File: math_api.rst

package info (click to toggle)
rocm-hipamd 6.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,036 kB
  • sloc: cpp: 211,057; ansic: 35,860; sh: 755; python: 623; perl: 275; asm: 166; makefile: 27
file content (1121 lines) | stat: -rw-r--r-- 32,917 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
.. meta::
  :description: This chapter describes the built-in math functions that are accessible in HIP. 
  :keywords: AMD, ROCm, HIP, CUDA, math functions, HIP math functions

.. _math_api_reference:

********************************************************************************
HIP math API
********************************************************************************

HIP-Clang supports a set of math operations that are callable from the device. HIP supports most of the device functions supported by NVIDIA CUDA. These are described in the following sections.

Single precision mathematical functions
=======================================


Following is the list of supported single precision mathematical functions.

.. list-table:: Single precision mathematical functions

    * - **Function**
      - **Supported on Host**
      - **Supported on Device**

    * - | ``float abs(float x)``
        | Returns the absolute value of :math:`x`
      - ✓
      - ✓

    * - | ``float acosf(float x)``
        | Returns the arc cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``float acoshf(float x)``
        | Returns the nonnegative arc hyperbolic cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``float asinf(float x)``
        | Returns the arc sine of :math:`x`.
      - ✓
      - ✓

    * - | ``float asinhf(float x)``
        | Returns the arc hyperbolic sine of :math:`x`.
      - ✓
      - ✓

    * - | ``float atanf(float x)``
        | Returns the arc tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``float atan2f(float x, float y)``
        | Returns the arc tangent of the ratio of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``float atanhf(float x)``
        | Returns the arc hyperbolic tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``float cbrtf(float x)``
        | Returns the cube root of :math:`x`.
      - ✓
      - ✓

    * - | ``float ceilf(float x)``
        | Returns ceiling of :math:`x`.
      - ✓
      - ✓

    * - | ``float copysignf(float x, float y)``
        | Create value with given magnitude, copying sign of second value.
      - ✓
      - ✓

    * - | ``float cosf(float x)``
        | Returns the cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``float coshf(float x)``
        | Returns the hyperbolic cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``float cospif(float x)``
        | Returns the cosine of :math:`\pi \cdot x`.
      - ✓
      - ✓

    * - | ``float cyl_bessel_i0f(float x)``
        | Returns the value of the regular modified cylindrical Bessel function of order 0 for :math:`x`.
      - ✗
      - ✗

    * - | ``float cyl_bessel_i1f(float x)``
        | Returns the value of the regular modified cylindrical Bessel function of order 1 for :math:`x`.
      - ✗
      - ✗

    * - | ``float erff(float x)``
        | Returns the error function of :math:`x`.
      - ✓
      - ✓

    * - | ``float erfcf(float x)``
        | Returns the complementary error function of :math:`x`.
      - ✓
      - ✓

    * - | ``float erfcinvf(float x)``
        | Returns the inverse complementary function of :math:`x`.
      - ✓
      - ✓

    * - | ``float erfcxf(float x)``
        | Returns the scaled complementary error function of :math:`x`.
      - ✓
      - ✓

    * - | ``float erfinvf(float x)``
        | Returns the inverse error function of :math:`x`.
      - ✓
      - ✓

    * - | ``float expf(float x)``
        | Returns :math:`e^x`.
      - ✓
      - ✓

    * - | ``float exp10f(float x)``
        | Returns :math:`10^x`.
      - ✓
      - ✓

    * - | ``float exp2f( float x)``
        | Returns :math:`2^x`.
      - ✓
      - ✓

    * - | ``float expm1f(float x)``
        | Returns :math:`ln(x - 1)`
      - ✓
      - ✓

    * - | ``float fabsf(float x)``
        | Returns the absolute value of `x`
      - ✓
      - ✓

    * - | ``float fdimf(float x, float y)``
        | Returns the positive difference between :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``float fdividef(float x, float y)``
        | Divide two floating point values.
      - ✓
      - ✓

