1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
/* Copyright (c) 2008 - 2021 Advanced Micro Devices, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#ifndef KERNEL_HPP_
#define KERNEL_HPP_
#include "top.hpp"
#include "platform/object.hpp"
#include "amdocl/cl_kernel.h"
#include <vector>
#include <cstdlib> // for malloc
#include <string>
#include "device/device.hpp"
enum FGSStatus {
FGS_DEFAULT, //!< The default kernel fine-grained system pointer support
FGS_NO, //!< no support of kernel fine-grained system pointer
FGS_YES //!< have support of kernel fine-grained system pointer
};
namespace amd {
class Symbol;
class Program;
/*! \addtogroup Runtime
* @{
*
* \addtogroup Program Programs and Kernel functions
* @{
*/
class KernelSignature : public HeapObject {
private:
std::vector<KernelParameterDescriptor> params_;
std::string attributes_; //!< The kernel attributes
uint32_t numParameters_; //!< Number of OCL arguments in the kernel
uint32_t paramsSize_; //!< The size of all arguments
uint32_t numMemories_; //!< The number of memory objects used in the kernel
uint32_t numSamplers_; //!< The number of sampler objects used in the kernel
uint32_t numQueues_; //!< The number of queue objects used in the kernel
uint32_t version_; //!< The ABI version
public:
enum {
ABIVersion_0 = 0, //! ABI constructed based on the OCL semantics
ABIVersion_1 = 1, //! ABI constructed based on the HW ABI returned from HSAIL
ABIVersion_2 = 2 //! ABI constructed based on the HW ABI returned from LC
};
//! Default constructor
KernelSignature():
numParameters_(0), paramsSize_(0), numMemories_(0), numSamplers_(0),
numQueues_(0), version_(ABIVersion_0) {}
//! Construct a new signature.
KernelSignature(const std::vector<KernelParameterDescriptor>& params,
const std::string& attrib,
uint32_t numParameters,
uint32_t version);
//! Return the number of parameters
uint32_t numParameters() const { return numParameters_; }
//! Return the total number of parameters, including hidden
uint32_t numParametersAll() const { return params_.size(); }
//! Return the parameter descriptor at the given index.
const KernelParameterDescriptor& at(size_t index) const {
assert(index < params_.size() && "index is out of bounds");
return params_[index];
}
std::vector<KernelParameterDescriptor>& params() { return params_; }
//! Return the size in bytes required for the arguments on the stack.
uint32_t paramsSize() const { return paramsSize_; }
//! Returns the number of memory objects.
uint32_t numMemories() const { return numMemories_; }
//! Returns the number of sampler objects.
uint32_t numSamplers() const { return numSamplers_; }
//! Returns the number of queue objects.
uint32_t numQueues() const { return numQueues_; }
//! Returns the signature version
uint32_t version() const { return version_; }
//! Return the kernel attributes
const std::string& attributes() const { return attributes_; }
const std::vector<KernelParameterDescriptor>& parameters() const
{ return params_; }
};
// @todo: look into a copy-on-write model instead of copy-on-read.
//
class KernelParameters : protected HeapObject {
private:
//! The signature describing these parameters.
KernelSignature& signature_;
address values_; //!< pointer to the base of the values stack.
uint32_t execInfoOffset_; //!< The offset of execInfo
std::vector<void*> execSvmPtr_; //!< The non argument svm pointers for kernel
FGSStatus svmSystemPointersSupport_; //!< The flag for the status of the kernel
// support of fine-grain system sharing.
uint32_t memoryObjOffset_; //!< The number of memory objects
uint32_t samplerObjOffset_; //!< The number of sampler objects
uint32_t queueObjOffset_; //!< The number of queue objects
amd::Memory** memoryObjects_; //!< Memory objects, associated with the kernel
amd::Sampler** samplerObjects_; //!< Sampler objects, associated with the kernel
amd::DeviceQueue** queueObjects_; //!< Queue objects, associated with the kernel
uint32_t totalSize_; //!< The total size of all captured parameters
struct {
uint32_t validated_ : 1; //!< True if all parameters are defined.
uint32_t execNewVcop_ : 1; //!< special new VCOP for kernel execution
uint32_t execPfpaVcop_ : 1; //!< special PFPA VCOP for kernel execution
uint32_t deviceKernelArgs_:1; //!< Kernel arguments allocated on device
uint32_t unused : 28; //!< unused
};
public:
//! Construct a new instance of parameters for the given signature.
