1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
|
/* Copyright (c) 2008 - 2024 Advanced Micro Devices, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include "platform/activity.hpp"
#include "platform/command.hpp"
#include "platform/commandqueue.hpp"
#include "device/device.hpp"
#include "platform/context.hpp"
#include "platform/kernel.hpp"
#include "thread/monitor.hpp"
#include "platform/memory.hpp"
#include "platform/agent.hpp"
#include "os/alloc.hpp"
#include <atomic>
#include <cstring>
#include <algorithm>
namespace amd {
// ================================================================================================
Event::Event(HostQueue& queue, bool profilingEnabled)
: callbacks_(NULL),
status_(CL_INT_MAX),
hw_event_(nullptr),
notify_event_(nullptr),
device_(&queue.device()),
profilingInfo_(profilingEnabled),
event_scope_(Device::kCacheStateInvalid) {
notified_.clear();
}
// ================================================================================================
Event::Event()
: callbacks_(NULL),
status_(CL_SUBMITTED),
hw_event_(nullptr),
notify_event_(nullptr),
device_(nullptr),
event_scope_(Device::kCacheStateInvalid) {
notified_.clear();
}
// ================================================================================================
Event::~Event() {
CallBackEntry* callback = callbacks_;
while (callback != NULL) {
CallBackEntry* next = callback->next_;
delete callback;
callback = next;
}
// Release the notify event
if (notify_event_ != nullptr) {
notify_event_->release();
}
// Destroy global HW event if available
if ((hw_event_ != nullptr) && (device_ != nullptr)) {
device_->ReleaseGlobalSignal(hw_event_);
}
}
// ================================================================================================
uint64_t Event::recordProfilingInfo(int32_t status, uint64_t timeStamp) {
if (timeStamp == 0) {
timeStamp = Os::timeNanos();
}
switch (status) {
case CL_QUEUED:
profilingInfo_.queued_ = timeStamp;
break;
case CL_SUBMITTED:
profilingInfo_.submitted_ = timeStamp;
break;
case CL_RUNNING:
profilingInfo_.start_ = timeStamp;
break;
default:
profilingInfo_.end_ = timeStamp;
break;
}
return timeStamp;
}
// Global epoch time since the first processed command
uint64_t epoch = 0;
// ================================================================================================
bool Event::setStatus(int32_t status, uint64_t timeStamp) {
assert(status <= CL_QUEUED && "invalid status");
int32_t currentStatus = this->status();
if (currentStatus <= CL_COMPLETE || currentStatus <= status) {
// We can only move forward in the execution status.
return false;
}
if (profilingInfo().enabled_) {
timeStamp = recordProfilingInfo(status, timeStamp);
if (epoch == 0) {
epoch = profilingInfo().queued_;
}
}
if (amd::IS_HIP) {
// HIP API doesn't have any event, associated with a callback. Hence the SW status of
// the event is irrelevant, during the actual callback. At the same time HIP API requires
// to finish the callback before HIP stream can continue. Hence runtime has to process
// the callback first and then update the status.
if (callbacks_ != (CallBackEntry*)0) {
processCallbacks(status);
}
if (!status_.compare_exchange_strong(currentStatus, status, std::memory_order_relaxed)) {
// Somebody else beat us to it, let them deal with the release/signal.
return false;
}
} else {
if (!status_.compare_exchange_strong(currentStatus, status, std::memory_order_relaxed)) {
// Somebody else beat us to it, let them deal with the release/signal.
return false;
}
if (callbacks_ != (CallBackEntry*)0) {
processCallbacks(status);
}
}
if (Agent::shouldPostEventEvents() && command().type() != 0) {
Agent::postEventStatusChanged(as_cl(this), status, timeStamp + Os::offsetToEpochNanos());
}
if (status <= CL_COMPLETE) {
// Before we notify the waiters that this event reached the CL_COMPLETE
// status, we release all the resources associated with this instance.
