1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
// Copyright (c) Meta Platforms, Inc. and affiliates.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "cache/secondary_cache_adapter.h"
#include <atomic>
#include "cache/tiered_secondary_cache.h"
#include "monitoring/perf_context_imp.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
namespace ROCKSDB_NAMESPACE {
namespace {
// A distinct pointer value for marking "dummy" cache entries
struct Dummy {
char val[7] = "kDummy";
};
const Dummy kDummy{};
Cache::ObjectPtr const kDummyObj = const_cast<Dummy*>(&kDummy);
const char* kTieredCacheName = "TieredCache";
} // namespace
// When CacheWithSecondaryAdapter is constructed with the distribute_cache_res
// parameter set to true, it manages the entire memory budget across the
// primary and secondary cache. The secondary cache is assumed to be in
// memory, such as the CompressedSecondaryCache. When a placeholder entry
// is inserted by a CacheReservationManager instance to reserve memory,
// the CacheWithSecondaryAdapter ensures that the reservation is distributed
// proportionally across the primary/secondary caches.
//
// The primary block cache is initially sized to the sum of the primary cache
// budget + teh secondary cache budget, as follows -
// |--------- Primary Cache Configured Capacity -----------|
// |---Secondary Cache Budget----|----Primary Cache Budget-----|
//
// A ConcurrentCacheReservationManager member in the CacheWithSecondaryAdapter,
// pri_cache_res_,
// is used to help with tracking the distribution of memory reservations.
// Initially, it accounts for the entire secondary cache budget as a
// reservation against the primary cache. This shrinks the usable capacity of
// the primary cache to the budget that the user originally desired.
//
// |--Reservation for Sec Cache--|-Pri Cache Usable Capacity---|
//
// When a reservation placeholder is inserted into the adapter, it is inserted
// directly into the primary cache. This means the entire charge of the
// placeholder is counted against the primary cache. To compensate and count
// a portion of it against the secondary cache, the secondary cache Deflate()
// method is called to shrink it. Since the Deflate() causes the secondary
// actual usage to shrink, it is refelcted here by releasing an equal amount
// from the pri_cache_res_ reservation. The Deflate() in the secondary cache
// can be, but is not required to be, implemented using its own cache
// reservation manager.
//
// For example, if the pri/sec ratio is 70/30, and the combined capacity is
// 100MB, the intermediate and final state after inserting a reservation
// placeholder for 10MB would be as follows -
//
// |-Reservation for Sec Cache-|-Pri Cache Usable Capacity-|---R---|
// 1. After inserting the placeholder in primary
// |------- 30MB -------------|------- 60MB -------------|-10MB--|
// 2. After deflating the secondary and adjusting the reservation for
// secondary against the primary
// |------- 27MB -------------|------- 63MB -------------|-10MB--|
//
// Likewise, when the user inserted placeholder is released, the secondary
// cache Inflate() method is called to grow it, and the pri_cache_res_
// reservation is increased by an equal amount.
//
// Another way of implementing this would have been to simply split the user
// reservation into primary and seconary components. However, this would
// require allocating a structure to track the associated secondary cache
// reservation, which adds some complexity and overhead.
//
CacheWithSecondaryAdapter::CacheWithSecondaryAdapter(
std::shared_ptr<Cache> target,
std::shared_ptr<SecondaryCache> secondary_cache,
TieredAdmissionPolicy adm_policy, bool distribute_cache_res)
: CacheWrapper(std::move(target)),
secondary_cache_(std::move(secondary_cache)),
adm_policy_(adm_policy),
distribute_cache_res_(distribute_cache_res),
placeholder_usage_(0),
reserved_usage_(0),
sec_reserved_(0) {
target_->SetEvictionCallback(
[this](const Slice& key, Handle* handle, bool was_hit) {
return EvictionHandler(key, handle, was_hit);
});
if (distribute_cache_res_) {
size_t sec_capacity = 0;
pri_cache_res_ = std::make_shared<ConcurrentCacheReservationManager>(
std::make_shared<CacheReservationManagerImpl<CacheEntryRole::kMisc>>(
target_));
Status s = secondary_cache_->GetCapacity(sec_capacity);
assert(s.ok());
// Initially, the primary cache is sized to uncompressed cache budget plsu
// compressed secondary cache budget. The secondary cache budget is then
// taken away from the primary cache through cache reservations. Later,
// when a placeholder entry is inserted by the caller, its inserted
// into the primary cache and the portion that should be assigned to the
// secondary cache is freed from the reservation.