    * - | ``float floorf(float x)``
        | Returns the largest integer less than or equal to :math:`x`.
      - ✓
      - ✓

    * - | ``float fmaf(float x, float y, float z)``
        | Returns :math:`x \cdot y + z` as a single operation.
      - ✓
      - ✓

    * - | ``float fmaxf(float x, float y)``
        | Determine the maximum numeric value of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``float fminf(float x, float y)``
        | Determine the minimum numeric value of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``float fmodf(float x, float y)``
        | Returns the floating-point remainder of :math:`x / y`.
      - ✓
      - ✓

    * - | ``float modff(float x, float* iptr)``
        | Break down :math:`x` into fractional and integral parts.
      - ✓
      - ✗

    * - | ``float frexpf(float x, int* nptr)``
        | Extract mantissa and exponent of :math:`x`.
      - ✓
      - ✗

    * - | ``float hypotf(float x, float y)``
        | Returns the square root of the sum of squares of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``int ilogbf(float x)``
        | Returns the unbiased integer exponent of :math:`x`.
      - ✓
      - ✓

    * - | ``bool isfinite(float x)``
        | Determine whether :math:`x` is finite.
      - ✓
      - ✓

    * - | ``bool isinf(float x)``
        | Determine whether :math:`x` is infinite.
      - ✓
      - ✓

    * - | ``bool isnan(float x)``
        | Determine whether :math:`x` is a ``NAN``.
      - ✓
      - ✓

    * - | ``float j0f(float x)``
        | Returns the value of the Bessel function of the first kind of order 0 for :math:`x`.
      - ✓
      - ✓

    * - | ``float j1f(float x)``
        | Returns the value of the Bessel function of the first kind of order 1 for :math:`x`.
      - ✓
      - ✓

    * - | ``float jnf(int n, float x)``
        | Returns the value of the Bessel function of the first kind of order n for :math:`x`.
      - ✓
      - ✓

    * - | ``float ldexpf(float x, int exp)``
        | Returns the natural logarithm of the absolute value of the gamma function of :math:`x`.
      - ✓
      - ✓

    * - | ``float lgammaf(float x)``
        | Returns the natural logarithm of the absolute value of the gamma function of :math:`x`.
      - ✓
      - ✗

    * - | ``long int lrintf(float x)``
        | Round :math:`x` to nearest integer value.
      - ✓
      - ✓

    * - | ``long long int llrintf(float x)``
        | Round :math:`x` to nearest integer value.
      - ✓
      - ✓

    * - | ``long int lroundf(float x)``
        | Round to nearest integer value.
      - ✓
      - ✓

    * - | ``long long int llroundf(float x)``
        | Round to nearest integer value.
      - ✓
      - ✓

    * - | ``float log10f(float x)``
        | Returns the base 10 logarithm of :math:`x`.
      - ✓
      - ✓

    * - | ``float log1pf(float x)``
        | Returns the natural logarithm of :math:`x + 1`.
      - ✓
      - ✓

    * - | ``float log2f(float x)``
        | Returns the base 2 logarithm of :math:`x`.
      - ✓
      - ✓

    * - | ``float logf(float x)``
        | Returns the natural logarithm of :math:`x`.
      - ✓
      - ✓

    * - | ``float logbf(float x)``
        | Returns the floating point representation of the exponent of :math:`x`.
      - ✓
      - ✓

    * - | ``float nanf(const char* tagp)``
        | Returns "Not a Number" value.
      - ✗
      - ✓

    * - | ``float nearbyintf(float x)``
        | Round :math:`x` to the nearest integer.
      - ✓
      - ✓

    * - | ``float nextafterf(float x, float y)``
        | Returns next representable single-precision floating-point value after argument.
      - ✓
      - ✗

    * - | ``float norm3df(float x, float y, float z)``
        | Returns the square root of the sum of squares of :math:`x`, :math:`y` and :math:`z`.
      - ✓
      - ✓

    * - | ``float norm4df(float x, float y, float z, float w)``
        | Returns the square root of the sum of squares of :math:`x`, :math:`y`, :math:`z` and :math:`w`.
      - ✓
      - ✓