if (!IS_HIP) {
releaseResources();
}
if (profilingInfo().enabled_ && amd::activity_prof::IsEnabled(OP_ID_DISPATCH)) {
amd::activity_prof::ReportActivity(command());
}
// Broadcast all the waiters.
if (referenceCount() > 1) {
signal();
}
if (profilingInfo().enabled_) {
ClPrint(LOG_DEBUG, LOG_CMD, "Command %p complete (Wall: %ld, CPU: %ld, GPU: %ld us)",
&command(),
((profilingInfo().end_ - epoch) / 1000),
((profilingInfo().submitted_ - profilingInfo().queued_) / 1000),
((profilingInfo().end_ - profilingInfo().start_) / 1000));
} else {
ClPrint(LOG_DEBUG, LOG_CMD, "Command %p complete", &command());
}
release();
}
return true;
}
// ================================================================================================
bool Event::resetStatus(int32_t status) {
int32_t currentStatus = this->status();
if (currentStatus != CL_COMPLETE) {
ClPrint(LOG_ERROR, LOG_CMD, "command is reset before complete current status :%d",
currentStatus);
}
if (!status_.compare_exchange_strong(currentStatus, status, std::memory_order_relaxed)) {
ClPrint(LOG_ERROR, LOG_CMD, "Failed to reset command status");
return false;
}
notified_.clear();
return true;
}
// ================================================================================================
bool Event::setCallback(int32_t status, Event::CallBackFunction callback, void* data,
bool blocking) {
assert(status >= CL_COMPLETE && status <= CL_QUEUED && "invalid status");
CallBackEntry* entry = new CallBackEntry(status, callback, data, blocking);
if (entry == NULL) {
return false;
}
entry->next_ = callbacks_;
while (!callbacks_.compare_exchange_weak(entry->next_, entry))
; // Someone else is also updating the head of the linked list! reload.
// Check if the event has already reached 'status'
if (this->status() <= status && entry->callback_ != CallBackFunction(0)) {
if (entry->callback_.exchange(NULL) != NULL) {
callback(as_cl(this), status, entry->data_);
}
}
return true;
}
// ================================================================================================
void Event::processCallbacks(int32_t status) const {
cl_event event = const_cast<cl_event>(as_cl(this));
const int32_t mask = (status > CL_COMPLETE) ? status : CL_COMPLETE;
// For_each callback:
CallBackEntry* entry;
for (entry = callbacks_; entry != NULL; entry = entry->next_) {
// If the entry's status matches the mask,
if (entry->status_ == mask && entry->callback_ != CallBackFunction(0)) {
// invoke the callback function.
CallBackFunction callback = entry->callback_.exchange(NULL);
if (callback != NULL) {
callback(event, status, entry->data_);
}
}
}
}
static constexpr bool kCpuWait = true;
// ================================================================================================
bool Event::awaitCompletion() {
if (status() > CL_COMPLETE) {
// Notifies the current command queue about waiting
if (!notifyCmdQueue(kCpuWait)) {
return false;
}
ClPrint(LOG_DEBUG, LOG_WAIT, "Waiting for event %p to complete, current status %d",
this, status());
auto* queue = command().queue();
if ((queue != nullptr) && queue->vdev()->ActiveWait()) {
while (status() > CL_COMPLETE) {
amd::Os::yield();
}
} else {
ScopedLock lock(lock_);
// Wait until the status becomes CL_COMPLETE or negative.
while (status() > CL_COMPLETE) {
lock_.wait();
}
}
ClPrint(LOG_DEBUG, LOG_WAIT, "Event %p wait completed", this);
}
return status() == CL_COMPLETE;
}
// ================================================================================================
bool Event::notifyCmdQueue(bool cpu_wait) {
HostQueue* queue = command().queue();
if (AMD_DIRECT_DISPATCH) {
ScopedLock l(notify_lock_);
if ((status() > CL_COMPLETE) && (nullptr != queue) &&
// If HW event was assigned, then notification can be ignored, since a barrier was issued
(HwEvent() == nullptr) &&
!notified_.test_and_set()) {
// Make sure the queue is draining the enqueued commands.
