1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <assert.h>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef __BMI2__
#include <immintrin.h>
#endif
#include <cstdint>
#include <type_traits>
#include "port/lang.h"
#include "rocksdb/rocksdb_namespace.h"
ASSERT_FEATURE_COMPAT_HEADER();
namespace ROCKSDB_NAMESPACE {
// Fast implementation of extracting the bottom n bits of an integer.
// To ensure fast implementation, undefined if n bits is full width or more.
template <typename T>
inline T BottomNBits(T v, int nbits) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
assert(nbits >= 0);
assert(nbits < int{8 * sizeof(T)});
#ifdef __BMI2__
if constexpr (sizeof(T) <= 4) {
return static_cast<T>(_bzhi_u32(static_cast<uint32_t>(v), nbits));
}
if constexpr (sizeof(T) <= 8) {
return static_cast<T>(_bzhi_u64(static_cast<uint64_t>(v), nbits));
}
#endif
// Newer compilers compile this down to bzhi on x86, but some older
// ones don't, thus the need for the intrinsic above.
return static_cast<T>(v & ((T{1} << nbits) - 1));
}
// Fast implementation of floor(log2(v)). Undefined for 0 or negative
// numbers (in case of signed type).
template <typename T>
inline int FloorLog2(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
assert(v > 0);
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
unsigned long idx = 0;
if (sizeof(T) <= sizeof(uint32_t)) {
_BitScanReverse(&idx, static_cast<uint32_t>(v));
} else {
#if defined(_M_X64) || defined(_M_ARM64)
_BitScanReverse64(&idx, static_cast<uint64_t>(v));
#else
const auto vh = static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32);
if (vh != 0) {
_BitScanReverse(&idx, static_cast<uint32_t>(vh));
idx += 32;
} else {
_BitScanReverse(&idx, static_cast<uint32_t>(v));
}
#endif
}
return idx;
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
int lz = __builtin_clz(static_cast<unsigned int>(v));
return int{sizeof(unsigned int)} * 8 - 1 - lz;
} else if (sizeof(T) <= sizeof(unsigned long)) {
int lz = __builtin_clzl(static_cast<unsigned long>(v));
return int{sizeof(unsigned long)} * 8 - 1 - lz;
} else {
int lz = __builtin_clzll(static_cast<unsigned long long>(v));
return int{sizeof(unsigned long long)} * 8 - 1 - lz;
}
#endif
}
// Constexpr version of FloorLog2
template <typename T>
constexpr int ConstexprFloorLog2(T v) {
// NOTE: not checking is_integral so that this works with Unsigned128
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
int rv = 0;
while (v > T{1}) {
++rv;
v >>= 1;
}
return rv;
}
// Number of low-order zero bits before the first 1 bit. Undefined for 0.
template <typename T>
inline int CountTrailingZeroBits(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
assert(v != 0);
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
unsigned long tz = 0;
if (sizeof(T) <= sizeof(uint32_t)) {
_BitScanForward(&tz, static_cast<uint32_t>(v));
} else {
#if defined(_M_X64) || defined(_M_ARM64)
_BitScanForward64(&tz, static_cast<uint64_t>(v));
#else
_BitScanForward(&tz, static_cast<uint32_t>(v));
if (tz == 0) {
_BitScanForward(&tz,
static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32));
tz += 32;
}
#endif
}
return static_cast<int>(tz);
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
return __builtin_ctz(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_ctzl(static_cast<unsigned long>(v));
} else {
return __builtin_ctzll(static_cast<unsigned long long>(v));
}
#endif
}
// Not all MSVC compile settings will use `BitsSetToOneFallback()`. We include
// the following code at coarse granularity for simpler macros. It's important
// to exclude at least so our non-MSVC unit test coverage tool doesn't see it.
#ifdef _MSC_VER
namespace detail {
template <typename T>
int BitsSetToOneFallback(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
const int kBits = static_cast<int>(sizeof(T)) * 8;
static_assert((kBits & (kBits - 1)) == 0, "must be power of two bits");
// we static_cast these bit patterns in order to truncate them to the correct
// size. Warning C4309 dislikes this technique, so disable it here.
