1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/block_based/index_builder.h"
#include <cassert>
#include <cinttypes>
#include <list>
#include <string>
#include "db/dbformat.h"
#include "rocksdb/comparator.h"
#include "rocksdb/flush_block_policy.h"
#include "table/block_based/partitioned_filter_block.h"
#include "table/format.h"
namespace ROCKSDB_NAMESPACE {
// Create a index builder based on its type.
IndexBuilder* IndexBuilder::CreateIndexBuilder(
BlockBasedTableOptions::IndexType index_type,
const InternalKeyComparator* comparator,
const InternalKeySliceTransform* int_key_slice_transform,
const bool use_value_delta_encoding,
const BlockBasedTableOptions& table_opt, size_t ts_sz,
const bool persist_user_defined_timestamps) {
IndexBuilder* result = nullptr;
switch (index_type) {
case BlockBasedTableOptions::kBinarySearch: {
result = new ShortenedIndexBuilder(
comparator, table_opt.index_block_restart_interval,
table_opt.format_version, use_value_delta_encoding,
table_opt.index_shortening, /* include_first_key */ false, ts_sz,
persist_user_defined_timestamps);
break;
}
case BlockBasedTableOptions::kHashSearch: {
// Currently kHashSearch is incompatible with index_block_restart_interval
// > 1
assert(table_opt.index_block_restart_interval == 1);
result = new HashIndexBuilder(
comparator, int_key_slice_transform,
table_opt.index_block_restart_interval, table_opt.format_version,
use_value_delta_encoding, table_opt.index_shortening, ts_sz,
persist_user_defined_timestamps);
break;
}
case BlockBasedTableOptions::kTwoLevelIndexSearch: {
result = PartitionedIndexBuilder::CreateIndexBuilder(
comparator, use_value_delta_encoding, table_opt, ts_sz,
persist_user_defined_timestamps);
break;
}
case BlockBasedTableOptions::kBinarySearchWithFirstKey: {
result = new ShortenedIndexBuilder(
comparator, table_opt.index_block_restart_interval,
table_opt.format_version, use_value_delta_encoding,
table_opt.index_shortening, /* include_first_key */ true, ts_sz,
persist_user_defined_timestamps);
break;
}
default: {
assert(!"Do not recognize the index type ");
break;
}
}
return result;
}
Slice ShortenedIndexBuilder::FindShortestInternalKeySeparator(
const Comparator& comparator, const Slice& start, const Slice& limit,
std::string* scratch) {
// Attempt to shorten the user portion of the key
Slice user_start = ExtractUserKey(start);
Slice user_limit = ExtractUserKey(limit);
scratch->assign(user_start.data(), user_start.size());
comparator.FindShortestSeparator(scratch, user_limit);
assert(comparator.Compare(user_start, *scratch) <= 0);
assert(comparator.Compare(user_start, user_limit) >= 0 ||
comparator.Compare(*scratch, user_limit) < 0);
if (scratch->size() <= user_start.size() &&
comparator.Compare(user_start, *scratch) < 0) {
// User key has become shorter physically, but larger logically.
// Tack on the earliest possible number to the shortened user key.
PutFixed64(scratch,
PackSequenceAndType(kMaxSequenceNumber, kValueTypeForSeek));
assert(InternalKeyComparator(&comparator).Compare(start, *scratch) < 0);
assert(InternalKeyComparator(&comparator).Compare(*scratch, limit) < 0);
return *scratch;
} else {
return start;
}
}
Slice ShortenedIndexBuilder::FindShortInternalKeySuccessor(
const Comparator& comparator, const Slice& key, std::string* scratch) {
Slice user_key = ExtractUserKey(key);
scratch->assign(user_key.data(), user_key.size());
comparator.FindShortSuccessor(scratch);
assert(comparator.Compare(user_key, *scratch) <= 0);
if (scratch->size() <= user_key.size() &&
comparator.Compare(user_key, *scratch) < 0) {
// User key has become shorter physically, but larger logically.
// Tack on the earliest possible number to the shortened user key.