    * - | ``float normcdff(float y)``
        | Returns the standard normal cumulative distribution function.
      - ✓
      - ✓

    * - | ``float normcdfinvf(float y)``
        | Returns the inverse of the standard normal cumulative distribution function.
      - ✓
      - ✓

    * - | ``float normf(int dim, const float *a)``
        | Returns the square root of the sum of squares of any number of coordinates.
      - ✓
      - ✓

    * - | ``float powf(float x, float y)``
        | Returns :math:`x^y`.
      - ✓
      - ✓

    * - | ``float powif(float base, int iexp)``
        | Returns the value of first argument to the power of second argument.
      - ✓
      - ✓

    * - | ``float remainderf(float x, float y)``
        | Returns single-precision floating-point remainder.
      - ✓
      - ✓

    * - | ``float remquof(float x, float y, int* quo)``
        | Returns single-precision floating-point remainder and part of quotient.
      - ✓
      - ✓

    * - | ``float roundf(float x)``
        | Round to nearest integer value in floating-point.
      - ✓
      - ✓

    * - | ``float rcbrtf(float x)``
        | Returns the reciprocal cube root function.
      - ✓
      - ✓

    * - | ``float rhypotf(float x, float y)``
        | Returns one over the square root of the sum of squares of two arguments.
      - ✓
      - ✓

    * - | ``float rintf(float x)``
        | Round input to nearest integer value in floating-point.
      - ✓
      - ✓

    * - | ``float rnorm3df(float x, float y, float z)``
        | Returns one over the square root of the sum of squares of three coordinates of the argument.
      - ✓
      - ✓

    * - | ``float rnorm4df(float x, float y, float z, float w)``
        | Returns one over the square root of the sum of squares of four coordinates of the argument.
      - ✓
      - ✓

    * - | ``float rnormf(int dim, const float *a)``
        | Returns the reciprocal of square root of the sum of squares of any number of coordinates.
      - ✓
      - ✓

    * - | ``float scalblnf(float x, long int n)``
        | Scale :math:`x` by :math:`2^n`.
      - ✓
      - ✓

    * - | ``float scalbnf(float x, int n)``
        | Scale :math:`x` by :math:`2^n`.
      - ✓
      - ✓

    * - | ``bool signbit(float x)``
        | Return the sign bit of :math:`x`.
      - ✓
      - ✓

    * - | ``float sinf(float x)``
        | Returns the sine of :math:`x`.
      - ✓
      - ✓

    * - | ``float sinhf(float x)``
        | Returns the hyperbolic sine of :math:`x`.
      - ✓
      - ✓

    * - | ``float sinpif(float x)``
        | Returns the hyperbolic sine of :math:`\pi \cdot x`.
      - ✓
      - ✓

    * - | ``void sincosf(float x, float *sptr, float *cptr)``
        | Returns the sine and cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``void sincospif(float x, float *sptr, float *cptr)``
        | Returns the sine and cosine of :math:`\pi \cdot x`.
      - ✓
      - ✓

    * - | ``float sqrtf(float x)``
        | Returns the square root of :math:`x`.
      - ✓
      - ✓

    * - | ``float rsqrtf(float x)``
        | Returns the reciprocal of the square root of :math:`x`.
      - ✗
      - ✓

    * - | ``float tanf(float x)``
        | Returns the tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``float tanhf(float x)``
        | Returns the hyperbolic tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``float tgammaf(float x)``
        | Returns the gamma function of :math:`x`.
      - ✓
      - ✓

    * - | ``float truncf(float x)``
        | Truncate :math:`x` to the integral part.
      - ✓
      - ✓

    * - | ``float y0f(float x)``
        | Returns the value of the Bessel function of the second kind of order 0 for :math:`x`.
      - ✓
      - ✓

    * - | ``float y1f(float x)``
        | Returns the value of the Bessel function of the second kind of order 1 for :math:`x`.
      - ✓
      - ✓

    * - | ``float ynf(int n, float x)``
        | Returns the value of the Bessel function of the second kind of order n for :math:`x`.
      - ✓
      - ✓

Double precision mathematical functions
=======================================

Following is the list of supported double precision mathematical functions.

