File: benchmark_device_segmented_radix_sort.cpp

package info (click to toggle)
rocprim 5.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,656 kB
  • sloc: cpp: 60,198; python: 624; sh: 203; xml: 200; makefile: 109
file content (486 lines) | stat: -rw-r--r-- 16,649 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// MIT License
//
// Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#include <iostream>
#include <chrono>
#include <vector>
#include <locale>
#include <string>
#include <limits>

// Google Benchmark
#include "benchmark/benchmark.h"
// CmdParser
#include "cmdparser.hpp"
#include "benchmark_utils.hpp"

// HIP API
#include <hip/hip_runtime.h>

// rocPRIM
#include <rocprim/rocprim.hpp>

#define HIP_CHECK(condition)         \
  {                                   \
    hipError_t error = condition;    \
    if(error != hipSuccess){         \
        std::cout << "HIP error: " << error << " line: " << __LINE__ << std::endl; \
        exit(error); \
    } \
  }

#ifndef DEFAULT_N
const size_t DEFAULT_N = 1024 * 1024 * 32;
#endif

namespace rp = rocprim;

namespace
{

constexpr unsigned int warmup_size = 2;
constexpr size_t min_size = 30000;
constexpr std::array<size_t, 8> segment_counts{ 10, 100, 1000, 2500, 5000, 7500, 10000, 100000 };
constexpr std::array<size_t, 4> segment_lengths{30, 256, 3000, 300000};
}


template<class Key>
void run_sort_keys_benchmark(benchmark::State& state,
                             size_t num_segments,
                             size_t mean_segment_length,
                             size_t target_size,
                             hipStream_t stream)
{
    using offset_type = int;
    using key_type = Key;

    std::vector<offset_type> offsets;
    offsets.push_back(0);

    static constexpr int seed = 716;
    std::default_random_engine gen(seed);

    std::normal_distribution<double> segment_length_dis(static_cast<double>(mean_segment_length),
                                                        0.1 * mean_segment_length);

    size_t offset = 0;
    for(size_t segment_index = 0; segment_index < num_segments;)
    {
        const double segment_length_candidate = std::round(segment_length_dis(gen));
        if (segment_length_candidate < 0)
        {
            continue;
        }
        const offset_type segment_length = static_cast<offset_type>(segment_length_candidate);
        offset += segment_length;
        offsets.push_back(offset);
        ++segment_index;
    }
    const size_t size = offset;
    const size_t segments_count = offsets.size() - 1;

    std::vector<key_type> keys_input;
    if(std::is_floating_point<key_type>::value)
    {
        keys_input = get_random_data<key_type>(
            size,
            static_cast<key_type>(-1000),
            static_cast<key_type>(1000)
        );
    }
    else
    {
        keys_input = get_random_data<key_type>(
            size,
            std::numeric_limits<key_type>::min(),
            std::numeric_limits<key_type>::max()
        );
    }
    size_t batch_size = 1;
    if(size < target_size)
    {
        batch_size = (target_size + size - 1) / size;
    }

    offset_type * d_offsets;
    HIP_CHECK(hipMalloc(&d_offsets, offsets.size() * sizeof(offset_type)));
    HIP_CHECK(
        hipMemcpy(
            d_offsets, offsets.data(),
            offsets.size() * sizeof(offset_type),
            hipMemcpyHostToDevice
        )
    );

    key_type * d_keys_input;
    key_type * d_keys_output;
    HIP_CHECK(hipMalloc(&d_keys_input, size * sizeof(key_type)));
    HIP_CHECK(hipMalloc(&d_keys_output, size * sizeof(key_type)));
    HIP_CHECK(
        hipMemcpy(
            d_keys_input, keys_input.data(),
            size * sizeof(key_type),
            hipMemcpyHostToDevice
        )
    );

    void * d_temporary_storage = nullptr;
    size_t temporary_storage_bytes = 0;
    HIP_CHECK(
        rp::segmented_radix_sort_keys(
            d_temporary_storage, temporary_storage_bytes,
            d_keys_input, d_keys_output, size,
            segments_count, d_offsets, d_offsets + 1,
            0, sizeof(key_type) * 8,
            stream, false
        )
    );