s = pri_cache_res_->UpdateCacheReservation(sec_capacity);
assert(s.ok());
sec_cache_res_ratio_ = (double)sec_capacity / target_->GetCapacity();
}
}
CacheWithSecondaryAdapter::~CacheWithSecondaryAdapter() {
// `*this` will be destroyed before `*target_`, so we have to prevent
// use after free
target_->SetEvictionCallback({});
#ifndef NDEBUG
if (distribute_cache_res_) {
size_t sec_capacity = 0;
Status s = secondary_cache_->GetCapacity(sec_capacity);
assert(s.ok());
assert(placeholder_usage_ == 0);
assert(reserved_usage_ == 0);
assert(pri_cache_res_->GetTotalMemoryUsed() == sec_capacity);
}
#endif // NDEBUG
}
bool CacheWithSecondaryAdapter::EvictionHandler(const Slice& key,
Handle* handle, bool was_hit) {
auto helper = GetCacheItemHelper(handle);
if (helper->IsSecondaryCacheCompatible() &&
adm_policy_ != TieredAdmissionPolicy::kAdmPolicyThreeQueue) {
auto obj = target_->Value(handle);
// Ignore dummy entry
if (obj != kDummyObj) {
bool force = false;
if (adm_policy_ == TieredAdmissionPolicy::kAdmPolicyAllowCacheHits) {
force = was_hit;
} else if (adm_policy_ == TieredAdmissionPolicy::kAdmPolicyAllowAll) {
force = true;
}
// Spill into secondary cache.
secondary_cache_->Insert(key, obj, helper, force).PermitUncheckedError();
}
}
// Never takes ownership of obj
return false;
}
bool CacheWithSecondaryAdapter::ProcessDummyResult(Cache::Handle** handle,
bool erase) {
if (*handle && target_->Value(*handle) == kDummyObj) {
target_->Release(*handle, erase);
*handle = nullptr;
return true;
} else {
return false;
}
}
void CacheWithSecondaryAdapter::CleanupCacheObject(
ObjectPtr obj, const CacheItemHelper* helper) {
if (helper->del_cb) {
helper->del_cb(obj, memory_allocator());
}
}
Cache::Handle* CacheWithSecondaryAdapter::Promote(
std::unique_ptr<SecondaryCacheResultHandle>&& secondary_handle,
const Slice& key, const CacheItemHelper* helper, Priority priority,
Statistics* stats, bool found_dummy_entry, bool kept_in_sec_cache) {
assert(secondary_handle->IsReady());
ObjectPtr obj = secondary_handle->Value();
if (!obj) {
// Nothing found.
return nullptr;
}
// Found something.
switch (helper->role) {
case CacheEntryRole::kFilterBlock:
RecordTick(stats, SECONDARY_CACHE_FILTER_HITS);
break;
case CacheEntryRole::kIndexBlock:
RecordTick(stats, SECONDARY_CACHE_INDEX_HITS);
break;
case CacheEntryRole::kDataBlock:
RecordTick(stats, SECONDARY_CACHE_DATA_HITS);
break;
default:
break;
}
PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
RecordTick(stats, SECONDARY_CACHE_HITS);
// Note: SecondaryCache::Size() is really charge (from the CreateCallback)
size_t charge = secondary_handle->Size();
Handle* result = nullptr;
// Insert into primary cache, possibly as a standalone+dummy entries.
if (secondary_cache_->SupportForceErase() && !found_dummy_entry) {
// Create standalone and insert dummy
// Allow standalone to be created even if cache is full, to avoid
// reading the entry from storage.
result =
CreateStandalone(key, obj, helper, charge, /*allow_uncharged*/ true);
assert(result);
PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1);
// Insert dummy to record recent use
// TODO: try to avoid case where inserting this dummy could overwrite a
// regular entry
Status s = Insert(key, kDummyObj, &kNoopCacheItemHelper, /*charge=*/0,
/*handle=*/nullptr, priority);
s.PermitUncheckedError();
// Nothing to do or clean up on dummy insertion failure
} else {
// Insert regular entry into primary cache.
