, idx_, is_key);
++idx_;
return s;
}
Status UpdateTimestampImpl(uint32_t cf, const Slice& buf, size_t /*idx*/,
bool is_key) {
if (timestamp_.empty()) {
return Status::InvalidArgument("Timestamp is empty");
}
size_t cf_ts_sz = ts_sz_func_(cf);
if (0 == cf_ts_sz) {
// Skip this column family.
return Status::OK();
} else if (std::numeric_limits<size_t>::max() == cf_ts_sz) {
// Column family timestamp info not found.
return Status::NotFound();
} else if (cf_ts_sz != timestamp_.size()) {
return Status::InvalidArgument("timestamp size mismatch");
}
UpdateProtectionInformationIfNeeded(buf, timestamp_, is_key);
char* ptr = const_cast<char*>(buf.data() + buf.size() - cf_ts_sz);
assert(ptr);
memcpy(ptr, timestamp_.data(), timestamp_.size());
return Status::OK();
}
void UpdateProtectionInformationIfNeeded(const Slice& buf, const Slice& ts,
bool is_key) {
if (prot_info_ != nullptr) {
const size_t ts_sz = ts.size();
SliceParts old(&buf, 1);
Slice old_no_ts(buf.data(), buf.size() - ts_sz);
std::array<Slice, 2> new_key_cmpts{{old_no_ts, ts}};
SliceParts new_parts(new_key_cmpts.data(), 2);
if (is_key) {
prot_info_->entries_[idx_].UpdateK(old, new_parts);
} else {
prot_info_->entries_[idx_].UpdateV(old, new_parts);
}
}
}
// No copy or move.
TimestampUpdater(const TimestampUpdater&) = delete;
TimestampUpdater(TimestampUpdater&&) = delete;
TimestampUpdater& operator=(const TimestampUpdater&) = delete;
TimestampUpdater& operator=(TimestampUpdater&&) = delete;
WriteBatch::ProtectionInfo* const prot_info_ = nullptr;
const TimestampSizeFuncType ts_sz_func_{};
const Slice timestamp_;
size_t idx_ = 0;
};
} // namespace ROCKSDB_NAMESPACE
|