#pragma warning(disable : 4309)
v = static_cast<T>(v - ((v >> 1) & static_cast<T>(0x5555555555555555ull)));
v = static_cast<T>((v & static_cast<T>(0x3333333333333333ull)) +
((v >> 2) & static_cast<T>(0x3333333333333333ull)));
v = static_cast<T>((v + (v >> 4)) & static_cast<T>(0x0F0F0F0F0F0F0F0Full));
#pragma warning(default : 4309)
for (int shift_bits = 8; shift_bits < kBits; shift_bits <<= 1) {
v += static_cast<T>(v >> shift_bits);
}
// we want the bottom "slot" that's big enough to represent a value up to
// (and including) kBits.
return static_cast<int>(v & static_cast<T>(kBits | (kBits - 1)));
}
} // namespace detail
#endif // _MSC_VER
// Number of bits set to 1. Also known as "population count".
template <typename T>
inline int BitsSetToOne(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
#ifdef _MSC_VER
static_assert(sizeof(T) <= sizeof(uint64_t), "type too big");
if (sizeof(T) < sizeof(uint32_t)) {
// This bit mask is to avoid a compiler warning on unused path
constexpr auto mm = 8 * sizeof(uint32_t) - 1;
// The bit mask is to neutralize sign extension on small signed types
constexpr uint32_t m = (uint32_t{1} << ((8 * sizeof(T)) & mm)) - 1;
#if __POPCNT__
return static_cast<int>(__popcnt(static_cast<uint32_t>(v) & m));
#else
return static_cast<int>(detail::BitsSetToOneFallback(v) & m);
#endif // __POPCNT__
} else if (sizeof(T) == sizeof(uint32_t)) {
#if __POPCNT__
return static_cast<int>(__popcnt(static_cast<uint32_t>(v)));
#else
return detail::BitsSetToOneFallback(static_cast<uint32_t>(v));
#endif // __POPCNT__
} else {
#if __POPCNT__
#ifdef _M_X64
return static_cast<int>(__popcnt64(static_cast<uint64_t>(v)));
#else
return static_cast<int>(
__popcnt(static_cast<uint32_t>(static_cast<uint64_t>(v) >> 32) +
__popcnt(static_cast<uint32_t>(v))));
#endif // _M_X64
#else
return detail::BitsSetToOneFallback(static_cast<uint64_t>(v));
#endif // __POPCNT__
}
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) < sizeof(unsigned int)) {
// This bit mask is to avoid a compiler warning on unused path
constexpr auto mm = 8 * sizeof(unsigned int) - 1;
// This bit mask is to neutralize sign extension on small signed types
constexpr unsigned int m = (1U << ((8 * sizeof(T)) & mm)) - 1;
return __builtin_popcount(static_cast<unsigned int>(v) & m);
} else if (sizeof(T) == sizeof(unsigned int)) {
return __builtin_popcount(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_popcountl(static_cast<unsigned long>(v));
} else {
return __builtin_popcountll(static_cast<unsigned long long>(v));
}
#endif
}
template <typename T>
inline int BitParity(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
#ifdef _MSC_VER
// bit parity == oddness of popcount
return BitsSetToOne(v) & 1;
#else
static_assert(sizeof(T) <= sizeof(unsigned long long), "type too big");
if (sizeof(T) <= sizeof(unsigned int)) {
// On any sane systen, potential sign extension here won't change parity
return __builtin_parity(static_cast<unsigned int>(v));
} else if (sizeof(T) <= sizeof(unsigned long)) {
return __builtin_parityl(static_cast<unsigned long>(v));
} else {
return __builtin_parityll(static_cast<unsigned long long>(v));
}
#endif
}
// Swaps between big and little endian. Can be used in combination with the
// little-endian encoding/decoding functions in coding_lean.h and coding.h to
// encode/decode big endian.