// Don't allow it to spill into secondary cache again if it was kept there.
Status s = Insert(
key, obj, kept_in_sec_cache ? helper->without_secondary_compat : helper,
charge, &result, priority);
if (s.ok()) {
assert(result);
PERF_COUNTER_ADD(block_cache_real_handle_count, 1);
} else {
// Create standalone result instead, even if cache is full, to avoid
// reading the entry from storage.
result =
CreateStandalone(key, obj, helper, charge, /*allow_uncharged*/ true);
assert(result);
PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1);
}
}
return result;
}
Status CacheWithSecondaryAdapter::Insert(const Slice& key, ObjectPtr value,
const CacheItemHelper* helper,
size_t charge, Handle** handle,
Priority priority,
const Slice& compressed_value,
CompressionType type) {
Status s = target_->Insert(key, value, helper, charge, handle, priority);
if (s.ok() && value == nullptr && distribute_cache_res_ && handle) {
charge = target_->GetCharge(*handle);
MutexLock l(&cache_res_mutex_);
placeholder_usage_ += charge;
// Check if total placeholder reservation is more than the overall
// cache capacity. If it is, then we don't try to charge the
// secondary cache because we don't want to overcharge it (beyond
// its capacity).
// In order to make this a bit more lightweight, we also check if
// the difference between placeholder_usage_ and reserved_usage_ is
// atleast kReservationChunkSize and avoid any adjustments if not.
if ((placeholder_usage_ <= target_->GetCapacity()) &&
((placeholder_usage_ - reserved_usage_) >= kReservationChunkSize)) {
reserved_usage_ = placeholder_usage_ & ~(kReservationChunkSize - 1);
size_t new_sec_reserved =
static_cast<size_t>(reserved_usage_ * sec_cache_res_ratio_);
size_t sec_charge = new_sec_reserved - sec_reserved_;
s = secondary_cache_->Deflate(sec_charge);
assert(s.ok());
s = pri_cache_res_->UpdateCacheReservation(sec_charge,
/*increase=*/false);
assert(s.ok());
sec_reserved_ += sec_charge;
}
}
// Warm up the secondary cache with the compressed block. The secondary
// cache may choose to ignore it based on the admission policy.
if (value != nullptr && !compressed_value.empty() &&
adm_policy_ == TieredAdmissionPolicy::kAdmPolicyThreeQueue &&
helper->IsSecondaryCacheCompatible()) {
Status status = secondary_cache_->InsertSaved(key, compressed_value, type);
assert(status.ok() || status.IsNotSupported());
}
return s;
}
Cache::Handle* CacheWithSecondaryAdapter::Lookup(const Slice& key,
const CacheItemHelper* helper,
CreateContext* create_context,
Priority priority,
Statistics* stats) {
// NOTE: we could just StartAsyncLookup() and Wait(), but this should be a bit
// more efficient
Handle* result =
target_->Lookup(key, helper, create_context, priority, stats);
bool secondary_compatible = helper && helper->IsSecondaryCacheCompatible();
bool found_dummy_entry =
ProcessDummyResult(&result, /*erase=*/secondary_compatible);
if (!result && secondary_compatible) {
// Try our secondary cache
bool kept_in_sec_cache = false;
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle =
secondary_cache_->Lookup(key, helper, create_context, /*wait*/ true,
found_dummy_entry, stats,
/*out*/ kept_in_sec_cache);
if (secondary_handle) {
result = Promote(std::move(secondary_handle), key, helper, priority,
stats, found_dummy_entry, kept_in_sec_cache);
}
}
return result;
}
bool CacheWithSecondaryAdapter::Release(Handle* handle,
bool erase_if_last_ref) {
if (erase_if_last_ref) {
ObjectPtr v = target_->Value(handle);
if (v == nullptr && distribute_cache_res_) {
size_t charge = target_->GetCharge(handle);
MutexLock l(&cache_res_mutex_);
placeholder_usage_ -= charge;
// Check if total placeholder reservation is more than the overall
// cache capacity. If it is, then we do nothing as reserved_usage_ must
// be already maxed out
if ((placeholder_usage_ <= target_->GetCapacity()) &&
(placeholder_usage_ < reserved_usage_)) {
// Adjust reserved_usage_ in chunks of kReservationChunkSize, so
// we don't hit this slow path too often.
