1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#pragma once
#include <assert.h>
#include <list>
#include <vector>
#ifdef OS_LINUX
#include <sys/mman.h>
#endif
#include "rocksdb/env.h"
#include "util/mutexlock.h"
namespace ROCKSDB_NAMESPACE {
// HashTable<T, Hash, Equal>
//
// Traditional implementation of hash table with synchronization built on top
// don't perform very well in multi-core scenarios. This is an implementation
// designed for multi-core scenarios with high lock contention.
//
// |<-------- alpha ------------->|
// Buckets Collision list
// ---- +----+ +---+---+--- ...... ---+---+---+
// / | |--->| | | | | |
// / +----+ +---+---+--- ...... ---+---+---+
// / | |
// Locks/ +----+
// +--+/ . .
// | | . .
// +--+ . .
// | | . .
// +--+ . .
// | | . .
// +--+ . .
// \ +----+
// \ | |
// \ +----+
// \ | |
// \---- +----+
//
// The lock contention is spread over an array of locks. This helps improve
// concurrent access. The spine is designed for a certain capacity and load
// factor. When the capacity planning is done correctly we can expect
// O(load_factor = 1) insert, access and remove time.
//
// Micro benchmark on debug build gives about .5 Million/sec rate of insert,
// erase and lookup in parallel (total of about 1.5 Million ops/sec). If the
// blocks were of 4K, the hash table can support a virtual throughput of
// 6 GB/s.
//
// T Object type (contains both key and value)
// Hash Function that returns an hash from type T
// Equal Returns if two objects are equal
// (We need explicit equal for pointer type)
//
template <class T, class Hash, class Equal>
class HashTable {
public:
explicit HashTable(const size_t capacity = 1024 * 1024,
const float load_factor = 2.0, const uint32_t nlocks = 256)
: nbuckets_(
static_cast<uint32_t>(load_factor ? capacity / load_factor : 0)),
nlocks_(nlocks) {
// pre-conditions
assert(capacity);
assert(load_factor);
assert(nbuckets_);
assert(nlocks_);
buckets_.reset(new Bucket[nbuckets_]);
#ifdef OS_LINUX
mlock(buckets_.get(), nbuckets_ * sizeof(Bucket));
#endif
// initialize locks
locks_.reset(new port::RWMutex[nlocks_]);
#ifdef OS_LINUX
mlock(locks_.get(), nlocks_ * sizeof(port::RWMutex));
#endif
// post-conditions
assert(buckets_);
assert(locks_);
}
virtual ~HashTable() { AssertEmptyBuckets(); }
//
// Insert given record to hash table
//
bool Insert(const T& t) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
WriteLock _(&locks_[lock_idx]);
auto& bucket = buckets_[bucket_idx];
return Insert(&bucket, t);
}
// Lookup hash table
//
// Please note that read lock should be held by the caller. This is because
// the caller owns the data, and should hold the read lock as long as he
// operates on the data.
bool Find(const T& t, T* ret, port::RWMutex** ret_lock) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
port::RWMutex& lock = locks_[lock_idx];
lock.ReadLock();
auto& bucket = buckets_[bucket_idx];
if (Find(&bucket, t, ret)) {
*ret_lock = &lock;
return true;
}
lock.ReadUnlock();
return false;
}
//
// Erase a given key from the hash table
//
bool Erase(const T& t, T* ret) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
WriteLock _(&locks_[lock_idx]);
auto& bucket = buckets_[bucket_idx];
return Erase(&bucket, t, ret);
}
// Fetch the mutex associated with a key
// This call is used to hold the lock for a given data for extended period of
// time.
port::RWMutex* GetMutex(const T& t) {
const uint64_t h = Hash()(t);
const uint32_t bucket_idx = h % nbuckets_;
const uint32_t lock_idx = bucket_idx % nlocks_;
return &locks_[lock_idx];
}
void Clear(void (*fn)(T)) {
for (uint32_t i = 0; i < nbuckets_; ++i) {
const uint32_t lock_idx = i % nlocks_;
WriteLock _(&locks_[lock_idx]);
for (auto& t : buckets_[i].list_) {
(*fn)(t);
}
buckets_[i].list_.clear();
}
}
protected:
// Models bucket of keys that hash to the same bucket number
struct Bucket {
std::list<T> list_;
};
// Substitute for std::find with custom comparator operator
typename std::list<T>::iterator Find(std::list<T>* list, const T& t) {
for (auto it = list->begin(); it != list->end(); ++it) {
if (Equal()(*it, t)) {
return it;
}
}
return list->end();
}
bool Insert(Bucket* bucket, const T& t) {
// Check if the key already exists
auto it = Find(&bucket->list_, t);
if (it != bucket->list_.end()) {
return false;
}
// insert to bucket
bucket->list_.push_back(t);
return true;
}
bool Find(Bucket* bucket, const T& t, T* ret) {
auto it = Find(&bucket->list_, t);
if (it != bucket->list_.end()) {
if (ret) {
*ret = *it;
}
return true;
}
return false;
}
bool Erase(Bucket* bucket, const T& t, T* ret) {
auto it = Find(&bucket->list_, t);
if (it != bucket->list_.end()) {
if (ret) {
*ret = *it;
}
bucket->list_.erase(it);
return true;
}
return false;
}
// assert that all buckets are empty
void AssertEmptyBuckets() {
#ifndef NDEBUG
for (size_t i = 0; i < nbuckets_; ++i) {
WriteLock _(&locks_[i % nlocks_]);
assert(buckets_[i].list_.empty());
}
#endif
}
const uint32_t nbuckets_; // No. of buckets in the spine
std::unique_ptr<Bucket[]> buckets_; // Spine of the hash buckets
const uint32_t nlocks_; // No. of locks
std::unique_ptr<port::RWMutex[]> locks_; // Granular locks
};
} // namespace ROCKSDB_NAMESPACE
|