PutFixed64(scratch,
PackSequenceAndType(kMaxSequenceNumber, kValueTypeForSeek));
assert(InternalKeyComparator(&comparator).Compare(key, *scratch) < 0);
return *scratch;
} else {
return key;
}
}
PartitionedIndexBuilder* PartitionedIndexBuilder::CreateIndexBuilder(
const InternalKeyComparator* comparator,
const bool use_value_delta_encoding,
const BlockBasedTableOptions& table_opt, size_t ts_sz,
const bool persist_user_defined_timestamps) {
return new PartitionedIndexBuilder(comparator, table_opt,
use_value_delta_encoding, ts_sz,
persist_user_defined_timestamps);
}
PartitionedIndexBuilder::PartitionedIndexBuilder(
const InternalKeyComparator* comparator,
const BlockBasedTableOptions& table_opt,
const bool use_value_delta_encoding, size_t ts_sz,
const bool persist_user_defined_timestamps)
: IndexBuilder(comparator, ts_sz, persist_user_defined_timestamps),
index_block_builder_(
table_opt.index_block_restart_interval, true /*use_delta_encoding*/,
use_value_delta_encoding,
BlockBasedTableOptions::kDataBlockBinarySearch /* index_type */,
0.75 /* data_block_hash_table_util_ratio */, ts_sz,
persist_user_defined_timestamps, false /* is_user_key */),
index_block_builder_without_seq_(
table_opt.index_block_restart_interval, true /*use_delta_encoding*/,
use_value_delta_encoding,
BlockBasedTableOptions::kDataBlockBinarySearch /* index_type */,
0.75 /* data_block_hash_table_util_ratio */, ts_sz,
persist_user_defined_timestamps, true /* is_user_key */),
table_opt_(table_opt),
// We start by false. After each partition we revise the value based on
// what the sub_index_builder has decided. If the feature is disabled
// entirely, this will be set to true after switching the first
// sub_index_builder. Otherwise, it could be set to true even one of the
// sub_index_builders could not safely exclude seq from the keys, then it
// wil be enforced on all sub_index_builders on ::Finish.
seperator_is_key_plus_seq_(false),
use_value_delta_encoding_(use_value_delta_encoding) {}
void PartitionedIndexBuilder::MakeNewSubIndexBuilder() {
assert(sub_index_builder_ == nullptr);
sub_index_builder_ = std::make_unique<ShortenedIndexBuilder>(
comparator_, table_opt_.index_block_restart_interval,
table_opt_.format_version, use_value_delta_encoding_,
table_opt_.index_shortening, /* include_first_key */ false, ts_sz_,
persist_user_defined_timestamps_);
// Set sub_index_builder_->seperator_is_key_plus_seq_ to true if
// seperator_is_key_plus_seq_ is true (internal-key mode) (set to false by
// default on Creation) so that flush policy can point to
// sub_index_builder_->index_block_builder_
if (seperator_is_key_plus_seq_) {
sub_index_builder_->seperator_is_key_plus_seq_ = true;
}
flush_policy_.reset(FlushBlockBySizePolicyFactory::NewFlushBlockPolicy(
table_opt_.metadata_block_size, table_opt_.block_size_deviation,
// Note: this is sub-optimal since sub_index_builder_ could later reset
// seperator_is_key_plus_seq_ but the probability of that is low.