amd::Command* command = new amd::Marker(*queue, false, nullWaitList, this, cpu_wait);
if (command == NULL) {
notified_.clear();
return false;
}
ClPrint(LOG_DEBUG, LOG_CMD, "Queue marker to command queue: %p", queue);
command->enqueue();
// Save notification, associated with the current event
notify_event_ = command;
}
} else {
if ((status() > CL_COMPLETE) && (nullptr != queue) && !notified_.test_and_set()) {
// Make sure the queue is draining the enqueued commands.
amd::Command* command = new amd::Marker(*queue, false, nullWaitList, this);
if (command == NULL) {
notified_.clear();
return false;
}
ClPrint(LOG_DEBUG, LOG_CMD, "Queue marker to command queue: %p", queue);
command->enqueue();
command->release();
}
}
return true;
}
const Event::EventWaitList Event::nullWaitList(0);
// ================================================================================================
Command::Command(HostQueue& queue, cl_command_type type, const EventWaitList& eventWaitList,
uint32_t commandWaitBits, const Event* waitingEvent)
: Event(queue,
amd::activity_prof::IsEnabled(amd::activity_prof::OperationId(type)) ||
queue.properties().test(CL_QUEUE_PROFILING_ENABLE) ||
Agent::shouldPostEventEvents()),
queue_(&queue),
next_(nullptr),
type_(type),
waitingEvent_(waitingEvent),
eventWaitList_(eventWaitList),
commandWaitBits_(commandWaitBits) {
// Retain the commands from the event wait list.
for (const auto &event: eventWaitList) {
event->retain();
}
}
SysmemPool<ComputeCommand>* Command::command_pool_ = new SysmemPool<ComputeCommand>;
// ================================================================================================
void Command::operator delete(void* ptr) {
if (DEBUG_CLR_SYSMEM_POOL) {
command_pool_->Free(ptr);
} else {
::operator delete (ptr);
}
}
// ================================================================================================
void* Command::operator new(size_t size) {
if (DEBUG_CLR_SYSMEM_POOL) {
return command_pool_->Alloc(size);
} else {
return ::operator new (size);
}
}
// ================================================================================================
void Command::releaseResources() {
const Command::EventWaitList& events = eventWaitList();
// Release the commands from the event wait list.
for (const auto &event: events) {
event->release();
}
}
// ================================================================================================
void Command::enqueue() {
assert(queue_ != NULL && "Cannot be enqueued");
if (Agent::shouldPostEventEvents() && type_ != 0) {
Agent::postEventCreate(as_cl(static_cast<Event*>(this)), type_);
}
ClPrint(LOG_DEBUG, LOG_CMD, "Command (%s) enqueued: %p",
amd::activity_prof::getOclCommandKindString(this->type()), this);
// Direct dispatch logic below will submit the command immediately, but the command status
// update will occur later after flush() with a wait
if (AMD_DIRECT_DISPATCH) {
setStatus(CL_QUEUED);
// Notify all commands about the waiter. Barrier will be sent in order to obtain
// HSA signal for a wait on the current queue
for (const auto& event : eventWaitList()) {
event->notifyCmdQueue(!kCpuWait);
}
// The batch update must be lock protected to avoid a race condition
// when multiple threads submit/flush/update the batch at the same time
ScopedLock sl(queue_->vdev()->execution());
queue_->FormSubmissionBatch(this);
// Enqueue flushes, except profiling markers to avoid frequent expensive callbacks