template <typename T>
inline T EndianSwapValue(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
#ifdef _MSC_VER
if (sizeof(T) == 2) {
return static_cast<T>(_byteswap_ushort(static_cast<uint16_t>(v)));
} else if (sizeof(T) == 4) {
return static_cast<T>(_byteswap_ulong(static_cast<uint32_t>(v)));
} else if (sizeof(T) == 8) {
return static_cast<T>(_byteswap_uint64(static_cast<uint64_t>(v)));
}
#else
if (sizeof(T) == 2) {
return static_cast<T>(__builtin_bswap16(static_cast<uint16_t>(v)));
} else if (sizeof(T) == 4) {
return static_cast<T>(__builtin_bswap32(static_cast<uint32_t>(v)));
} else if (sizeof(T) == 8) {
return static_cast<T>(__builtin_bswap64(static_cast<uint64_t>(v)));
}
#endif
// Recognized by clang as bswap, but not by gcc :(
T ret_val = 0;
for (std::size_t i = 0; i < sizeof(T); ++i) {
ret_val |= ((v >> (8 * i)) & 0xff) << (8 * (sizeof(T) - 1 - i));
}
return ret_val;
}
// Reverses the order of bits in an integral value
template <typename T>
inline T ReverseBits(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
T r = EndianSwapValue(v);
const T kHighestByte = T{1} << ((sizeof(T) - 1) * 8);
const T kEveryByte = kHighestByte | (kHighestByte / 255);
r = ((r & (kEveryByte * 0x0f)) << 4) | ((r >> 4) & (kEveryByte * 0x0f));
r = ((r & (kEveryByte * 0x33)) << 2) | ((r >> 2) & (kEveryByte * 0x33));
r = ((r & (kEveryByte * 0x55)) << 1) | ((r >> 1) & (kEveryByte * 0x55));
return r;
}
// Every output bit depends on many input bits in the same and higher
// positions, but not lower positions. Specifically, this function
// * Output highest bit set to 1 is same as input (same FloorLog2, or
// equivalently, same number of leading zeros)
// * Is its own inverse (an involution)
// * Guarantees that b bottom bits of v and c bottom bits of
// DownwardInvolution(v) uniquely identify b + c bottom bits of v
// (which is all of v if v < 2**(b + c)).
// ** A notable special case is that modifying c adjacent bits at
// some chosen position in the input is bijective with the bottom c
// output bits.
// * Distributes over xor, as in DI(a ^ b) == DI(a) ^ DI(b)
//
// This transformation is equivalent to a matrix*vector multiplication in
// GF(2) where the matrix is recursively defined by the pattern matrix
// P = | 1 1 |
// | 0 1 |
// and replacing 1's with P and 0's with 2x2 zero matices to some depth,
// e.g. depth of 6 for 64-bit T. An essential feature of this matrix
// is that all square sub-matrices that include the top row are invertible.
template <typename T>
inline T DownwardInvolution(T v) {
static_assert(std::is_integral_v<T>, "non-integral type");
static_assert(!std::is_reference_v<T>, "use std::remove_reference_t");
static_assert(sizeof(T) <= 8, "only supported up to 64 bits");
uint64_t r = static_cast<uint64_t>(v);
if constexpr (sizeof(T) > 4) {
r ^= r >> 32;
}
if constexpr (sizeof(T) > 2) {
r ^= (r & 0xffff0000ffff0000U) >> 16;
}
if constexpr (sizeof(T) > 1) {
r ^= (r & 0xff00ff00ff00ff00U) >> 8;
}
r ^= (r & 0xf0f0f0f0f0f0f0f0U) >> 4;
r ^= (r & 0xccccccccccccccccU) >> 2;
r ^= (r & 0xaaaaaaaaaaaaaaaaU) >> 1;
return static_cast<T>(r);
}
// Bitwise-And with typing that allows you to avoid writing an explicit cast
// to the smaller type, or the type of the right parameter if same size.
template <typename A, typename B>
inline std::conditional_t<sizeof(A) < sizeof(B), A, B> BitwiseAnd(A a, B b) {
static_assert(std::is_integral_v<A>, "non-integral type");
static_assert(std::is_integral_v<B>, "non-integral type");
static_assert(!std::is_reference_v<A>, "use std::remove_reference_t");
static_assert(!std::is_reference_v<B>, "use std::remove_reference_t");
using Smaller = std::conditional_t<sizeof(A) < sizeof(B), A, B>;
return static_cast<Smaller>(a & b);
}
} // namespace ROCKSDB_NAMESPACE
|