File: benchmark_device_histogram.parallel.hpp

package info (click to toggle)
rocprim 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,428 kB
  • sloc: cpp: 153,383; python: 1,397; sh: 404; xml: 217; makefile: 119
file content (415 lines) | stat: -rw-r--r-- 15,640 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// MIT License
//
// Copyright (c) 2023-2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#ifndef ROCPRIM_BENCHMARK_DEVICE_HISTOGRAM_PARALLEL_HPP_
#define ROCPRIM_BENCHMARK_DEVICE_HISTOGRAM_PARALLEL_HPP_

#include "benchmark_utils.hpp"

// Google Benchmark
#include <benchmark/benchmark.h>

// HIP API
#include <hip/hip_runtime_api.h>

// rocPRIM
#include <rocprim/device/detail/device_config_helper.hpp>
#include <rocprim/device/device_histogram.hpp>

#include <string>
#include <thread>
#include <vector>

#include <chrono>
#include <cstddef>

template<class T>
std::vector<T> generate(size_t size, int entropy_reduction, int lower_level, int upper_level)
{
    if(entropy_reduction >= 5)
    {
        return std::vector<T>(size, static_cast<T>((lower_level + upper_level) / 2));
    }

    const size_t max_random_size = 1024 * 1024 + 4321;

    const unsigned int         seed = 123;
    engine_type                gen(seed);
    std::vector<T>             data(size);
    std::generate(data.begin(),
                  data.begin() + std::min(size, max_random_size),
                  [&]()
                  {
                      // Reduce enthropy by applying bitwise AND to random bits
                      // "An Improved Supercomputer Sorting Benchmark", 1992
                      // Kurt Thearling & Stephen Smith
                      auto v = gen();
                      for(int e = 0; e < entropy_reduction; e++)
                      {
                          v &= gen();
                      }
                      return T(lower_level + v % (upper_level - lower_level));
                  });
    for(size_t i = max_random_size; i < size; i += max_random_size)
    {
        std::copy_n(data.begin(), std::min(size - i, max_random_size), data.begin() + i);
    }
    return data;
}

// Cache for input data when multiple cases must be benchmarked with various configurations and
// same inputs can be used for consecutive benchmarks.
// It must be used as a singleton.
class input_cache
{
public:
    ~input_cache()
    {
        clear();
    }

    void clear()
    {
        for(auto& i : cache)
        {
            HIP_CHECK(hipFree(i.second));
        }
        cache.clear();
    }

    // The function returns an exisitng buffer if main_key matches and there is additional_key
    // in the cache or generates a new buffer using gen().
    // If main_key does not match, it frees all device buffers and resets the cache.
    template<typename T, typename F>
    T* get_or_generate(const std::string& main_key,
                       const std::string& additional_key,
                       size_t             size,
                       F                  gen)
    {
        if(this->main_key != main_key)
        {
            // The main key (for example, data type) has been changed, clear the cache
            clear();
            this->main_key = main_key;
        }

        auto result = cache.find(additional_key);
        if(result != cache.end())
        {
            return reinterpret_cast<T*>(result->second);
        }

        // Generate a new buffer
        std::vector<T> data = gen();
        T*             d_buffer;
        HIP_CHECK(hipMalloc(&d_buffer, size * sizeof(T)));
        HIP_CHECK(hipMemcpy(d_buffer, data.data(), size * sizeof(T), hipMemcpyHostToDevice));
        cache[additional_key] = d_buffer;
        return d_buffer;
    }

    static input_cache& instance()
    {
        static input_cache instance;
        return instance;
    }

private:
    std::string                  main_key;
    std::map<std::string, void*> cache;
};

template<typename Config>
std::string config_name()
{
    const rocprim::detail::histogram_config_params config = Config();
    return "{bs:" + std::to_string(config.histogram_config.block_size)
           + ",ipt:" + std::to_string(config.histogram_config.items_per_thread)
           + ",max_grid_size:" + std::to_string(config.max_grid_size)
           + ",shared_impl_max_bins:" + std::to_string(config.shared_impl_max_bins)
           + ",shared_impl_histograms:" + std::to_string(config.shared_impl_histograms) + "}";
}