if (((type() == 0) && profilingInfo().batch_flush_) ||
(type() == CL_COMMAND_MARKER) || (type() == CL_COMMAND_TASK)) {
// The current HSA signal tracking logic requires profiling enabled for the markers
EnableProfiling();
// Update batch head for the current marker. Hence the status of all commands can be
// updated upon the marker completion
SetBatchHead(queue_->GetSubmissionBatch());
submit(*queue_->vdev());
// The batch will be tracked with the marker now
queue_->ResetSubmissionBatch();
} else {
submit(*queue_->vdev());
queue_->FlushSubmissionBatch(this);
}
} else {
queue_->append(*this);
queue_->flush();
}
if ((queue_->device().settings().waitCommand_ && (type_ != 0)) ||
((commandWaitBits_ & 0x2) != 0)) {
queue_->finish();
}
// set this queue status is active
queue_->SetQueueStatus();
}
// ================================================================================================
const Context& Command::context() const { return queue_->context(); }
NDRangeKernelCommand::NDRangeKernelCommand(HostQueue& queue, const EventWaitList& eventWaitList,
Kernel& kernel, const NDRangeContainer& sizes,
uint32_t sharedMemBytes, uint32_t extraParam,
uint32_t gridId, uint32_t numGrids,
uint64_t prevGridSum, uint64_t allGridSum,
uint32_t firstDevice, bool forceProfiling) :
Command(queue, CL_COMMAND_NDRANGE_KERNEL, eventWaitList, AMD_SERIALIZE_KERNEL |
(HIP_LAUNCH_BLOCKING << 1)),
kernel_(kernel),
sizes_(sizes),
sharedMemBytes_(sharedMemBytes),
extraParam_(extraParam),
gridId_(gridId),
numGrids_(numGrids),
prevGridSum_(prevGridSum),
allGridSum_(allGridSum),
firstDevice_(firstDevice) {
auto& device = queue.device();
auto devKernel = const_cast<device::Kernel*>(kernel.getDeviceKernel(device));
if (cooperativeGroups()) {
setNumWorkgroups();
}
// This optimization will set marker_ts_ but may not submit a batch.
if (forceProfiling) {
profilingInfo_.enabled_ = true;
profilingInfo_.clear();
profilingInfo_.correlation_id_ = activity_prof::correlation_id;
profilingInfo_.marker_ts_ = true;
}
kernel_.retain();
}
void NDRangeKernelCommand::releaseResources() {
kernel_.parameters().release(parameters_);
DEBUG_ONLY(parameters_ = NULL);
kernel_.release();
Command::releaseResources();
}
NativeFnCommand::NativeFnCommand(HostQueue& queue, const EventWaitList& eventWaitList,
void(CL_CALLBACK* nativeFn)(void*), const void* args,
size_t argsSize, size_t numMemObjs, const cl_mem* memObjs,
const void** memLocs)
: Command(queue, CL_COMMAND_NATIVE_KERNEL, eventWaitList),
nativeFn_(nativeFn),
argsSize_(argsSize) {
args_ = new char[argsSize_];
if (args_ == NULL) {
return;
}
::memcpy(args_, args, argsSize_);
memObjects_.resize(numMemObjs);
memOffsets_.resize(numMemObjs);
for (size_t i = 0; i < numMemObjs; ++i) {
Memory* obj = as_amd(memObjs[i]);
obj->retain();
memObjects_[i] = obj;
memOffsets_[i] = (const_address)memLocs[i] - (const_address)args;
}
}
int32_t NativeFnCommand::invoke() {
size_t numMemObjs = memObjects_.size();
for (size_t i = 0; i < numMemObjs; ++i) {
void* hostMemPtr = memObjects_[i]->getHostMem();
if (hostMemPtr == NULL) {
return CL_MEM_OBJECT_ALLOCATION_FAILURE;
}
*reinterpret_cast<void**>(&args_[memOffsets_[i]]) = hostMemPtr;
}
nativeFn_(args_);
return CL_SUCCESS;
}
bool OneMemoryArgCommand::validatePeerMemory() {
amd::Device* queue_device = &queue()->device();
// Rocr backend maps memory from different devices by default and runtime doesn't need to track
// extra memory objects.