.. list-table:: Double precision mathematical functions

    * - **Function**
      - **Supported on Host**
      - **Supported on Device**

    * - | ``double abs(double x)``
        | Returns the absolute value of :math:`x`
      - ✓
      - ✓

    * - | ``double acos(double x)``
        | Returns the arc cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``double acosh(double x)``
        | Returns the nonnegative arc hyperbolic cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``double asin(double x)``
        | Returns the arc sine of :math:`x`.
      - ✓
      - ✓

    * - | ``double asinh(double x)``
        | Returns the arc hyperbolic sine of :math:`x`.
      - ✓
      - ✓

    * - | ``double atan(double x)``
        | Returns the arc tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``double atan2(double x, double y)``
        | Returns the arc tangent of the ratio of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``double atanh(double x)``
        | Returns the arc hyperbolic tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``double cbrt(double x)``
        | Returns the cube root of :math:`x`.
      - ✓
      - ✓

    * - | ``double ceil(double x)``
        | Returns ceiling of :math:`x`.
      - ✓
      - ✓

    * - | ``double copysign(double x, double y)``
        | Create value with given magnitude, copying sign of second value.
      - ✓
      - ✓

    * - | ``double cos(double x)``
        | Returns the cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``double cosh(double x)``
        | Returns the hyperbolic cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``double cospi(double x)``
        | Returns the cosine of :math:`\pi \cdot x`.
      - ✓
      - ✓

    * - | ``double cyl_bessel_i0(double x)``
        | Returns the value of the regular modified cylindrical Bessel function of order 0 for :math:`x`.
      - ✗
      - ✗

    * - | ``double cyl_bessel_i1(double x)``
        | Returns the value of the regular modified cylindrical Bessel function of order 1 for :math:`x`.
      - ✗
      - ✗

    * - | ``double erf(double x)``
        | Returns the error function of :math:`x`.
      - ✓
      - ✓

    * - | ``double erfc(double x)``
        | Returns the complementary error function of :math:`x`.
      - ✓
      - ✓

    * - | ``double erfcinv(double x)``
        | Returns the inverse complementary function of :math:`x`.
      - ✓
      - ✓

    * - | ``double erfcx(double x)``
        | Returns the scaled complementary error function of :math:`x`.
      - ✓
      - ✓

    * - | ``double erfinv(double x)``
        | Returns the inverse error function of :math:`x`.
      - ✓
      - ✓

    * - | ``double exp(double x)``
        | Returns :math:`e^x`.
      - ✓
      - ✓

    * - | ``double exp10(double x)``
        | Returns :math:`10^x`.
      - ✓
      - ✓

    * - | ``double exp2( double x)``
        | Returns :math:`2^x`.
      - ✓
      - ✓

    * - | ``double expm1(double x)``
        | Returns :math:`ln(x - 1)`
      - ✓
      - ✓

    * - | ``double fabs(double x)``
        | Returns the absolute value of `x`
      - ✓
      - ✓

    * - | ``double fdim(double x, double y)``
        | Returns the positive difference between :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``double floor(double x)``
        | Returns the largest integer less than or equal to :math:`x`.
      - ✓
      - ✓

    * - | ``double fma(double x, double y, double z)``
        | Returns :math:`x \cdot y + z` as a single operation.
      - ✓
      - ✓

    * - | ``double fmax(double x, double y)``
        | Determine the maximum numeric value of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``double fmin(double x, double y)``
        | Determine the minimum numeric value of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``double fmod(double x, double y)``
        | Returns the floating-point remainder of :math:`x / y`.
      - ✓
      - ✓

    * - | ``double modf(double x, double* iptr)``
        | Break down :math:`x` into fractional and integral parts.
      - ✓
      - ✗

    * - | ``double frexp(double x, int* nptr)``
        | Extract mantissa and exponent of :math:`x`.
      - ✓
      - ✗