    HIP_CHECK(hipMalloc(&d_temporary_storage, temporary_storage_bytes));
    HIP_CHECK(hipDeviceSynchronize());

    // Warm-up
    for(size_t i = 0; i < warmup_size; i++)
    {
        HIP_CHECK(
            rp::segmented_radix_sort_keys(
                d_temporary_storage, temporary_storage_bytes,
                d_keys_input, d_keys_output, size,
                segments_count, d_offsets, d_offsets + 1,
                0, sizeof(key_type) * 8,
                stream, false
            )
        );
    }
    HIP_CHECK(hipDeviceSynchronize());

    for (auto _ : state)
    {
        auto start = std::chrono::high_resolution_clock::now();

        for(size_t i = 0; i < batch_size; i++)
        {
            HIP_CHECK(
                rp::segmented_radix_sort_keys(
                    d_temporary_storage, temporary_storage_bytes,
                    d_keys_input, d_keys_output, size,
                    segments_count, d_offsets, d_offsets + 1,
                    0, sizeof(key_type) * 8,
                    stream, false
                )
            );
        }
        HIP_CHECK(hipDeviceSynchronize());

        auto end = std::chrono::high_resolution_clock::now();
        auto elapsed_seconds =
            std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
        state.SetIterationTime(elapsed_seconds.count());
    }
    state.SetBytesProcessed(state.iterations() * batch_size * size * sizeof(key_type));
    state.SetItemsProcessed(state.iterations() * batch_size * size);

    HIP_CHECK(hipFree(d_temporary_storage));
    HIP_CHECK(hipFree(d_offsets));
    HIP_CHECK(hipFree(d_keys_input));
    HIP_CHECK(hipFree(d_keys_output));
}

template<class Key, class Value>
void run_sort_pairs_benchmark(benchmark::State& state,
                              size_t num_segments,
                              size_t mean_segment_length,
                              size_t target_size,
                              hipStream_t stream)
{
    using offset_type = int;
    using key_type = Key;
    using value_type = Value;

    // Generate data
    std::vector<offset_type> offsets;
    offsets.push_back(0);

    static constexpr int seed = 716;
    std::default_random_engine gen(seed);

    std::normal_distribution<double> segment_length_dis(static_cast<double>(mean_segment_length),
                                                        0.1 * mean_segment_length);

    size_t offset = 0;
    for(size_t segment_index = 0; segment_index < num_segments;)
    {
        const double segment_length_candidate = std::round(segment_length_dis(gen));
        if (segment_length_candidate < 0)
        {
            continue;
        }
        const offset_type segment_length = static_cast<offset_type>(segment_length_candidate);
        offset += segment_length;
        offsets.push_back(offset);
        ++segment_index;
    }
    const size_t size = offset;
    const size_t segments_count = offsets.size() - 1;

    std::vector<key_type> keys_input;
    if(std::is_floating_point<key_type>::value)
    {
        keys_input = get_random_data<key_type>(
            size,
            static_cast<key_type>(-1000),
            static_cast<key_type>(1000)
        );
    }
    else
    {
        keys_input = get_random_data<key_type>(
            size,
            std::numeric_limits<key_type>::min(),
            std::numeric_limits<key_type>::max()
        );
    }
    size_t batch_size = 1;
    if(size < target_size)
    {
        batch_size = (target_size + size - 1) / size;
    }

    std::vector<value_type> values_input(size);
    std::iota(values_input.begin(), values_input.end(), 0);

    offset_type * d_offsets;
    HIP_CHECK(hipMalloc(&d_offsets, (segments_count + 1) * sizeof(offset_type)));
    HIP_CHECK(
        hipMemcpy(
            d_offsets, offsets.data(),
            (segments_count + 1) * sizeof(offset_type),
            hipMemcpyHostToDevice
        )
    );

