1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/dbformat.h"
#include "table/block_based/index_builder.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
namespace ROCKSDB_NAMESPACE {
static std::string IKey(const std::string& user_key, uint64_t seq,
ValueType vt) {
std::string encoded;
AppendInternalKey(&encoded, ParsedInternalKey(user_key, seq, vt));
return encoded;
}
static std::string Shorten(const std::string& s, const std::string& l) {
std::string scratch;
return ShortenedIndexBuilder::FindShortestInternalKeySeparator(
*BytewiseComparator(), s, l, &scratch)
.ToString();
}
static std::string ShortSuccessor(const std::string& s) {
std::string scratch;
return ShortenedIndexBuilder::FindShortInternalKeySuccessor(
*BytewiseComparator(), s, &scratch)
.ToString();
}
static void TestKey(const std::string& key, uint64_t seq, ValueType vt) {
std::string encoded = IKey(key, seq, vt);
Slice in(encoded);
ParsedInternalKey decoded("", 0, kTypeValue);
ASSERT_OK(ParseInternalKey(in, &decoded, true /* log_err_key */));
ASSERT_EQ(key, decoded.user_key.ToString());
ASSERT_EQ(seq, decoded.sequence);
ASSERT_EQ(vt, decoded.type);
ASSERT_NOK(ParseInternalKey(Slice("bar"), &decoded, true /* log_err_key */));
}
class FormatTest : public testing::Test {};
TEST_F(FormatTest, InternalKey_EncodeDecode) {
const char* keys[] = {"", "k", "hello", "longggggggggggggggggggggg"};
const uint64_t seq[] = {1,
2,
3,
(1ull << 8) - 1,
1ull << 8,
(1ull << 8) + 1,
(1ull << 16) - 1,
1ull << 16,
(1ull << 16) + 1,
(1ull << 32) - 1,
1ull << 32,
(1ull << 32) + 1};
for (unsigned int k = 0; k < sizeof(keys) / sizeof(keys[0]); k++) {
for (unsigned int s = 0; s < sizeof(seq) / sizeof(seq[0]); s++) {
TestKey(keys[k], seq[s], kTypeValue);
TestKey("hello", 1, kTypeDeletion);
}
}
}
TEST_F(FormatTest, InternalKeyShortSeparator) {
// When user keys are same
ASSERT_EQ(IKey("foo", 100, kTypeValue),
Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 99, kTypeValue)));
ASSERT_EQ(
IKey("foo", 100, kTypeValue),
Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 101, kTypeValue)));
ASSERT_EQ(
IKey("foo", 100, kTypeValue),
Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 100, kTypeValue)));
ASSERT_EQ(
IKey("foo", 100, kTypeValue),
Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 100, kTypeDeletion)));
// When user keys are misordered
ASSERT_EQ(IKey("foo", 100, kTypeValue),
Shorten(IKey("foo", 100, kTypeValue), IKey("bar", 99, kTypeValue)));
// When user keys are different, but correctly ordered
ASSERT_EQ(
IKey("g", kMaxSequenceNumber, kValueTypeForSeek),
Shorten(IKey("foo", 100, kTypeValue), IKey("hello", 200, kTypeValue)));
ASSERT_EQ(IKey("ABC2", kMaxSequenceNumber, kValueTypeForSeek),
Shorten(IKey("ABC1AAAAA", 100, kTypeValue),
IKey("ABC2ABB", 200, kTypeValue)));
ASSERT_EQ(IKey("AAA2", kMaxSequenceNumber, kValueTypeForSeek),
Shorten(IKey("AAA1AAA", 100, kTypeValue),
IKey("AAA2AA", 200, kTypeValue)));
ASSERT_EQ(
IKey("AAA2", kMaxSequenceNumber, kValueTypeForSeek),
Shorten(IKey("AAA1AAA", 100, kTypeValue), IKey("AAA4", 200, kTypeValue)));
ASSERT_EQ(
IKey("AAA1B", kMaxSequenceNumber, kValueTypeForSeek),
Shorten(IKey("AAA1AAA", 100, kTypeValue), IKey("AAA2", 200, kTypeValue)));
ASSERT_EQ(IKey("AAA2", kMaxSequenceNumber, kValueTypeForSeek),