reserved_usage_ = placeholder_usage_ & ~(kReservationChunkSize - 1);
size_t new_sec_reserved =
static_cast<size_t>(reserved_usage_ * sec_cache_res_ratio_);
size_t sec_charge = sec_reserved_ - new_sec_reserved;
Status s = secondary_cache_->Inflate(sec_charge);
assert(s.ok());
s = pri_cache_res_->UpdateCacheReservation(sec_charge,
/*increase=*/true);
assert(s.ok());
sec_reserved_ -= sec_charge;
}
}
}
return target_->Release(handle, erase_if_last_ref);
}
Cache::ObjectPtr CacheWithSecondaryAdapter::Value(Handle* handle) {
ObjectPtr v = target_->Value(handle);
// TODO with stacked secondaries: might fail in EvictionHandler
assert(v != kDummyObj);
return v;
}
void CacheWithSecondaryAdapter::StartAsyncLookupOnMySecondary(
AsyncLookupHandle& async_handle) {
assert(!async_handle.IsPending());
assert(async_handle.result_handle == nullptr);
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle =
secondary_cache_->Lookup(
async_handle.key, async_handle.helper, async_handle.create_context,
/*wait*/ false, async_handle.found_dummy_entry, async_handle.stats,
/*out*/ async_handle.kept_in_sec_cache);
if (secondary_handle) {
// TODO with stacked secondaries: Check & process if already ready?
async_handle.pending_handle = secondary_handle.release();
async_handle.pending_cache = secondary_cache_.get();
}
}
void CacheWithSecondaryAdapter::StartAsyncLookup(
AsyncLookupHandle& async_handle) {
target_->StartAsyncLookup(async_handle);
if (!async_handle.IsPending()) {
bool secondary_compatible =
async_handle.helper &&
async_handle.helper->IsSecondaryCacheCompatible();
async_handle.found_dummy_entry |= ProcessDummyResult(
&async_handle.result_handle, /*erase=*/secondary_compatible);
if (async_handle.Result() == nullptr && secondary_compatible) {
// Not found and not pending on another secondary cache
StartAsyncLookupOnMySecondary(async_handle);
}
}
}
void CacheWithSecondaryAdapter::WaitAll(AsyncLookupHandle* async_handles,
size_t count) {
if (count == 0) {
// Nothing to do
return;
}
// Requests that are pending on *my* secondary cache, at the start of this
// function
std::vector<AsyncLookupHandle*> my_pending;
// Requests that are pending on an "inner" secondary cache (managed somewhere
// under target_), as of the start of this function
std::vector<AsyncLookupHandle*> inner_pending;
// Initial accounting of pending handles, excluding those already handled
// by "outer" secondary caches. (See cur->pending_cache = nullptr.)
for (size_t i = 0; i < count; ++i) {
AsyncLookupHandle* cur = async_handles + i;
if (cur->pending_cache) {
assert(cur->IsPending());
assert(cur->helper);
assert(cur->helper->IsSecondaryCacheCompatible());
if (cur->pending_cache == secondary_cache_.get()) {
my_pending.push_back(cur);
// Mark as "to be handled by this caller"
cur->pending_cache = nullptr;
} else {
// Remember as potentially needing a lookup in my secondary
inner_pending.push_back(cur);
}
}
}
// Wait on inner-most cache lookups first
// TODO with stacked secondaries: because we are not using proper
// async/await constructs here yet, there is a false synchronization point
// here where all the results at one level are needed before initiating
// any lookups at the next level. Probably not a big deal, but worth noting.