    key_type * d_keys_input;
    key_type * d_keys_output;
    HIP_CHECK(hipMalloc(&d_keys_input, size * sizeof(key_type)));
    HIP_CHECK(hipMalloc(&d_keys_output, size * sizeof(key_type)));
    HIP_CHECK(
        hipMemcpy(
            d_keys_input, keys_input.data(),
            size * sizeof(key_type),
            hipMemcpyHostToDevice
        )
    );

    value_type * d_values_input;
    value_type * d_values_output;
    HIP_CHECK(hipMalloc(&d_values_input, size * sizeof(value_type)));
    HIP_CHECK(hipMalloc(&d_values_output, size * sizeof(value_type)));
    HIP_CHECK(
        hipMemcpy(
            d_values_input, values_input.data(),
            size * sizeof(value_type),
            hipMemcpyHostToDevice
        )
    );

    void * d_temporary_storage = nullptr;
    size_t temporary_storage_bytes = 0;
    HIP_CHECK(
        rp::segmented_radix_sort_pairs(
            d_temporary_storage, temporary_storage_bytes,
            d_keys_input, d_keys_output, d_values_input, d_values_output, size,
            segments_count, d_offsets, d_offsets + 1,
            0, sizeof(key_type) * 8,
            stream, false
        )
    );

    HIP_CHECK(hipMalloc(&d_temporary_storage, temporary_storage_bytes));
    HIP_CHECK(hipDeviceSynchronize());

    // Warm-up
    for(size_t i = 0; i < warmup_size; i++)
    {
        HIP_CHECK(
            rp::segmented_radix_sort_pairs(
                d_temporary_storage, temporary_storage_bytes,
                d_keys_input, d_keys_output, d_values_input, d_values_output, size,
                segments_count, d_offsets, d_offsets + 1,
                0, sizeof(key_type) * 8,
                stream, false
            )
        );
    }
    HIP_CHECK(hipDeviceSynchronize());

    for (auto _ : state)
    {
        auto start = std::chrono::high_resolution_clock::now();

        for(size_t i = 0; i < batch_size; i++)
        {
            HIP_CHECK(
                rp::segmented_radix_sort_pairs(
                    d_temporary_storage, temporary_storage_bytes,
                    d_keys_input, d_keys_output, d_values_input, d_values_output, size,
                    segments_count, d_offsets, d_offsets + 1,
                    0, sizeof(key_type) * 8,
                    stream, false
                )
            );
        }
        HIP_CHECK(hipDeviceSynchronize());

        auto end = std::chrono::high_resolution_clock::now();
        auto elapsed_seconds =
            std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
        state.SetIterationTime(elapsed_seconds.count());
    }
    state.SetBytesProcessed(
        state.iterations() * batch_size * size * (sizeof(key_type) + sizeof(value_type))
    );
    state.SetItemsProcessed(state.iterations() * batch_size * size);

    HIP_CHECK(hipFree(d_temporary_storage));
    HIP_CHECK(hipFree(d_offsets));
    HIP_CHECK(hipFree(d_keys_input));
    HIP_CHECK(hipFree(d_keys_output));
    HIP_CHECK(hipFree(d_values_input));
    HIP_CHECK(hipFree(d_values_output));
}

template<class KeyT>
void add_sort_keys_benchmarks(std::vector<benchmark::internal::Benchmark *> &benchmarks,
                              hipStream_t stream,
                              size_t max_size,
                              size_t min_size,
                              size_t target_size)
{
    std::string name = Traits<KeyT>::name();
    for(const auto segment_count : segment_counts)
    {
        for(const auto segment_length : segment_lengths)
        {
            const auto number_of_elements = segment_count * segment_length;
            if(number_of_elements > max_size || number_of_elements < min_size)
            {
                continue;
            }
            benchmarks.push_back(
                benchmark::RegisterBenchmark(
                    (std::string("sort_keys<") + name + ">(" + std::to_string(segment_count) +
                        " segments with length ~" + std::to_string(segment_length) +")").c_str(),
                    [=](benchmark::State &state) { run_sort_keys_benchmark<KeyT>(state, segment_count, segment_length, target_size, stream); }
                )
            );
        }
    }
}

