1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
/* Copyright (c) 2008 - 2024 Advanced Micro Devices, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#ifndef OBJECT_HPP_
#define OBJECT_HPP_
#include <set>
#include "top.hpp"
#include "os/alloc.hpp"
#include "thread/monitor.hpp"
#include "utils/util.hpp"
#define KHR_CL_TYPES_DO(F) \
/* OpenCL type Runtime type */ \
F(cl_context, Context) \
F(cl_event, Event) \
F(cl_command_queue, CommandQueue) \
F(cl_kernel, Kernel) \
F(cl_program, Program) \
F(cl_device_id, Device) \
F(cl_mem, Memory) \
F(cl_sampler, Sampler)
#define AMD_CL_TYPES_DO(F) \
F(cl_counter_amd, Counter) \
F(cl_perfcounter_amd, PerfCounter) \
F(cl_threadtrace_amd, ThreadTrace)
#define CL_TYPES_DO(F) \
KHR_CL_TYPES_DO(F) \
AMD_CL_TYPES_DO(F)
// Forward declare ::cl_* types and amd::Class types
//
#define DECLARE_CL_TYPES(CL, AMD) \
namespace amd { \
class AMD; \
}
CL_TYPES_DO(DECLARE_CL_TYPES);
#undef DECLARE_CL_TYPES
typedef struct _cl_icd_dispatch cl_icd_dispatch;
#define DECLARE_CL_TYPES(CL, AMD) \
typedef struct _##CL { \
cl_icd_dispatch* dispatch; \
} * CL;
AMD_CL_TYPES_DO(DECLARE_CL_TYPES);
#undef DECLARE_CL_TYPES
namespace amd {
// Define the cl_*_type tokens for type checking.
//
#define DEFINE_CL_TOKENS(CL, ignored) T##CL,
enum cl_token { Tinvalid = 0, CL_TYPES_DO(DEFINE_CL_TOKENS) numTokens };
#undef DEFINE_CL_TOKENS
const size_t RuntimeObjectAlignment = NextPowerOfTwo<numTokens>::value;
//! \cond ignore
template <typename T> struct as_internal { typedef void type; };
template <typename T> struct as_external { typedef void type; };
template <typename T> struct class_token { static const cl_token value = Tinvalid; };
#define DEFINE_CL_TRAITS(CL, AMD) \
\
template <> struct class_token<AMD> { static const cl_token value = T##CL; }; \
\
template <> struct as_internal<_##CL> { typedef AMD type; }; \
template <> struct as_internal<const _##CL> { typedef AMD const type; }; \
\
template <> struct as_external<AMD> { typedef _##CL type; }; \
template <> struct as_external<const AMD> { typedef _##CL const type; };
CL_TYPES_DO(DEFINE_CL_TRAITS);
#undef DEFINE_CL_TRAITS
//! \endcond
struct ICDDispatchedObject {
static cl_icd_dispatch icdVendorDispatch_[];
const cl_icd_dispatch* const dispatch_;
protected:
ICDDispatchedObject() : dispatch_(icdVendorDispatch_) {}
public:
static bool isValidHandle(const void* handle) { return handle != NULL; }
const void* handle() const { return static_cast<const ICDDispatchedObject*>(this); }
void* handle() { return static_cast<ICDDispatchedObject*>(this); }
template <typename T> static const T* fromHandle(const void* handle) {
return static_cast<const T*>(reinterpret_cast<const ICDDispatchedObject*>(handle));
}
template <typename T> static T* fromHandle(void* handle) {
return static_cast<T*>(reinterpret_cast<ICDDispatchedObject*>(handle));
}
};
/*! \brief For all OpenCL/Runtime objects.
*/
class RuntimeObject : public ReferenceCountedObject, public ICDDispatchedObject {
public:
enum ObjectType {
ObjectTypeContext = 0,
ObjectTypeDevice = 1,
ObjectTypeMemory = 2,
ObjectTypeKernel = 3,
ObjectTypeCounter = 4,
ObjectTypePerfCounter = 5,
ObjectTypeEvent = 6,
ObjectTypeProgram = 7,
ObjectTypeQueue = 8,
ObjectTypeSampler = 9,
ObjectTypeThreadTrace = 10,
ObjectTypeVMMAlloc = 11
};
virtual ObjectType objectType() const = 0;
};
template <typename T> class SharedReference : public EmbeddedObject {
private:
T& reference_;
private:
// do not copy shared references.
SharedReference<T>& operator=(const SharedReference<T>& sref);
public:
explicit SharedReference(T& reference) : reference_(reference) { reference_.retain(); }
~SharedReference() { reference_.release(); }
T& operator()() const { return reference_; }
};
/*! \brief A 1,2 or 3D coordinate.
*!