    * - | ``double hypot(double x, double y)``
        | Returns the square root of the sum of squares of :math:`x` and :math:`y`.
      - ✓
      - ✓

    * - | ``int ilogb(double x)``
        | Returns the unbiased integer exponent of :math:`x`.
      - ✓
      - ✓

    * - | ``bool isfinite(double x)``
        | Determine whether :math:`x` is finite.
      - ✓
      - ✓

    * - | ``bool isin(double x)``
        | Determine whether :math:`x` is infinite.
      - ✓
      - ✓

    * - | ``bool isnan(double x)``
        | Determine whether :math:`x` is a ``NAN``.
      - ✓
      - ✓

    * - | ``double j0(double x)``
        | Returns the value of the Bessel function of the first kind of order 0 for :math:`x`.
      - ✓
      - ✓

    * - | ``double j1(double x)``
        | Returns the value of the Bessel function of the first kind of order 1 for :math:`x`.
      - ✓
      - ✓

    * - | ``double jn(int n, double x)``
        | Returns the value of the Bessel function of the first kind of order n for :math:`x`.
      - ✓
      - ✓

    * - | ``double ldexp(double x, int exp)``
        | Returns the natural logarithm of the absolute value of the gamma function of :math:`x`.
      - ✓
      - ✓

    * - | ``double lgamma(double x)``
        | Returns the natural logarithm of the absolute value of the gamma function of :math:`x`.
      - ✓
      - ✗

    * - | ``long int lrint(double x)``
        | Round :math:`x` to nearest integer value.
      - ✓
      - ✓

    * - | ``long long int llrint(double x)``
        | Round :math:`x` to nearest integer value.
      - ✓
      - ✓

    * - | ``long int lround(double x)``
        | Round to nearest integer value.
      - ✓
      - ✓

    * - | ``long long int llround(double x)``
        | Round to nearest integer value.
      - ✓
      - ✓

    * - | ``double log10(double x)``
        | Returns the base 10 logarithm of :math:`x`.
      - ✓
      - ✓

    * - | ``double log1p(double x)``
        | Returns the natural logarithm of :math:`x + 1`.
      - ✓
      - ✓

    * - | ``double log2(double x)``
        | Returns the base 2 logarithm of :math:`x`.
      - ✓
      - ✓

    * - | ``double log(double x)``
        | Returns the natural logarithm of :math:`x`.
      - ✓
      - ✓

    * - | ``double logb(double x)``
        | Returns the floating point representation of the exponent of :math:`x`.
      - ✓
      - ✓

    * - | ``double nan(const char* tagp)``
        | Returns "Not a Number" value.
      - ✗
      - ✓

    * - | ``double nearbyint(double x)``
        | Round :math:`x` to the nearest integer.
      - ✓
      - ✓

    * - | ``double nextafter(double x, double y)``
        | Returns next representable double-precision floating-point value after argument.
      - ✓
      - ✓

    * - | ``double norm3d(double x, double y, double z)``
        | Returns the square root of the sum of squares of :math:`x`, :math:`y` and :math:`z`.
      - ✓
      - ✓

    * - | ``double norm4d(double x, double y, double z, double w)``
        | Returns the square root of the sum of squares of :math:`x`, :math:`y`, :math:`z` and :math:`w`.
      - ✓
      - ✓

    * - | ``double normcdf(double y)``
        | Returns the standard normal cumulative distribution function.
      - ✓
      - ✓

    * - | ``double normcdfinv(double y)``
        | Returns the inverse of the standard normal cumulative distribution function.
      - ✓
      - ✓

    * - | ``double norm(int dim, const double *a)``
        | Returns the square root of the sum of squares of any number of coordinates.
      - ✓
      - ✓

    * - | ``double pow(double x, double y)``
        | Returns :math:`x^y`.
      - ✓
      - ✓

    * - | ``double powi(double base, int iexp)``
        | Returns the value of first argument to the power of second argument.
      - ✓
      - ✓