KernelParameters(KernelSignature& signature)
: signature_(signature),
execInfoOffset_(0),
svmSystemPointersSupport_(FGS_DEFAULT),
memoryObjects_(nullptr),
samplerObjects_(nullptr),
queueObjects_(nullptr),
validated_(0),
execNewVcop_(0),
execPfpaVcop_(0),
deviceKernelArgs_(false) {
totalSize_ = signature.paramsSize() + (signature.numMemories() +
signature.numSamplers() + signature.numQueues()) * sizeof(void*);
values_ = reinterpret_cast<address>(this) + alignUp(sizeof(KernelParameters), PARAMETERS_MIN_ALIGNMENT);
memoryObjOffset_ = signature_.paramsSize();
memoryObjects_ = reinterpret_cast<amd::Memory**>(values_ + memoryObjOffset_);
samplerObjOffset_ = memoryObjOffset_ + signature_.numMemories() * sizeof(amd::Memory*);
samplerObjects_ = reinterpret_cast<amd::Sampler**>(values_ + samplerObjOffset_);
queueObjOffset_ = samplerObjOffset_ + signature_.numSamplers() * sizeof(amd::Sampler*);
queueObjects_ = reinterpret_cast<amd::DeviceQueue**>(values_ + queueObjOffset_);
address limit = reinterpret_cast<address>(&queueObjects_[signature_.numQueues()]);
::memset(values_, '\0', limit - values_);
}
explicit KernelParameters(const KernelParameters& rhs)
: signature_(rhs.signature_),
execInfoOffset_(rhs.execInfoOffset_),
execSvmPtr_(rhs.execSvmPtr_),
svmSystemPointersSupport_(rhs.svmSystemPointersSupport_),
memoryObjects_(nullptr),
samplerObjects_(nullptr),
queueObjects_(nullptr),
totalSize_(rhs.totalSize_),
validated_(rhs.validated_),
execNewVcop_(rhs.execNewVcop_),
execPfpaVcop_(rhs.execPfpaVcop_),
deviceKernelArgs_(false) {
values_ = reinterpret_cast<address>(this) + alignUp(sizeof(KernelParameters), PARAMETERS_MIN_ALIGNMENT);
memoryObjOffset_ = signature_.paramsSize();
memoryObjects_ = reinterpret_cast<amd::Memory**>(values_ + memoryObjOffset_);
samplerObjOffset_ = memoryObjOffset_ + signature_.numMemories() * sizeof(amd::Memory*);
samplerObjects_ = reinterpret_cast<amd::Sampler**>(values_ + samplerObjOffset_);
queueObjOffset_ = samplerObjOffset_ + signature_.numSamplers() * sizeof(amd::Sampler*);
queueObjects_ = reinterpret_cast<amd::DeviceQueue**>(values_ + queueObjOffset_);
address limit = reinterpret_cast<address>(&queueObjects_[signature_.numQueues()]);
::memcpy(values_, rhs.values_, limit - values_);
}
//! Reset the parameter at the given \a index (becomes undefined).
void reset(size_t index) {
signature_.params()[index].info_.defined_ = false;
validated_ = 0;
}
//! Set the parameter at the given \a index to the value pointed by \a value
// \a svmBound indicates that \a value is a SVM pointer.
void set(size_t index, size_t size, const void* value, bool svmBound = false);
//! Return true if the parameter at the given \a index is defined.
bool test(size_t index) const { return signature_.at(index).info_.defined_; }
//! Return true if all the parameters have been defined.
bool check();
//! The amount of memory required for local memory needed
size_t localMemSize(size_t minDataTypeAlignment) const;
//! Capture the state of the parameters and return the stack base pointer.
address capture(device::VirtualDevice& vDev, uint64_t lclMemSize, int32_t* error);
//! Release the captured state of the parameters.
void release(address parameters) const;
//! Allocate memory for this instance as well as the required storage for
// the values_, defined_, and rawPointer_ arrays.
void* operator new(size_t size, const KernelSignature& signature) {
size_t requiredSize = alignUp(size, PARAMETERS_MIN_ALIGNMENT) + signature.paramsSize() +
(signature.numMemories() + signature.numSamplers() + signature.numQueues()) *
sizeof(void*);
return AlignedMemory::allocate(requiredSize, PARAMETERS_MIN_ALIGNMENT);
}
//! Deallocate the memory reserved for this instance.
void operator delete(void* ptr) { AlignedMemory::deallocate(ptr); }
//! Deallocate the memory reserved for this instance,
// matching overloaded operator new.
void operator delete(void* ptr, const KernelSignature& signature) {
AlignedMemory::deallocate(ptr);
}
//! Returns raw kernel parameters without capture
address values() const { return values_; }
//! Return true if the captured parameter at the given \a index is bound to
// SVM pointer.
