File: kernel.cpp

package info (click to toggle)
rocm-hipamd 6.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,036 kB
  • sloc: cpp: 211,057; ansic: 35,860; sh: 755; python: 623; perl: 275; asm: 166; makefile: 27
file content (435 lines) | stat: -rw-r--r-- 15,424 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/* Copyright (c) 2008 - 2021 Advanced Micro Devices, Inc.

 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE. */

#include "platform/kernel.hpp"
#include "platform/program.hpp"
#include "os/alloc.hpp"
#include "platform/command.hpp"
#include "platform/commandqueue.hpp"
#include "platform/sampler.hpp"

namespace amd {

Kernel::Kernel(Program& program, const Symbol& symbol, const std::string& name)
    : program_(program), symbol_(symbol), name_(name) {
  parameters_ = new (signature()) KernelParameters(const_cast<KernelSignature&>(signature()));
  fixme_guarantee(parameters_ != NULL, "out of memory");
  name_ += '\0';
}

Kernel::Kernel(const Kernel& rhs)
    : program_(rhs.program_()), symbol_(rhs.symbol_), name_(rhs.name_) {
  parameters_ = new(signature()) KernelParameters(*rhs.parameters_);
  fixme_guarantee(parameters_ != NULL, "out of memory");
}

Kernel::~Kernel() {
  // Release kernel object itself
  delete parameters_;
}

const device::Kernel* Kernel::getDeviceKernel(const Device& device) const {
  return symbol_.getDeviceKernel(device);
}

const KernelSignature& Kernel::signature() const { return symbol_.signature(); }

bool KernelParameters::check() {
  if (validated_) {
    return true;
  }

  for (size_t i = 0; i < signature_.numParameters(); ++i) {
    if (!test(i)) {
      DevLogPrintfError("Kernel Parameter test failed for idx: %d \n", i);
      return false;
    }
  }
  validated_ = true;

  return true;
}

size_t KernelParameters::localMemSize(size_t minDataTypeAlignment) const {
  size_t memSize = 0;

  for (size_t i = 0; i < signature_.numParameters(); ++i) {
    const KernelParameterDescriptor& desc = signature_.at(i);
    if (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL) {
      if (desc.size_ == 8) {
        memSize = alignUp(memSize, minDataTypeAlignment) +
          *reinterpret_cast<const uint64_t*>(values_ + desc.offset_);
      } else {
        memSize = alignUp(memSize, minDataTypeAlignment) +
          *reinterpret_cast<const uint32_t*>(values_ + desc.offset_);
      }
    }
  }
  return memSize;
}

// =================================================================================================
address KernelParameters::alloc(device::VirtualDevice& vDev) {

  //! Information about which arguments are SVM pointers is stored after
  // the actual parameters, but only if the device has any SVM capability
  const size_t execInfoSize = getNumberOfSvmPtr() * sizeof(void*);

  address mem = vDev.allocKernelArguments(totalSize_ + execInfoSize, 128);
  if (mem == nullptr) {
    mem = reinterpret_cast<address>(AlignedMemory::allocate(totalSize_ + execInfoSize,
                                                            PARAMETERS_MIN_ALIGNMENT));
  } else {
    deviceKernelArgs_ = true;
  }

  return mem;
}

// =================================================================================================
bool KernelParameters::captureAndSet(void** kernelParams, address kernArgs, address mem) {