sub_index_builder_->seperator_is_key_plus_seq_
? sub_index_builder_->index_block_builder_
: sub_index_builder_->index_block_builder_without_seq_));
partition_cut_requested_ = false;
}
void PartitionedIndexBuilder::RequestPartitionCut() {
partition_cut_requested_ = true;
}
Slice PartitionedIndexBuilder::AddIndexEntry(
const Slice& last_key_in_current_block,
const Slice* first_key_in_next_block, const BlockHandle& block_handle,
std::string* separator_scratch) {
// Note: to avoid two consecuitive flush in the same method call, we do not
// check flush policy when adding the last key
if (UNLIKELY(first_key_in_next_block == nullptr)) { // no more keys
if (sub_index_builder_ == nullptr) {
MakeNewSubIndexBuilder();
// Reserve next partition entry, where we will modify the key and
// eventually set the value
entries_.push_back({{}, {}});
}
auto sep = sub_index_builder_->AddIndexEntry(
last_key_in_current_block, first_key_in_next_block, block_handle,
separator_scratch);
if (!seperator_is_key_plus_seq_ &&
sub_index_builder_->seperator_is_key_plus_seq_) {
// We need to apply !seperator_is_key_plus_seq to all sub-index builders
seperator_is_key_plus_seq_ = true;
// Would associate flush_policy with the appropriate builder, but it won't
// be used again with no more keys
flush_policy_.reset();
}
entries_.back().key.assign(sep.data(), sep.size());
assert(entries_.back().value == nullptr);
std::swap(entries_.back().value, sub_index_builder_);
cut_filter_block = true;
return sep;
} else {
// apply flush policy only to non-empty sub_index_builder_
if (sub_index_builder_ != nullptr) {
std::string handle_encoding;
block_handle.EncodeTo(&handle_encoding);
bool do_flush =
partition_cut_requested_ ||
flush_policy_->Update(last_key_in_current_block, handle_encoding);
if (do_flush) {
assert(entries_.back().value == nullptr);
std::swap(entries_.back().value, sub_index_builder_);
cut_filter_block = true;
}
}
if (sub_index_builder_ == nullptr) {
MakeNewSubIndexBuilder();
// Reserve next partition entry, where we will modify the key and
// eventually set the value
entries_.push_back({{}, {}});
}
auto sep = sub_index_builder_->AddIndexEntry(
last_key_in_current_block, first_key_in_next_block, block_handle,
separator_scratch);
entries_.back().key.assign(sep.data(), sep.size());
if (!seperator_is_key_plus_seq_ &&
sub_index_builder_->seperator_is_key_plus_seq_) {
// We need to apply !seperator_is_key_plus_seq to all sub-index builders
seperator_is_key_plus_seq_ = true;
// And use a flush_policy with the appropriate builder
flush_policy_.reset(FlushBlockBySizePolicyFactory::NewFlushBlockPolicy(
table_opt_.metadata_block_size, table_opt_.block_size_deviation,
sub_index_builder_->index_block_builder_));
}
return sep;
}
}
Status PartitionedIndexBuilder::Finish(
IndexBlocks* index_blocks, const BlockHandle& last_partition_block_handle) {
if (partition_cnt_ == 0) {
partition_cnt_ = entries_.size();
}
// It must be set to null after last key is added
assert(sub_index_builder_ == nullptr);
if (finishing_indexes == true) {
Entry& last_entry = entries_.front();
std::string handle_encoding;
last_partition_block_handle.EncodeTo(&handle_encoding);
std::string handle_delta_encoding;
PutVarsignedint64(
&handle_delta_encoding,
last_partition_block_handle.size() - last_encoded_handle_.size());
last_encoded_handle_ = last_partition_block_handle;
const Slice handle_delta_encoding_slice(handle_delta_encoding);
index_block_builder_.Add(last_entry.key, handle_encoding,
&handle_delta_encoding_slice);
if (!seperator_is_key_plus_seq_) {
index_block_builder_without_seq_.Add(ExtractUserKey(last_entry.key),
handle_encoding,
&handle_delta_encoding_slice);
}
entries_.pop_front();
}
// If there is no sub_index left, then return the 2nd level index.
if (UNLIKELY(entries_.empty())) {
if (seperator_is_key_plus_seq_) {
index_blocks->index_block_contents = index_block_builder_.Finish();
} else {
index_blocks->index_block_contents =
index_block_builder_without_seq_.Finish();
}
top_level_index_size_ = index_blocks->index_block_contents.size();
index_size_ += top_level_index_size_;
return Status::OK();
} else {
// Finish the next partition index in line and Incomplete() to indicate we
// expect more calls to Finish
Entry& entry = entries_.front();
// Apply the policy to all sub-indexes
entry.value->seperator_is_key_plus_seq_ = seperator_is_key_plus_seq_;
auto s = entry.value->Finish(index_blocks);
index_size_ += index_blocks->index_block_contents.size();
finishing_indexes = true;
return s.ok() ? Status::Incomplete() : s;
}
}
size_t PartitionedIndexBuilder::NumPartitions() const { return partition_cnt_; }
} // namespace ROCKSDB_NAMESPACE
|