    * - | ``double remainder(double x, double y)``
        | Returns double-precision floating-point remainder.
      - ✓
      - ✓

    * - | ``double remquo(double x, double y, int* quo)``
        | Returns double-precision floating-point remainder and part of quotient.
      - ✓
      - ✗

    * - | ``double round(double x)``
        | Round to nearest integer value in floating-point.
      - ✓
      - ✓

    * - | ``double rcbrt(double x)``
        | Returns the reciprocal cube root function.
      - ✓
      - ✓

    * - | ``double rhypot(double x, double y)``
        | Returns one over the square root of the sum of squares of two arguments.
      - ✓
      - ✓

    * - | ``double rint(double x)``
        | Round input to nearest integer value in floating-point.
      - ✓
      - ✓

    * - | ``double rnorm3d(double x, double y, double z)``
        | Returns one over the square root of the sum of squares of three coordinates of the argument.
      - ✓
      - ✓

    * - | ``double rnorm4d(double x, double y, double z, double w)``
        | Returns one over the square root of the sum of squares of four coordinates of the argument.
      - ✓
      - ✓

    * - | ``double rnorm(int dim, const double *a)``
        | Returns the reciprocal of square root of the sum of squares of any number of coordinates.
      - ✓
      - ✓

    * - | ``double scalbln(double x, long int n)``
        | Scale :math:`x` by :math:`2^n`.
      - ✓
      - ✓

    * - | ``double scalbn(double x, int n)``
        | Scale :math:`x` by :math:`2^n`.
      - ✓
      - ✓

    * - | ``bool signbit(double x)``
        | Return the sign bit of :math:`x`.
      - ✓
      - ✓

    * - | ``double sin(double x)``
        | Returns the sine of :math:`x`.
      - ✓
      - ✓

    * - | ``double sinh(double x)``
        | Returns the hyperbolic sine of :math:`x`.
      - ✓
      - ✓

    * - | ``double sinpi(double x)``
        | Returns the hyperbolic sine of :math:`\pi \cdot x`.
      - ✓
      - ✓

    * - | ``void sincos(double x, double *sptr, double *cptr)``
        | Returns the sine and cosine of :math:`x`.
      - ✓
      - ✓

    * - | ``void sincospi(double x, double *sptr, double *cptr)``
        | Returns the sine and cosine of :math:`\pi \cdot x`.
      - ✓
      - ✓

    * - | ``double sqrt(double x)``
        | Returns the square root of :math:`x`.
      - ✓
      - ✓

    * - | ``double rsqrt(double x)``
        | Returns the reciprocal of the square root of :math:`x`.
      - ✗
      - ✓

    * - | ``double tan(double x)``
        | Returns the tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``double tanh(double x)``
        | Returns the hyperbolic tangent of :math:`x`.
      - ✓
      - ✓

    * - | ``double tgamma(double x)``
        | Returns the gamma function of :math:`x`.
      - ✓
      - ✓

    * - | ``double trunc(double x)``
        | Truncate :math:`x` to the integral part.
      - ✓
      - ✓

    * - | ``double y0(double x)``
        | Returns the value of the Bessel function of the second kind of order 0 for :math:`x`.
      - ✓
      - ✓

    * - | ``double y1(double x)``
        | Returns the value of the Bessel function of the second kind of order 1 for :math:`x`.
      - ✓
      - ✓

    * - | ``double yn(int n, double x)``
        | Returns the value of the Bessel function of the second kind of order n for :math:`x`.
      - ✓
      - ✓

Integer intrinsics
==================

Following is the list of supported integer intrinsics. Note that intrinsics are supported on device only.

.. list-table:: Integer intrinsics mathematical functions

    * - **Function**

    * - | ``unsigned int __brev(unsigned int x)``
        | Reverse the bit order of a 32 bit unsigned integer.

    * - | ``unsigned long long int __brevll(unsigned long long int x)``
        | Reverse the bit order of a 64 bit unsigned integer.

    * - | ``unsigned int __byte_perm(unsigned int x, unsigned int y, unsigned int z)``
        | Return selected bytes from two 32-bit unsigned integers.