if (queue_device->settings().rocr_backend_) {
const std::vector<Device*>& srcDevices = memory_->getContext().devices();
if (!memory_->isArena() &&
srcDevices.size() == 1 && queue_device != srcDevices[0]) {
// current device and source device are not same hence
// explicit allow access is needed for P2P access
device::Memory* mem = memory_->getDeviceMemory(*srcDevices[0]);
if (!mem->getAllowedPeerAccess()) {
void* dst = reinterpret_cast<void*>(mem->virtualAddress());
bool status = srcDevices[0]->deviceAllowAccess(dst);
mem->setAllowedPeerAccess(true);
return status;
}
}
}
return true;
}
bool OneMemoryArgCommand::validateMemory() {
// Runtime disables deferred memory allocation for single device.
// Hence ignore memory validations
if (queue()->context().devices().size() == 1) {
return true;
}
device::Memory* mem = memory_->getDeviceMemory(queue()->device());
if (NULL == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", memory_->getSize());
return false;
}
return true;
}
bool TwoMemoryArgsCommand::validatePeerMemory(){
bool accessAllowed = true;
amd::Device* queue_device = &queue()->device();
// Explicite Allow access is needed when first time memory is accessed from other device.
// Rules : Remote device has to provide access to current device
// --------------------------------------------------------------------
// Crr_Dev = src | Allow access will be called for dst memory |
// --------------------------------------------------------------------
// Crr_Dev = dst | Allow access will be called for src memory |
// --------------------------------------------------------------------
// Crr_dev = other| Allow access will be called for dst and src memory|
// --------------------------------------------------------------------
if (queue_device->settings().rocr_backend_) {
const std::vector<Device*>& srcDevices = memory1_->getContext().devices();
const std::vector<Device*>& dstDevices = memory2_->getContext().devices();
// explicit allow access is needed for P2P access
device::Memory* mem1 = memory1_->getDeviceMemory(*srcDevices[0]);
if (!memory1_->isArena() &&
!mem1->getAllowedPeerAccess() && srcDevices.size() == 1) {
void* src = reinterpret_cast<void*>(mem1->originalDeviceAddress());
accessAllowed = srcDevices[0]->deviceAllowAccess(src);
mem1->setAllowedPeerAccess(true);
}
device::Memory* mem2 = memory2_->getDeviceMemory(*dstDevices[0]);
if (!memory2_->isArena() &&
!mem2->getAllowedPeerAccess() && dstDevices.size() == 1) {
void* dst = reinterpret_cast<void*>(mem2->originalDeviceAddress());
accessAllowed &= dstDevices[0]->deviceAllowAccess(dst);
mem2->setAllowedPeerAccess(true);
}
}
return accessAllowed;
}
bool TwoMemoryArgsCommand::validateMemory() {
// Runtime disables deferred memory allocation for single device.