template<class KeyT, class ValueT>
void add_sort_pairs_benchmarks(std::vector<benchmark::internal::Benchmark *> &benchmarks,
                               hipStream_t stream,
                               size_t max_size,
                               size_t min_size,
                               size_t target_size)
{
    std::string key_name = Traits<KeyT>::name();
    std::string value_name = Traits<ValueT>::name();
    for(const auto segment_count : segment_counts)
    {
        for(const auto segment_length : segment_lengths)
        {
            const auto number_of_elements = segment_count * segment_length;
            if(number_of_elements > max_size || number_of_elements < min_size)
            {
                continue;
            }
            benchmarks.push_back(
                benchmark::RegisterBenchmark(
                    (std::string("sort_pairs<") + key_name + ", " + value_name + ">(" + std::to_string(segment_count) +
                        " segments with length ~" + std::to_string(segment_length) +")").c_str(),
                    [=](benchmark::State &state) { run_sort_pairs_benchmark<KeyT, ValueT>(state, segment_count, segment_length, target_size, stream); }
                )
            );
        }
    }
}

int main(int argc, char *argv[])
{
    cli::Parser parser(argc, argv);
    parser.set_optional<size_t>("size", "size", DEFAULT_N, "number of values");
    parser.set_optional<int>("trials", "trials", -1, "number of iterations");
    parser.run_and_exit_if_error();

    // Parse argv
    benchmark::Initialize(&argc, argv);
    const size_t size = parser.get<size_t>("size");
    const int trials = parser.get<int>("trials");

    // HIP
    hipStream_t stream = 0; // default

    // Benchmark info
    add_common_benchmark_info();
    benchmark::AddCustomContext("size", std::to_string(size));

    // Add benchmarks
    std::vector<benchmark::internal::Benchmark*> benchmarks;
    add_sort_keys_benchmarks<float>(benchmarks, stream, size, min_size, size / 2);
    add_sort_keys_benchmarks<double>(benchmarks, stream, size, min_size, size / 2);
    add_sort_keys_benchmarks<int8_t>(benchmarks, stream, size, min_size, size / 2);
    add_sort_keys_benchmarks<uint8_t>(benchmarks, stream, size, min_size, size / 2);
    add_sort_keys_benchmarks<rocprim::half>(benchmarks, stream, size, min_size, size / 2);
    add_sort_keys_benchmarks<int>(benchmarks, stream, size, min_size, size / 2);

    using custom_float2 = custom_type<float, float>;
    using custom_double2 = custom_type<double, double>;
    add_sort_pairs_benchmarks<int, float>(benchmarks, stream, size, min_size, size / 2);
    add_sort_pairs_benchmarks<long long, double>(benchmarks, stream, size, min_size, size / 2);
    add_sort_pairs_benchmarks<int8_t, int8_t>(benchmarks, stream, size, min_size, size / 2);
    add_sort_pairs_benchmarks<uint8_t, uint8_t>(benchmarks, stream, size, min_size, size / 2);
    add_sort_pairs_benchmarks<rocprim::half, rocprim::half>(benchmarks, stream, size, min_size, size / 2);
    add_sort_pairs_benchmarks<int, custom_float2>(benchmarks, stream, size, min_size, size / 2);
    add_sort_pairs_benchmarks<long long, custom_double2>(benchmarks, stream, size, min_size, size / 2);

    // Use manual timing
    for(auto& b : benchmarks)
    {
        b->UseManualTime();
        b->Unit(benchmark::kMillisecond);
    }

    // Force number of iterations
    if(trials > 0)
    {
        for(auto& b : benchmarks)
        {
            b->Iterations(trials);
        }
    }

    // Run benchmarks
    benchmark::RunSpecifiedBenchmarks();
    return 0;
}