  for (size_t idx = 0; idx < signature_.numParameters(); ++idx) {
    KernelParameterDescriptor& desc = signature_.params()[idx];
    void* value = nullptr;
    if (kernelParams != nullptr) {
      value = kernelParams[idx];
    } else {
      value = kernArgs + desc.offset_;
    }
    void* param = mem + desc.offset_;
    uint32_t uint32_value = 0;
    uint64_t uint64_value = 0;
    Memory* memArg = nullptr;
    amd::Memory** memories = reinterpret_cast<amd::Memory**>(mem + memoryObjOffset());
    if (desc.type_ == T_POINTER && (desc.addressQualifier_ != CL_KERNEL_ARG_ADDRESS_LOCAL)) {
      LP64_SWITCH(uint32_value, uint64_value) = *(LP64_SWITCH(uint32_t*, uint64_t*))value;
      memArg = amd::MemObjMap::FindMemObj(*reinterpret_cast<const void* const*>(value));
      memories[desc.info_.arrayIndex_] = memArg;
      if (memArg != nullptr) {
        memArg->retain();
      }
      desc.info_.rawPointer_ = true;
    } else if (desc.type_ == T_SAMPLER) {
      LogError("Cannot handle Sampler now");
      return false;
    } else if (desc.type_ == T_QUEUE) {
      LogError("Cannot handle Queue now");
      return false;
    } else {
      switch (desc.size_) {
        case 4:
          if (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL) {
            uint32_value = desc.size_;
          } else {
            uint32_value = *(static_cast<const uint32_t*>(value));
          }
          break;
        case 8:
          if (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL) {
            uint64_value = desc.size_;
          } else {
            uint64_value = *(static_cast<const uint64_t*>(value));
          }
          break;
      }
    }

    switch (desc.size_) {
      case sizeof(uint32_t):
        *static_cast<uint32_t*>(param) = uint32_value;
        break;
      case sizeof(uint64_t):
        *static_cast<uint64_t*>(param) = uint64_value;
        break;
      default:
        ::memcpy(param, value, desc.size_);
        break;
    }
    desc.info_.defined_ = true;
  }

  execInfoOffset_ = totalSize_;
  return true;
}

void KernelParameters::set(size_t index, size_t size, const void* value, bool svmBound) {
  KernelParameterDescriptor& desc = signature_.params()[index];

  void* param = values_ + desc.offset_;
  assert((desc.type_ == T_POINTER || value != NULL ||
    (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL)) &&
    "not a valid local mem arg");

  uint32_t uint32_value = 0;
  uint64_t uint64_value = 0;

  if (desc.type_ == T_POINTER && (desc.addressQualifier_ != CL_KERNEL_ARG_ADDRESS_LOCAL)) {
    if (svmBound) {
      desc.info_.rawPointer_ = true;
      LP64_SWITCH(uint32_value, uint64_value) = *(LP64_SWITCH(uint32_t*, uint64_t*))value;
      memoryObjects_[desc.info_.arrayIndex_] = amd::MemObjMap::FindMemObj(
        *reinterpret_cast<const void* const*>(value));
    } else if ((value == NULL) || (static_cast<const cl_mem*>(value) == NULL)) {
      desc.info_.rawPointer_ = false;
      memoryObjects_[desc.info_.arrayIndex_] = nullptr;
    } else {
      desc.info_.rawPointer_ = false;
      // convert cl_mem to amd::Memory*
      memoryObjects_[desc.info_.arrayIndex_] = as_amd(*static_cast<const cl_mem*>(value));
    }
  } else if (desc.type_ == T_SAMPLER) {
    // convert cl_sampler to amd::Sampler*
    samplerObjects_[desc.info_.arrayIndex_] =
      as_amd(*static_cast<const cl_sampler*>(value));
  } else if (desc.type_ == T_QUEUE) {
    // convert cl_command_queue to amd::DeviceQueue*
    queueObjects_[desc.info_.arrayIndex_] =
      as_amd(*static_cast<const cl_command_queue*>(value))->asDeviceQueue();
  } else {
    switch (desc.size_) {
      case 4:
        if (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL) {
          uint32_value = size;
        } else {
          uint32_value = *static_cast<const uint32_t*>(value);
        }
        break;
      case 8:
        if (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL) {
          uint64_value = size;
        } else {
          uint64_value = *static_cast<const uint64_t*>(value);
        }
        break;
      default:
        break;
    }
  }

  switch (desc.size_) {
    case sizeof(uint32_t):
      *static_cast<uint32_t*>(param) = uint32_value;
      break;
    case sizeof(uint64_t):
      *static_cast<uint64_t*>(param) = uint64_value;
      break;
    default:
      ::memcpy(param, value, size);
      break;
  }

  desc.info_.defined_ = true;
}

address KernelParameters::capture(device::VirtualDevice& vDev, uint64_t lclMemSize, int32_t* error) {
  const Device& device = vDev.device();
  *error = CL_SUCCESS;