Shorten(IKey("AAA1AAA", 100, kTypeValue),
IKey("AAA2A", 200, kTypeValue)));
ASSERT_EQ(
IKey("AAA1", 100, kTypeValue),
Shorten(IKey("AAA1", 100, kTypeValue), IKey("AAA2", 200, kTypeValue)));
// When start user key is prefix of limit user key
ASSERT_EQ(
IKey("foo", 100, kTypeValue),
Shorten(IKey("foo", 100, kTypeValue), IKey("foobar", 200, kTypeValue)));
// When limit user key is prefix of start user key
ASSERT_EQ(
IKey("foobar", 100, kTypeValue),
Shorten(IKey("foobar", 100, kTypeValue), IKey("foo", 200, kTypeValue)));
}
TEST_F(FormatTest, InternalKeyShortestSuccessor) {
ASSERT_EQ(IKey("g", kMaxSequenceNumber, kValueTypeForSeek),
ShortSuccessor(IKey("foo", 100, kTypeValue)));
ASSERT_EQ(IKey("\xff\xff", 100, kTypeValue),
ShortSuccessor(IKey("\xff\xff", 100, kTypeValue)));
}
TEST_F(FormatTest, IterKeyOperation) {
IterKey k;
const char p[] = "abcdefghijklmnopqrstuvwxyz";
const char q[] = "0123456789";
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string(""));
k.TrimAppend(0, p, 3);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("abc"));
k.TrimAppend(1, p, 3);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("aabc"));
k.TrimAppend(0, p, 26);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("abcdefghijklmnopqrstuvwxyz"));
k.TrimAppend(26, q, 10);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("abcdefghijklmnopqrstuvwxyz0123456789"));
k.TrimAppend(36, q, 1);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("abcdefghijklmnopqrstuvwxyz01234567890"));
k.TrimAppend(26, q, 1);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("abcdefghijklmnopqrstuvwxyz0"));
// Size going up, memory allocation is triggered
k.TrimAppend(27, p, 26);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string("abcdefghijklmnopqrstuvwxyz0"
"abcdefghijklmnopqrstuvwxyz"));
}
TEST_F(FormatTest, IterKeyWithTimestampOperation) {
IterKey k;
k.SetUserKey("");
const char p[] = "abcdefghijklmnopqrstuvwxyz";
const char q[] = "0123456789";
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
std::string(""));
size_t ts_sz = 8;
std::string min_timestamp(ts_sz, static_cast<unsigned char>(0));
k.TrimAppendWithTimestamp(0, p, 3, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"abc" + min_timestamp);
k.TrimAppendWithTimestamp(1, p, 3, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"aabc" + min_timestamp);
k.TrimAppendWithTimestamp(0, p, 26, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"abcdefghijklmnopqrstuvwxyz" + min_timestamp);
k.TrimAppendWithTimestamp(26, q, 10, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"abcdefghijklmnopqrstuvwxyz0123456789" + min_timestamp);
k.TrimAppendWithTimestamp(36, q, 1, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"abcdefghijklmnopqrstuvwxyz01234567890" + min_timestamp);
k.TrimAppendWithTimestamp(26, q, 1, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"abcdefghijklmnopqrstuvwxyz0" + min_timestamp);
k.TrimAppendWithTimestamp(27, p, 26, ts_sz);
ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()),
"abcdefghijklmnopqrstuvwxyz0"
"abcdefghijklmnopqrstuvwxyz" +
min_timestamp);
// IterKey holds an internal key, the last 8 bytes hold the key footer, the
// timestamp is expected to be added before the key footer.