// Hence ignore memory validations
if (queue()->context().devices().size() == 1) {
return true;
}
device::Memory* mem = memory1_->getDeviceMemory(queue()->device());
if (NULL == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", memory1_->getSize());
return false;
}
mem = memory2_->getDeviceMemory(queue()->device());
if (NULL == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", memory2_->getSize());
return false;
}
return true;
}
bool ReadMemoryCommand::isEntireMemory() const {
return source().isEntirelyCovered(origin(), size());
}
bool WriteMemoryCommand::isEntireMemory() const {
return destination().isEntirelyCovered(origin(), size());
}
bool SvmMapMemoryCommand::isEntireMemory() const {
return getSvmMem()->isEntirelyCovered(origin(), size());
}
bool FillMemoryCommand::isEntireMemory() const {
return memory().isEntirelyCovered(origin(), size());
}
bool CopyMemoryCommand::isEntireMemory() const {
bool result = false;
switch (type()) {
case CL_COMMAND_COPY_IMAGE_TO_BUFFER: {
Coord3D imageSize(size()[0] * size()[1] * size()[2] *
source().asImage()->getImageFormat().getElementSize());
result = source().isEntirelyCovered(srcOrigin(), size()) &&
destination().isEntirelyCovered(dstOrigin(), imageSize);
} break;
case CL_COMMAND_COPY_BUFFER_TO_IMAGE: {
Coord3D imageSize(size()[0] * size()[1] * size()[2] *
destination().asImage()->getImageFormat().getElementSize());
result = source().isEntirelyCovered(srcOrigin(), imageSize) &&
destination().isEntirelyCovered(dstOrigin(), size());
} break;
case CL_COMMAND_COPY_BUFFER_RECT: {
Coord3D rectSize(size()[0] * size()[1] * size()[2]);
Coord3D srcOffs(srcRect().start_);
Coord3D dstOffs(dstRect().start_);
result = source().isEntirelyCovered(srcOffs, rectSize) &&
destination().isEntirelyCovered(dstOffs, rectSize);
} break;
default:
result = source().isEntirelyCovered(srcOrigin(), size()) &&
destination().isEntirelyCovered(dstOrigin(), size());
break;
}
return result;
}
bool MapMemoryCommand::isEntireMemory() const {
return memory().isEntirelyCovered(origin(), size());
}
void UnmapMemoryCommand::releaseResources() {
//! @todo This is a workaround to a deadlock on indirect map release.
//! Remove this code when CAL will have a refcounter on memory.
//! decIndMapCount() has to go back to submitUnmapMemory()
device::Memory* mem = memory_->getDeviceMemory(queue()->device());
if (NULL != mem) {
mem->releaseIndirectMap();
}
OneMemoryArgCommand::releaseResources();
}
bool MigrateMemObjectsCommand::validateMemory() {
// Runtime disables deferred memory allocation for single device.
// Hence ignore memory validations
if (queue()->context().devices().size() == 1) {
return true;
}
for (const auto& it : memObjects_) {
device::Memory* mem = it->getDeviceMemory(queue()->device());
if (NULL == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", it->getSize());
return false;
}
}
return true;
}
// =================================================================================================
int32_t NDRangeKernelCommand::AllocCaptureSetValidate(void** kernelParams, address kernArgs) {
const amd::Device& device = queue()->device();
// Validate the kernel before submission
if (!queue()->device().validateKernel(kernel(), queue()->vdev(), cooperativeGroups())) {
return CL_OUT_OF_RESOURCES;
}
parameters_ = kernel().parameters().alloc(*queue()->vdev());
if (parameters_ == nullptr) {
LogError("Cannot allocate memory for parameters_");
return CL_OUT_OF_RESOURCES;
}
if (!kernel().parameters().captureAndSet(kernelParams, kernArgs, parameters_)) {
LogError("Cannot capture and set the kernel parameters");
return CL_OUT_OF_RESOURCES;
}
return CL_SUCCESS;
}
int32_t NDRangeKernelCommand::captureAndValidate() {
const amd::Device& device = queue()->device();
// Validate the kernel before submission
if (!queue()->device().validateKernel(kernel(), queue()->vdev(), cooperativeGroups())) {
return CL_OUT_OF_RESOURCES;
}
int32_t error;
uint64_t lclMemSize = kernel().getDeviceKernel(device)->workGroupInfo()->localMemSize_;
parameters_ = kernel().parameters().capture(*queue()->vdev(),
sharedMemBytes_ + lclMemSize, &error);
return error;
}
bool ExtObjectsCommand::validateMemory() {
// Always process GL objects, even if deferred allocations are disabled,
// because processGLResource() calls OGL Acquire().