bool boundToSvmPointer(const Device& device, const_address capturedAddress, size_t index) const;
//! add the svmPtr execInfo into container
void addSvmPtr(void* const* execInfoArray, size_t count) {
execSvmPtr_.clear();
for (size_t i = 0; i < count; i++) {
execSvmPtr_.push_back(execInfoArray[i]);
}
}
//! get the number of svmPtr in the execInfo container
size_t getNumberOfSvmPtr() const { return execSvmPtr_.size(); }
//! get the offset of svmPtr in the parameters
uint32_t getExecInfoOffset() const { return execInfoOffset_; }
//! get the offset of memory objects in the parameters
uint32_t memoryObjOffset() const { return memoryObjOffset_; }
//! get the offset of sampler objects in the parameters
uint32_t samplerObjOffset() const { return samplerObjOffset_; }
//! get the offset of memory objects in the parameters
uint32_t queueObjOffset() const { return queueObjOffset_; }
//! set the status of kernel support fine-grained SVM system pointer sharing
void setSvmSystemPointersSupport(FGSStatus svmSystemSupport) {
svmSystemPointersSupport_ = svmSystemSupport;
}
//! return the status of kernel support fine-grained SVM system pointer sharing
FGSStatus getSvmSystemPointersSupport() const { return svmSystemPointersSupport_; }
//! set the new VCOP in the execInfo container
void setExecNewVcop(const bool newVcop) { execNewVcop_ = (newVcop == true); }
//! set the PFPA VCOP in the execInfo container
void setExecPfpaVcop(const bool pfpaVcop) { execPfpaVcop_ = (pfpaVcop == true); }
//! get the new VCOP in the execInfo container
bool getExecNewVcop() const { return (execNewVcop_ == 1); }
//! get the PFPA VCOP in the execInfo container
bool getExecPfpaVcop() const { return (execPfpaVcop_ == 1); }
//! Returns true if arguemnts were allocated on device
bool deviceKernelArgs() const { return (deviceKernelArgs_ == 1); }
//! Allocate memory for kernel arguments to be set.
address alloc(device::VirtualDevice& vDev);
//! Capture the arguments from signature and set.
bool captureAndSet(void** kernelParams, address kernArgs, address mem);
};
/*! \brief Encapsulates a __kernel function and the argument values
* to be used when invoking this function.
*/
class Kernel : public RuntimeObject {
private:
//! The program where this kernel is defined.
SharedReference<Program> program_;
const Symbol& symbol_; //!< The symbol for this kernel.
std::string name_; //!< The kernel's name.
KernelParameters* parameters_; //!< The parameters.
protected:
//! Destroy this kernel
~Kernel();
public:
/*! \brief Construct a kernel object from the __kernel function
* \a kernelName in the given \a program.
*/
Kernel(Program& program, const Symbol& symbol, const std::string& name);
//! Construct a new kernel object from an existing one. Used by CloneKernel.
explicit Kernel(const Kernel& rhs);
//! Return the program containing this kernel.
Program& program() const { return program_(); }
//! Return this kernel's signature.
const KernelSignature& signature() const;
//! Return the kernel entry point for the given device.
const device::Kernel* getDeviceKernel(const Device& device //!< Device object
) const;
//! Return the parameters.
KernelParameters& parameters() const { return *parameters_; }
//! Return the kernel's name.
const std::string& name() const { return name_; }
virtual ObjectType objectType() const { return ObjectTypeKernel; }
#if defined(USE_COMGR_LIBRARY)
// Templated find function to retrieve the right value based on string
template <typename V, typename T, size_t N>
static V FindValue(const T (&structure)[N], const std::string& name);
// Templated find function to retrieve cl_int values.
template <typename T, size_t N>
static cl_int FindValue(const T (&structure)[N], const std::string& name);
struct ArgFieldMapType {
const char* name;
ArgField value;
};
struct ArgValueKindType {
const char* name;
amd::KernelParameterDescriptor::Desc value;
};
struct ArgAccQualType {
const char* name;
cl_kernel_arg_access_qualifier value;
};
struct ArgAddrSpaceQualType {
const char* name;
cl_kernel_arg_address_qualifier value;
};
struct AttrFieldMapType {
const char* name;
AttrField value;
};
struct CodePropFieldMapType {
const char* name;
CodePropField value;
};
struct ArgAccQualV3Type {
const char* name;
cl_kernel_arg_access_qualifier value;
};
struct ArgAddrSpaceQualV3Type {
const char* name;
cl_kernel_arg_address_qualifier value;
};
struct KernelFieldMapV3Type {
const char* name;
KernelField value;
};
struct ArgValueKindV3Type {
const char* name;
amd::KernelParameterDescriptor::Desc value;
};
struct ArgFieldMapV3Type {
const char* name;
ArgField value;
};
// Static const structure initialization.
static const ArgFieldMapType kArgFieldMap[];
static const ArgValueKindType kArgValueKind[];
static const ArgAccQualType kArgAccQual[];
static const ArgAddrSpaceQualType kArgAddrSpaceQual[];
static const AttrFieldMapType kAttrFieldMap[];
static const CodePropFieldMapType kCodePropFieldMap[];
static const ArgAccQualV3Type kArgAccQualV3[];
static const ArgAddrSpaceQualV3Type kArgAddrSpaceQualV3[];
static const KernelFieldMapV3Type kKernelFieldMapV3[];
static const ArgValueKindV3Type kArgValueKindV3[];
static const ArgFieldMapV3Type kArgFieldMapV3[];
#endif
}; // defined(USE_COMGR_LIBRARY)
/*! @}
* @}
*/
} // namespace amd
#endif /*KERNEL_HPP_*/
|