    * - | ``unsigned int __clz(int x)``
        | Return the number of consecutive high-order zero bits in 32 bit integer.

    * - | ``unsigned int __clzll(long long int x)``
        | Return the number of consecutive high-order zero bits in 64 bit integer.

    * - | ``unsigned int __ffs(int x)``
        | Find the position of least significant bit set to 1 in a 32 bit integer.

    * - | ``unsigned int __ffsll(long long int x)``
        | Find the position of least significant bit set to 1 in a 64 bit signed integer.

    * - | ``unsigned int __fns32(unsigned long long mask, unsigned int base, int offset)``
        | Find the position of the n-th set to 1 bit in a 32-bit integer.

    * - | ``unsigned int __fns64(unsigned long long int mask, unsigned int base, int offset)``
        | Find the position of the n-th set to 1 bit in a 64-bit integer.

    * - | ``unsigned int __funnelshift_l(unsigned int lo, unsigned int hi, unsigned int shift)``
        | Concatenate :math:`hi` and :math:`lo`, shift left by shift & 31 bits, return the most significant 32 bits.

    * - | ``unsigned int __funnelshift_lc(unsigned int lo, unsigned int hi, unsigned int shift)``
        | Concatenate :math:`hi` and :math:`lo`, shift left by min(shift, 32) bits, return the most significant 32 bits.

    * - | ``unsigned int __funnelshift_r(unsigned int lo, unsigned int hi, unsigned int shift)``
        | Concatenate :math:`hi` and :math:`lo`, shift right by shift & 31 bits, return the least significant 32 bits.

    * - | ``unsigned int __funnelshift_rc(unsigned int lo, unsigned int hi, unsigned int shift)``
        | Concatenate :math:`hi` and :math:`lo`, shift right by min(shift, 32) bits, return the least significant 32 bits.

    * - | ``unsigned int __hadd(int x, int y)``
        | Compute average of signed input arguments, avoiding overflow in the intermediate sum.

    * - | ``unsigned int __rhadd(int x, int y)``
        | Compute rounded average of signed input arguments, avoiding overflow in the intermediate sum.

    * - | ``unsigned int __uhadd(int x, int y)``
        | Compute average of unsigned input arguments, avoiding overflow in the intermediate sum.

    * - | ``unsigned int __urhadd (unsigned int x, unsigned int y)``
        | Compute rounded average of unsigned input arguments, avoiding overflow in the intermediate sum.

    * - | ``int __sad(int x, int y, int z)``
        | Returns :math:`|x - y| + z`, the sum of absolute difference.

    * - | ``unsigned int __usad(unsigned int x, unsigned int y, unsigned int z)``
        | Returns :math:`|x - y| + z`, the sum of absolute difference.

    * - | ``unsigned int __popc(unsigned int x)``
        | Count the number of bits that are set to 1 in a 32 bit integer.

    * - | ``unsigned int __popcll(unsigned long long int x)``
        | Count the number of bits that are set to 1 in a 64 bit integer.

    * - | ``int __mul24(int x, int y)``
        | Multiply two 24bit integers.

    * - | ``unsigned int __umul24(unsigned int x, unsigned int y)``
        | Multiply two 24bit unsigned integers.

    * - | ``int __mulhi(int x, int y)``
        | Returns the most significant 32 bits of the product of the two 32-bit integers.

    * - | ``unsigned int __umulhi(unsigned int x, unsigned int y)``
        | Returns the most significant 32 bits of the product of the two 32-bit unsigned integers.

    * - | ``long long int __mul64hi(long long int x, long long int y)``
        | Returns the most significant 64 bits of the product of the two 64-bit integers.

    * - | ``unsigned long long int __umul64hi(unsigned long long int x, unsigned long long int y)``
        | Returns the most significant 64 bits of the product of the two 64 unsigned bit integers.