if (!inner_pending.empty()) {
target_->WaitAll(async_handles, count);
}
// For those that failed to find something, convert to lookup in my
// secondary cache.
for (AsyncLookupHandle* cur : inner_pending) {
if (cur->Result() == nullptr) {
// Not found, try my secondary
StartAsyncLookupOnMySecondary(*cur);
if (cur->IsPending()) {
assert(cur->pending_cache == secondary_cache_.get());
my_pending.push_back(cur);
// Mark as "to be handled by this caller"
cur->pending_cache = nullptr;
}
}
}
// Wait on all lookups on my secondary cache
{
std::vector<SecondaryCacheResultHandle*> my_secondary_handles;
for (AsyncLookupHandle* cur : my_pending) {
my_secondary_handles.push_back(cur->pending_handle);
}
secondary_cache_->WaitAll(std::move(my_secondary_handles));
}
// Process results
for (AsyncLookupHandle* cur : my_pending) {
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle(
cur->pending_handle);
cur->pending_handle = nullptr;
cur->result_handle = Promote(
std::move(secondary_handle), cur->key, cur->helper, cur->priority,
cur->stats, cur->found_dummy_entry, cur->kept_in_sec_cache);
assert(cur->pending_cache == nullptr);
}
}
std::string CacheWithSecondaryAdapter::GetPrintableOptions() const {
std::string str = target_->GetPrintableOptions();
str.append(" secondary_cache:\n");
str.append(secondary_cache_->GetPrintableOptions());
return str;
}
const char* CacheWithSecondaryAdapter::Name() const {
if (distribute_cache_res_) {
return kTieredCacheName;
} else {
// To the user, at least for now, configure the underlying cache with
// a secondary cache. So we pretend to be that cache
return target_->Name();
}
}
// Update the total cache capacity. If we're distributing cache reservations
// to both primary and secondary, then update the pri_cache_res_reservation
// as well. At the moment, we don't have a good way of handling the case
// where the new capacity < total cache reservations.
void CacheWithSecondaryAdapter::SetCapacity(size_t capacity) {
size_t sec_capacity = static_cast<size_t>(
capacity * (distribute_cache_res_ ? sec_cache_res_ratio_ : 0.0));
size_t old_sec_capacity = 0;
if (distribute_cache_res_) {
MutexLock m(&cache_res_mutex_);
Status s = secondary_cache_->GetCapacity(old_sec_capacity);
if (!s.ok()) {
return;
}
if (old_sec_capacity > sec_capacity) {
// We're shrinking the cache. We do things in the following order to
// avoid a temporary spike in usage over the configured capacity -
// 1. Lower the secondary cache capacity
// 2. Credit an equal amount (by decreasing pri_cache_res_) to the
// primary cache
// 3. Decrease the primary cache capacity to the total budget
s = secondary_cache_->SetCapacity(sec_capacity);
if (s.ok()) {
if (placeholder_usage_ > capacity) {
// Adjust reserved_usage_ down
reserved_usage_ = capacity & ~(kReservationChunkSize - 1);
}
size_t new_sec_reserved =
static_cast<size_t>(reserved_usage_ * sec_cache_res_ratio_);
s = pri_cache_res_->UpdateCacheReservation(
(old_sec_capacity - sec_capacity) -
(sec_reserved_ - new_sec_reserved),
/*increase=*/false);
sec_reserved_ = new_sec_reserved;
assert(s.ok());
target_->SetCapacity(capacity);
}
} else {
// We're expanding the cache. Do it in the following order to avoid
// unnecessary evictions -
// 1. Increase the primary cache capacity to total budget
// 2. Reserve additional memory in primary on behalf of secondary (by
// increasing pri_cache_res_ reservation)
// 3. Increase secondary cache capacity
target_->SetCapacity(capacity);
s = pri_cache_res_->UpdateCacheReservation(
sec_capacity - old_sec_capacity,
/*increase=*/true);
assert(s.ok());
s = secondary_cache_->SetCapacity(sec_capacity);
assert(s.ok());
}
} else {
// No cache reservation distribution. Just set the primary cache capacity.