  //! Information about which arguments are SVM pointers is stored after
  // the actual parameters, but only if the device has any SVM capability
  const size_t execInfoSize = getNumberOfSvmPtr() * sizeof(void*);

  address mem = vDev.allocKernelArguments(totalSize_ + execInfoSize, 128);
  if (mem == nullptr) {
    mem = reinterpret_cast<address>(AlignedMemory::allocate(totalSize_ + execInfoSize,
                                                            PARAMETERS_MIN_ALIGNMENT));
  } else {
    deviceKernelArgs_ = true;
  }

  if (mem != nullptr) {
    ::memcpy(mem, values_, totalSize_);

    for (size_t i = 0; i < signature_.numParameters(); ++i) {
      const KernelParameterDescriptor& desc = signature_.at(i);
      if (desc.type_ == T_POINTER && (desc.addressQualifier_ != CL_KERNEL_ARG_ADDRESS_LOCAL)) {
        Memory* memArg = memoryObjects_[desc.info_.arrayIndex_];
        if (memArg != nullptr) {
          memArg->retain();
          device::Memory* devMem = memArg->getDeviceMemory(device);
          if (nullptr == devMem) {
            LogPrintfError("Can't allocate memory size - 0x%08X bytes!", memArg->getSize());
            *error = CL_MEM_OBJECT_ALLOCATION_FAILURE;
            break;
          }
          // Write GPU VA addreess to the arguments
          if (!desc.info_.rawPointer_) {
            *reinterpret_cast<uintptr_t*>(mem + desc.offset_) = static_cast<uintptr_t>
              (devMem->virtualAddress());
          }
        } else if (desc.info_.rawPointer_) {
          if (!device.isFineGrainedSystem(true)) {
          }
        }
      } else if (desc.type_ == T_SAMPLER) {
        Sampler* samplerArg = samplerObjects_[desc.info_.arrayIndex_];
        if (samplerArg != nullptr) {
          samplerArg->retain();
          // todo: It's uint64_t type
          *reinterpret_cast<uintptr_t*>(mem + desc.offset_) = static_cast<uintptr_t>(
            samplerArg->getDeviceSampler(device)->hwSrd());
        }
      } else if (desc.type_ == T_QUEUE) {
        DeviceQueue* queue = queueObjects_[desc.info_.arrayIndex_];
        if (queue != nullptr) {
          queue->retain();
          // todo: It's uint64_t type
          *reinterpret_cast<uintptr_t*>(mem + desc.offset_) = 0;
        }
      } else if (desc.addressQualifier_ == CL_KERNEL_ARG_ADDRESS_LOCAL) {
        if (desc.size_ == 8) {
          lclMemSize = alignUp(lclMemSize, device.info().minDataTypeAlignSize_) +
            *reinterpret_cast<const uint64_t*>(values_ + desc.offset_);
        } else {
          lclMemSize = alignUp(lclMemSize, device.info().minDataTypeAlignSize_) +
            *reinterpret_cast<const uint32_t*>(values_ + desc.offset_);
        }
      }
    }

    execInfoOffset_ = totalSize_;
    address last = mem + execInfoOffset_;
    if (0 != execInfoSize) {
      ::memcpy(last, &execSvmPtr_[0], execInfoSize);
    }
  } else {
    *error = CL_OUT_OF_HOST_MEMORY;
  }
  // Validate the local memory oversubscription
  if (lclMemSize > device.info().localMemSize_) {
    *error = CL_OUT_OF_RESOURCES;
  }