The HIP-Clang implementation of ``__ffs()`` and ``__ffsll()`` contains code to add a constant +1 to produce the ``ffs`` result format.
For the cases where this overhead is not acceptable and programmer is willing to specialize for the platform,
HIP-Clang provides ``__lastbit_u32_u32(unsigned int input)`` and ``__lastbit_u32_u64(unsigned long long int input)``.
The index returned by ``__lastbit_`` instructions starts at -1, while for ``ffs`` the index starts at 0.

Floating-point Intrinsics
=========================

Following is the list of supported floating-point intrinsics. Note that intrinsics are supported on device only.

.. note::

  Only the nearest even rounding mode supported on AMD GPUs by defaults. The ``_rz``, ``_ru`` and
  ``_rd`` suffixed intrinsic functions are existing in HIP AMD backend, if the
  ``OCML_BASIC_ROUNDED_OPERATIONS`` macro is defined.

.. list-table:: Single precision intrinsics mathematical functions

    * - **Function**

    * - | ``float __cosf(float x)``
        | Returns the fast approximate cosine of :math:`x`.

    * - | ``float __exp10f(float x)``
        | Returns the fast approximate for 10 :sup:`x`.

    * - | ``float __expf(float x)``
        | Returns the fast approximate for e :sup:`x`.

    * - | ``float __fadd_rn(float x, float y)``
        | Add two floating-point values in round-to-nearest-even mode.

    * - | ``float __fdiv_rn(float x, float y)``
        | Divide two floating point values in round-to-nearest-even mode.

    * - | ``float __fmaf_rn(float x, float y, float z)``
        | Returns ``x × y + z`` as a single operation in round-to-nearest-even mode.

    * - | ``float __fmul_rn(float x, float y)``
        | Multiply two floating-point values in round-to-nearest-even mode.

    * - | ``float __frcp_rn(float x, float y)``
        | Returns ``1 / x`` in round-to-nearest-even mode.

    * - | ``float __frsqrt_rn(float x)``
        | Returns ``1 / √x`` in round-to-nearest-even mode.

    * - | ``float __fsqrt_rn(float x)``
        | Returns ``√x`` in round-to-nearest-even mode.

    * - | ``float __fsub_rn(float x, float y)``
        | Subtract two floating-point values in round-to-nearest-even mode.

    * - | ``float __log10f(float x)``
        | Returns the fast approximate for base 10 logarithm of :math:`x`.

    * - | ``float __log2f(float x)``
        | Returns the fast approximate for base 2 logarithm of :math:`x`.

    * - | ``float __logf(float x)``
        | Returns the fast approximate for natural logarithm of :math:`x`.

    * - | ``float __powf(float x, float y)``
        | Returns the fast approximate of x :sup:`y`.

    * - | ``float __saturatef(float x)``
        | Clamp :math:`x` to [+0.0, 1.0].

    * - | ``float __sincosf(float x, float* sinptr, float* cosptr)``
        | Returns the fast approximate of sine and cosine of :math:`x`.

    * - | ``float __sinf(float x)``
        | Returns the fast approximate sine of :math:`x`.

    * - | ``float __tanf(float x)``
        | Returns the fast approximate tangent of :math:`x`.

.. list-table:: Double precision intrinsics mathematical functions

    * - **Function**

    * - | ``double __dadd_rn(double x, double y)``
        | Add two floating-point values in round-to-nearest-even mode.

    * - | ``double __ddiv_rn(double x, double y)``
        | Divide two floating-point values in round-to-nearest-even mode.

    * - | ``double __dmul_rn(double x, double y)``
        | Multiply two floating-point values in round-to-nearest-even mode.

    * - | ``double __drcp_rn(double x, double y)``
        | Returns ``1 / x`` in round-to-nearest-even mode.

    * - | ``double __dsqrt_rn(double x)``
        | Returns ``√x`` in round-to-nearest-even mode.

    * - | ``double __dsub_rn(double x, double y)``
        | Subtract two floating-point values in round-to-nearest-even mode.

    * - | ``double __fma_rn(double x, double y, double z)``
        | Returns ``x × y + z`` as a single operation in round-to-nearest-even mode.