target_->SetCapacity(capacity);
}
}
Status CacheWithSecondaryAdapter::GetSecondaryCacheCapacity(
size_t& size) const {
return secondary_cache_->GetCapacity(size);
}
Status CacheWithSecondaryAdapter::GetSecondaryCachePinnedUsage(
size_t& size) const {
Status s;
if (distribute_cache_res_) {
MutexLock m(&cache_res_mutex_);
size_t capacity = 0;
s = secondary_cache_->GetCapacity(capacity);
if (s.ok()) {
size = capacity - pri_cache_res_->GetTotalMemoryUsed();
} else {
size = 0;
}
} else {
size = 0;
}
return s;
}
// Update the secondary/primary allocation ratio (remember, the primary
// capacity is the total memory budget when distribute_cache_res_ is true).
// When the ratio changes, we may accumulate some error in the calculations
// for secondary cache inflate/deflate and pri_cache_res_ reservations.
// This is due to the rounding of the reservation amount.
//
// We rely on the current pri_cache_res_ total memory used to estimate the
// new secondary cache reservation after the ratio change. For this reason,
// once the ratio is lowered to 0.0 (effectively disabling the secondary
// cache and pri_cache_res_ total mem used going down to 0), we cannot
// increase the ratio and re-enable it, We might remove this limitation
// in the future.
Status CacheWithSecondaryAdapter::UpdateCacheReservationRatio(
double compressed_secondary_ratio) {
if (!distribute_cache_res_) {
return Status::NotSupported();
}
MutexLock m(&cache_res_mutex_);
size_t pri_capacity = target_->GetCapacity();
size_t sec_capacity =
static_cast<size_t>(pri_capacity * compressed_secondary_ratio);
size_t old_sec_capacity;
Status s = secondary_cache_->GetCapacity(old_sec_capacity);
if (!s.ok()) {
return s;
}
// Calculate the new secondary cache reservation
// reserved_usage_ will never be > the cache capacity, so we don't
// have to worry about adjusting it here.
sec_cache_res_ratio_ = compressed_secondary_ratio;
size_t new_sec_reserved =
static_cast<size_t>(reserved_usage_ * sec_cache_res_ratio_);
if (sec_capacity > old_sec_capacity) {
// We're increasing the ratio, thus ending up with a larger secondary
// cache and a smaller usable primary cache capacity. Similar to
// SetCapacity(), we try to avoid a temporary increase in total usage
// beyond the configured capacity -
// 1. A higher secondary cache ratio means it gets a higher share of
// cache reservations. So first account for that by deflating the
// secondary cache
// 2. Increase pri_cache_res_ reservation to reflect the new secondary
// cache utilization (increase in capacity - increase in share of cache
// reservation)
// 3. Increase secondary cache capacity
s = secondary_cache_->Deflate(new_sec_reserved - sec_reserved_);
assert(s.ok());
s = pri_cache_res_->UpdateCacheReservation(
(sec_capacity - old_sec_capacity) - (new_sec_reserved - sec_reserved_),
/*increase=*/true);
assert(s.ok());
sec_reserved_ = new_sec_reserved;
s = secondary_cache_->SetCapacity(sec_capacity);
assert(s.ok());
} else {
// We're shrinking the ratio. Try to avoid unnecessary evictions -
// 1. Lower the secondary cache capacity
// 2. Decrease pri_cache_res_ reservation to relect lower secondary
// cache utilization (decrease in capacity - decrease in share of cache
// reservations)
// 3. Inflate the secondary cache to give it back the reduction in its
// share of cache reservations
s = secondary_cache_->SetCapacity(sec_capacity);