std::string key_without_ts = "keywithoutts";
k.SetInternalKey(key_without_ts + min_timestamp + "internal");
ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
key_without_ts + min_timestamp + "internal");
k.TrimAppendWithTimestamp(0, p, 10, ts_sz);
ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
"ab" + min_timestamp + "cdefghij");
k.TrimAppendWithTimestamp(1, p, 8, ts_sz);
ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
"a" + min_timestamp + "abcdefgh");
k.TrimAppendWithTimestamp(9, p, 3, ts_sz);
ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
"aabc" + min_timestamp + "defghabc");
k.TrimAppendWithTimestamp(10, q, 10, ts_sz);
ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
"aabcdefgha01" + min_timestamp + "23456789");
k.TrimAppendWithTimestamp(20, q, 1, ts_sz);
ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
"aabcdefgha012" + min_timestamp + "34567890");
k.TrimAppendWithTimestamp(21, p, 26, ts_sz);
ASSERT_EQ(
std::string(k.GetInternalKey().data(), k.GetInternalKey().size()),
"aabcdefgha01234567890abcdefghijklmnopqr" + min_timestamp + "stuvwxyz");
}
TEST_F(FormatTest, UpdateInternalKey) {
std::string user_key("abcdefghijklmnopqrstuvwxyz");
uint64_t new_seq = 0x123456;
ValueType new_val_type = kTypeDeletion;
std::string ikey;
AppendInternalKey(&ikey, ParsedInternalKey(user_key, 100U, kTypeValue));
size_t ikey_size = ikey.size();
UpdateInternalKey(&ikey, new_seq, new_val_type);
ASSERT_EQ(ikey_size, ikey.size());
Slice in(ikey);
ParsedInternalKey decoded;
ASSERT_OK(ParseInternalKey(in, &decoded, true /* log_err_key */));
ASSERT_EQ(user_key, decoded.user_key.ToString());
ASSERT_EQ(new_seq, decoded.sequence);
ASSERT_EQ(new_val_type, decoded.type);
}
TEST_F(FormatTest, RangeTombstoneSerializeEndKey) {
RangeTombstone t("a", "b", 2);
InternalKey k("b", 3, kTypeValue);
const InternalKeyComparator cmp(BytewiseComparator());
ASSERT_LT(cmp.Compare(t.SerializeEndKey(), k), 0);
}
TEST_F(FormatTest, PadInternalKeyWithMinTimestamp) {
std::string orig_user_key = "foo";
std::string orig_internal_key = IKey(orig_user_key, 100, kTypeValue);
size_t ts_sz = 8;
std::string key_buf;
PadInternalKeyWithMinTimestamp(&key_buf, orig_internal_key, ts_sz);
ParsedInternalKey key_with_timestamp;
Slice in(key_buf);
ASSERT_OK(ParseInternalKey(in, &key_with_timestamp, true /*log_err_key*/));
std::string min_timestamp(ts_sz, static_cast<unsigned char>(0));
ASSERT_EQ(orig_user_key + min_timestamp, key_with_timestamp.user_key);
ASSERT_EQ(100, key_with_timestamp.sequence);
ASSERT_EQ(kTypeValue, key_with_timestamp.type);
}
TEST_F(FormatTest, StripTimestampFromInternalKey) {
std::string orig_user_key = "foo";
size_t ts_sz = 8;
std::string timestamp(ts_sz, static_cast<unsigned char>(0));
orig_user_key.append(timestamp.data(), timestamp.size());
std::string orig_internal_key = IKey(orig_user_key, 100, kTypeValue);
std::string key_buf;
StripTimestampFromInternalKey(&key_buf, orig_internal_key, ts_sz);
ParsedInternalKey key_without_timestamp;
Slice in(key_buf);
ASSERT_OK(ParseInternalKey(in, &key_without_timestamp, true /*log_err_key*/));
ASSERT_EQ("foo", key_without_timestamp.user_key);
ASSERT_EQ(100, key_without_timestamp.sequence);
ASSERT_EQ(kTypeValue, key_without_timestamp.type);
}
TEST_F(FormatTest, ReplaceInternalKeyWithMinTimestamp) {
std::string orig_user_key = "foo";
size_t ts_sz = 8;
orig_user_key.append(ts_sz, static_cast<unsigned char>(1));
std::string orig_internal_key = IKey(orig_user_key, 100, kTypeValue);
std::string key_buf;
ReplaceInternalKeyWithMinTimestamp(&key_buf, orig_internal_key, ts_sz);
ParsedInternalKey new_key;
Slice in(key_buf);
ASSERT_OK(ParseInternalKey(in, &new_key, true /*log_err_key*/));
std::string min_timestamp(ts_sz, static_cast<unsigned char>(0));
size_t ukey_diff_offset = new_key.user_key.difference_offset(orig_user_key);
ASSERT_EQ(min_timestamp,
Slice(new_key.user_key.data() + ukey_diff_offset, ts_sz));
ASSERT_EQ(orig_user_key.size(), new_key.user_key.size());
ASSERT_EQ(100, new_key.sequence);
ASSERT_EQ(kTypeValue, new_key.type);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}
|