  // Check if capture was successful
  if (CL_SUCCESS != *error) {
    AlignedMemory::deallocate(mem);
    mem = nullptr;
  }
  return mem;
}

bool KernelParameters::boundToSvmPointer(const Device& device, const_address capturedParameter,
                                         size_t index) const {
  if (!device.info().svmCapabilities_) {
    DevLogPrintfError("The device: 0x%x does not have SVM Capabilities \n", &device);
    return false;
  }
  //! Information about which arguments are SVM pointers is stored after
  // actual parameters
  const bool* svmBound = reinterpret_cast<const bool*>(capturedParameter + signature_.paramsSize());
  return svmBound[index];
}

void KernelParameters::release(address mem) const {
  if (mem == nullptr) {
    // nothing to do!
    return;
  }

  amd::Memory* const* memories = reinterpret_cast<amd::Memory* const*>(mem + memoryObjOffset());
  for (uint32_t i = 0; i < signature_.numMemories(); ++i) {
    Memory* memArg = memories[i];
    if (memArg != nullptr) {
      memArg->release();
    }
  }
  if (signature_.numSamplers() > 0) {
    amd::Sampler* const* samplers = reinterpret_cast<amd::Sampler* const*>(mem + samplerObjOffset());
    for (uint32_t i = 0; i < signature_.numSamplers(); ++i) {
      Sampler* samplerArg = samplers[i];
      if (samplerArg != nullptr) {
        samplerArg->release();
      }
    }
  }
  if (signature_.numQueues() > 0) {
    amd::DeviceQueue* const* queues = reinterpret_cast<amd::DeviceQueue* const*>(mem + queueObjOffset());
    for (uint32_t i = 0; i < signature_.numQueues(); ++i) {
      DeviceQueue* queue = queues[i];
      if (queue != nullptr) {
        queue->release();
      }
    }
  }

  if (!deviceKernelArgs()) {
    AlignedMemory::deallocate(mem);
  }
}

KernelSignature::KernelSignature(const std::vector<KernelParameterDescriptor>& params,
  const std::string& attrib,
  uint32_t numParameters,
  uint32_t version)
  : params_(params)
  , attributes_(attrib)
  , numParameters_(numParameters)
  , paramsSize_(0)
  , numMemories_(0)
  , numSamplers_(0)
  , numQueues_(0)
  , version_(version) {
  size_t maxOffset = 0;
  size_t last = 0;
  // Find the last entry
  for (size_t i = 0; i < params.size(); ++i) {
    const KernelParameterDescriptor& desc = params[i];
    // Serach for the max offset, since due to the pass by reference
    // we can't rely on the last argument as the max offset
    if (maxOffset < desc.offset_) {
      maxOffset = desc.offset_;
      last = i;
    }
    // Collect all OCL memory objects
    if (desc.type_ == T_POINTER && (desc.addressQualifier_ != CL_KERNEL_ARG_ADDRESS_LOCAL)) {
      params_[i].info_.arrayIndex_ = numMemories_;
      ++numMemories_;
    }
    // Collect all OCL sampler objects
    else if (desc.type_ == T_SAMPLER) {
      params_[i].info_.arrayIndex_ = numSamplers_;
      ++numSamplers_;
    }
    // Collect all OCL queues
    else if (desc.type_ == T_QUEUE) {
      params_[i].info_.arrayIndex_ = numQueues_   ;
      ++numQueues_;
    }
  }

  if (params.size() > 0) {
    size_t lastSize = params[last].size_;
    if (lastSize == 0 /* local mem */) {
      lastSize = sizeof(cl_mem);
    }
    // Note: It's a special case. HW ABI expects 64 bit for SRD, regardless of the binary.
    // Force the size to 64 bit for those cases.
    if ((params[last].info_.oclObject_ == amd::KernelParameterDescriptor::ImageObject) ||
        (params[last].info_.oclObject_ == amd::KernelParameterDescriptor::SamplerObject) ||
        (params[last].info_.oclObject_ == amd::KernelParameterDescriptor::QueueObject)) {
      lastSize = alignUp(lastSize, sizeof(uint64_t));
    }
    paramsSize_ = params[last].offset_ + lastSize;
    // 16 bytes is the current HW alignment for the arguments
    paramsSize_ = alignUp(paramsSize_, 16);
  }
}
}  // namespace amd