if (s.ok()) {
s = pri_cache_res_->UpdateCacheReservation(
(old_sec_capacity - sec_capacity) -
(sec_reserved_ - new_sec_reserved),
/*increase=*/false);
assert(s.ok());
s = secondary_cache_->Inflate(sec_reserved_ - new_sec_reserved);
assert(s.ok());
sec_reserved_ = new_sec_reserved;
}
}
return s;
}
Status CacheWithSecondaryAdapter::UpdateAdmissionPolicy(
TieredAdmissionPolicy adm_policy) {
adm_policy_ = adm_policy;
return Status::OK();
}
std::shared_ptr<Cache> NewTieredCache(const TieredCacheOptions& _opts) {
if (!_opts.cache_opts) {
return nullptr;
}
TieredCacheOptions opts = _opts;
{
bool valid_adm_policy = true;
switch (_opts.adm_policy) {
case TieredAdmissionPolicy::kAdmPolicyAuto:
// Select an appropriate default policy
if (opts.adm_policy == TieredAdmissionPolicy::kAdmPolicyAuto) {
if (opts.nvm_sec_cache) {
opts.adm_policy = TieredAdmissionPolicy::kAdmPolicyThreeQueue;
} else {
opts.adm_policy = TieredAdmissionPolicy::kAdmPolicyPlaceholder;
}
}
break;
case TieredAdmissionPolicy::kAdmPolicyPlaceholder:
case TieredAdmissionPolicy::kAdmPolicyAllowCacheHits:
case TieredAdmissionPolicy::kAdmPolicyAllowAll:
if (opts.nvm_sec_cache) {
valid_adm_policy = false;
}
break;
case TieredAdmissionPolicy::kAdmPolicyThreeQueue:
if (!opts.nvm_sec_cache) {
valid_adm_policy = false;
}
break;
default:
valid_adm_policy = false;
}
if (!valid_adm_policy) {
return nullptr;
}
}
std::shared_ptr<Cache> cache;
if (opts.cache_type == PrimaryCacheType::kCacheTypeLRU) {
LRUCacheOptions cache_opts =
*(static_cast_with_check<LRUCacheOptions, ShardedCacheOptions>(
opts.cache_opts));
cache_opts.capacity = opts.total_capacity;
cache_opts.secondary_cache = nullptr;
cache = cache_opts.MakeSharedCache();
} else if (opts.cache_type == PrimaryCacheType::kCacheTypeHCC) {
HyperClockCacheOptions cache_opts =
*(static_cast_with_check<HyperClockCacheOptions, ShardedCacheOptions>(
opts.cache_opts));
cache_opts.capacity = opts.total_capacity;
cache_opts.secondary_cache = nullptr;
cache = cache_opts.MakeSharedCache();
} else {
return nullptr;
}
std::shared_ptr<SecondaryCache> sec_cache;
opts.comp_cache_opts.capacity = static_cast<size_t>(
opts.total_capacity * opts.compressed_secondary_ratio);
sec_cache = NewCompressedSecondaryCache(opts.comp_cache_opts);
if (opts.nvm_sec_cache) {
if (opts.adm_policy == TieredAdmissionPolicy::kAdmPolicyThreeQueue) {
sec_cache = std::make_shared<TieredSecondaryCache>(
sec_cache, opts.nvm_sec_cache,
TieredAdmissionPolicy::kAdmPolicyThreeQueue);
} else {
return nullptr;
}
}
return std::make_shared<CacheWithSecondaryAdapter>(
cache, sec_cache, opts.adm_policy, /*distribute_cache_res=*/true);
}
Status UpdateTieredCache(const std::shared_ptr<Cache>& cache,
int64_t total_capacity,
double compressed_secondary_ratio,
TieredAdmissionPolicy adm_policy) {
if (!cache || strcmp(cache->Name(), kTieredCacheName)) {
return Status::InvalidArgument();
}
CacheWithSecondaryAdapter* tiered_cache =
static_cast<CacheWithSecondaryAdapter*>(cache.get());
Status s;
if (total_capacity > 0) {
tiered_cache->SetCapacity(total_capacity);
}
if (compressed_secondary_ratio >= 0.0 && compressed_secondary_ratio <= 1.0) {
s = tiered_cache->UpdateCacheReservationRatio(compressed_secondary_ratio);
}
if (adm_policy < TieredAdmissionPolicy::kAdmPolicyMax) {
s = tiered_cache->UpdateAdmissionPolicy(adm_policy);
}
return s;
}
} // namespace ROCKSDB_NAMESPACE
|