*! Note, dimensionality is only defined for sizes, and is given by the number
*! of non-zero elements. (i.e. a 1D line is not the same as a 2D plane with width 1)
*/
struct Coord3D {
size_t c[3];
Coord3D(size_t d0, size_t d1 = 0, size_t d2 = 0) {
c[0] = d0;
c[1] = d1;
c[2] = d2;
}
const size_t& operator[](size_t idx) const {
assert(idx < 3);
return c[idx];
}
bool operator==(const Coord3D& rhs) const {
return c[0] == rhs.c[0] && c[1] == rhs.c[1] && c[2] == rhs.c[2];
}
explicit operator size_t*() {
return &c[0];
}
};
template <class T>
class SysmemPool {
public:
SysmemPool(): chunk_access_(true) /* Sysmem Pool Lock */ {}
~SysmemPool() {
if (free_chunk_num_ != max_chunk_idx_) {
for (int i = 0; i < kActiveAllocSize; ++i) {
// Free any active chunks
if (active_allocs_[i] != nullptr) {
auto chunk = active_allocs_[i]->base_;
// Check if this chunk contains unreleased memory objects
if ((chunk->busy_ + chunk->free_) != kAllocChunkSize) {
LogPrintfError("Unreleased slots in sysmem pool %ld",
kAllocChunkSize - (chunk->busy_ + chunk->free_));
}
delete chunk;
free_chunk_num_++;
}
}
// Validate if sysmempool released all memory
if (free_chunk_num_ != max_chunk_idx_) {
LogPrintfError("Unreleased chunk in sysmem pool %ld", max_chunk_idx_ - free_chunk_num_);
}
}
}
void* Alloc(size_t size) {
guarantee(size <= sizeof(T), "Bigger size than pool allows!");
size_t current = current_alloc_++;
auto idx = current / kAllocChunkSize;
while (idx >= max_chunk_idx_) {
ScopedLock lock(chunk_access_);
// Second check in a case of multiple waiters
if (idx == max_chunk_idx_) {
auto allocs = new MemoryObject[kAllocChunkSize];
// Save the base in the first slot of all allocations
allocs[0].base_ = new AllocChunk(allocs);
// Check if the overwritten chunk has still empty slots
if (active_allocs_[idx % kActiveAllocSize] != nullptr) {
auto stale = active_allocs_[idx % kActiveAllocSize]->base_;
if (stale->busy_ != kAllocChunkSize) {
// The pool contains the stale slots, hence make sure it's marked as free
auto freed = stale->free_ - stale->busy_;
if (freed == 0) {
delete stale;
free_chunk_num_++;
}
}
}
// Keep the chunk in the list of active chunks
active_allocs_[idx % kActiveAllocSize] = allocs;
max_chunk_idx_++;
} else if ((idx < max_chunk_idx_) && ((max_chunk_idx_ - idx) >= kActiveAllocSize)) {
// If a wait was very long, then drop the old slot and find a more recent one
current = current_alloc_++;
idx = current / kAllocChunkSize;
}
}
// Find a slot in the active pool of allocations
auto chunk_idx = idx % kActiveAllocSize;
MemoryObject* obj = &active_allocs_[chunk_idx][current % kAllocChunkSize];
// Save the chunk allocation
obj->base_ = active_allocs_[chunk_idx]->base_;
obj->base_->busy_++;
return &obj->object_;
}
void Free(void* ptr) {
#if IS_WINDOWS
auto obj = reinterpret_cast<MemoryObject*>(
reinterpret_cast<address>(ptr) - offsetof(MemoryObject, object_));
#else
auto obj = reinterpret_cast<MemoryObject*>(
reinterpret_cast<address>(ptr) - sizeof(AllocChunk*));
#endif
auto freed = --obj->base_->free_;
// If it's the last slot in the chunk, then release memory
if (freed == 0) {
auto base = obj->base_;
{
// Make sure active chunks don't have a stale pointer
ScopedLock lock(chunk_access_);
for (int i = 0; i < kActiveAllocSize; ++i) {
if (base->allocs_ == active_allocs_[i]) {
active_allocs_[i] = nullptr;
break;
}
}
}
delete base;
free_chunk_num_++;
}
}
private:
static constexpr size_t kAllocChunkSize = 2048; //!< The total number of allocations in a chunk
static constexpr size_t kActiveAllocSize = 32; //!< The number of active chunks
struct AllocChunk;
struct MemoryObject {
AllocChunk* base_; //!< The chunk information for this memory object
T object_; //!< Allocated user object
MemoryObject() {}
};
struct AllocChunk {
MemoryObject* allocs_; //! Array of allocations
std::atomic<uint32_t> busy_; //! The number of commands still available for usage
std::atomic<uint32_t> free_; //! The number of commands still available for usage
AllocChunk(MemoryObject* alloc): allocs_(alloc), busy_(0), free_(kAllocChunkSize) {}
~AllocChunk() { delete [] allocs_; }
};
std::atomic<uint64_t> current_alloc_ = 0; //!< Current allocation, global index
std::atomic<size_t> max_chunk_idx_ = 0; //!< Current max chunk index
size_t free_chunk_num_ = 0; //!< The number of freed chunks
amd::Monitor chunk_access_; //!< Lock for the chunk list access
MemoryObject* active_allocs_[kActiveAllocSize] = {}; //!< Active chunks for fast access
};
} // namespace amd
template <typename CL> typename amd::as_internal<CL>::type* as_amd(CL* cl_obj) {
return cl_obj == NULL ? NULL
: amd::RuntimeObject::fromHandle<typename amd::as_internal<CL>::type>(
static_cast<void*>(cl_obj));
}
template <typename AMD> typename amd::as_external<AMD>::type* as_cl(AMD* amd_obj) {
return amd_obj == NULL ? NULL
: static_cast<typename amd::as_external<AMD>::type*>(amd_obj->handle());
}
template <typename CL> bool is_valid(CL* handle) {
return amd::as_internal<CL>::type::isValidHandle(handle);
}
#endif /*OBJECT_HPP_*/
|