bool retVal = true;
for (const auto& it : memObjects_) {
device::Memory* mem = it->getDeviceMemory(queue()->device());
if (NULL == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", it->getSize());
return false;
}
retVal = processGLResource(mem);
}
return retVal;
}
bool AcquireExtObjectsCommand::processGLResource(device::Memory* mem) {
return mem->processGLResource(device::Memory::GLDecompressResource);
}
bool ReleaseExtObjectsCommand::processGLResource(device::Memory* mem) {
return mem->processGLResource(device::Memory::GLInvalidateFBO);
}
bool MakeBuffersResidentCommand::validateMemory() {
// Runtime disables deferred memory allocation for single device.
// Hence ignore memory validations
if (queue()->context().devices().size() == 1) {
return true;
}
for (const auto& it : memObjects_) {
device::Memory* mem = it->getDeviceMemory(queue()->device());
if (NULL == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", it->getSize());
return false;
}
}
return true;
}
bool ThreadTraceMemObjectsCommand::validateMemory() {
// Runtime disables deferred memory allocation for single device.
// Hence ignore memory validations
if (queue()->context().devices().size() == 1) {
return true;
}
for (auto it = memObjects_.cbegin(); it != memObjects_.cend(); it++) {
device::Memory* mem = (*it)->getDeviceMemory(queue()->device());
if (NULL == mem) {
for (auto tmpIt = memObjects_.cbegin(); tmpIt != it; tmpIt++) {
device::Memory* tmpMem = (*tmpIt)->getDeviceMemory(queue()->device());
delete tmpMem;
}
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", (*it)->getSize());
return false;
}
}
return true;
}
bool CopyMemoryP2PCommand::validateMemory() {
amd::Device* queue_device = &queue()->device();
// Rocr backend maps memory from different devices by default and runtime doesn't need to track
// extra memory objects. Also P2P staging buffer always allocated
if (queue_device->settings().rocr_backend_) {
return validatePeerMemory();
}
const std::vector<Device*>& devices = memory1_->getContext().devices();
if (devices.size() != 1) {
LogError("Can't allocate memory object for P2P extension");
return false;
}
device::Memory* mem = memory1_->getDeviceMemory(*devices[0]);
if (nullptr == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", memory1_->getSize());
return false;
}
const std::vector<Device*>& devices2 = memory2_->getContext().devices();
if (devices2.size() != 1) {
LogError("Can't allocate memory object for P2P extension");
return false;
}
mem = memory2_->getDeviceMemory(*devices2[0]);
if (nullptr == mem) {
LogPrintfError("Can't allocate memory size - 0x%08X bytes!", memory2_->getSize());
return false;
}
bool p2pStaging = false;
// Validate P2P memories on the current device, if any of them is null, then it's p2p staging
if ((nullptr == memory1_->getDeviceMemory(queue()->device())) ||
(nullptr == memory2_->getDeviceMemory(queue()->device()))) {
p2pStaging = true;
}
if (devices[0]->P2PStage() != nullptr && p2pStaging) {
amd::ScopedLock lock(devices[0]->P2PStageOps());
// Make sure runtime allocates memory on every device
for (uint d = 0; d < devices[0]->GlbCtx().devices().size(); ++d) {
device::Memory* mem = devices[0]->P2PStage()->getDeviceMemory(*devices[0]->GlbCtx().devices()[d]);
if (nullptr == mem) {
DevLogPrintfError("Cannot get P2P stage Device Memory for device: 0x%x \n",
devices[0]->GlbCtx().devices()[d]);
return false;
}
}
}
return true;
}
// ================================================================================================
bool SvmPrefetchAsyncCommand::validateMemory() {
amd::Memory* svmMem = amd::MemObjMap::FindMemObj(dev_ptr());
if (nullptr == svmMem) {
LogPrintfError("SvmPrefetchAsync received unknown memory for prefetch: %p!", dev_ptr());
return false;
}
return true;
}
} // namespace amd
|