template<>
inline std::string config_name<rocprim::default_config>()
{
    return "default_config";
}

template<typename T, unsigned int Channels, unsigned int ActiveChannels, typename Config>
struct device_histogram_benchmark : public config_autotune_interface
{
    std::vector<unsigned int> cases;

    device_histogram_benchmark(const std::vector<unsigned int>& cases) : cases(cases) {}

    std::string name() const override
    {
        using namespace std::string_literals;
        return bench_naming::format_name(
            "{lvl:device,algo:histogram,value_type:" + std::string(Traits<T>::name()) + ",channels:"
            + std::to_string(Channels) + ",active_channels:" + std::to_string(ActiveChannels)
            + ",cfg:" + config_name<Config>() + "}");
    }

    static constexpr unsigned int batch_size  = 3;
    static constexpr unsigned int warmup_size = 5;

    void run(benchmark::State& state,
             size_t            full_size,
             const managed_seed&,
             hipStream_t stream) const override
    {
        using counter_type = unsigned int;
        using level_type   = typename std::
            conditional_t<std::is_integral<T>::value && sizeof(T) < sizeof(int), int, T>;

        struct case_data
        {
            level_type   lower_level[ActiveChannels];
            level_type   upper_level[ActiveChannels];
            unsigned int num_levels[ActiveChannels];
            T*           d_input;
        };

        const std::size_t size = full_size / Channels;

        size_t        temporary_storage_bytes = 0;
        void*         d_temporary_storage     = nullptr;
        counter_type* d_histogram[ActiveChannels];
        unsigned int  max_bins = 0;

        std::vector<case_data> cases_data;
        for(auto& bins : cases)
        {
            for(int entropy_reduction : {0, 2, 4, 6})
            {
                case_data data;

                // Reuse inputs for the same sample type. This autotune uses multipe inputs for all
                // combinations of bins and entropy, but the inputs do not depend on autotuned
                // params (bs, ipt, shared_impl_max_bins) and can be reused saving time needed for
                // generating and copying to device.
                data.d_input = input_cache::instance().get_or_generate<T>(
                    std::string(Traits<T>::name()),
                    std::to_string(bins) + "_" + std::to_string(entropy_reduction),
                    full_size,
                    [&]() { return generate<T>(full_size, entropy_reduction, 0, bins); });

                for(unsigned int channel = 0; channel < ActiveChannels; channel++)
                {
                    data.lower_level[channel] = 0;
                    data.upper_level[channel] = bins;
                    data.num_levels[channel]  = bins + 1;
                }
                cases_data.push_back(data);

                size_t current_temporary_storage_bytes = 0;
                HIP_CHECK((rocprim::multi_histogram_even<Channels, ActiveChannels, Config>(
                    d_temporary_storage,
                    current_temporary_storage_bytes,
                    data.d_input,
                    size,
                    d_histogram,
                    data.num_levels,
                    data.lower_level,
                    data.upper_level,
                    stream,
                    false)));

                temporary_storage_bytes
                    = std::max(temporary_storage_bytes, current_temporary_storage_bytes);
                max_bins = std::max(max_bins, bins);
            }
        }

        HIP_CHECK(hipMalloc(&d_temporary_storage, temporary_storage_bytes));
        for(unsigned int channel = 0; channel < ActiveChannels; channel++)
        {
            HIP_CHECK(hipMalloc(&d_histogram[channel], max_bins * sizeof(counter_type)));
        }
        HIP_CHECK(hipDeviceSynchronize());

        // Warm-up
        for(size_t i = 0; i < warmup_size; i++)
        {
            for(auto& data : cases_data)
            {
                HIP_CHECK((rocprim::multi_histogram_even<Channels, ActiveChannels, Config>(
                    d_temporary_storage,
                    temporary_storage_bytes,
                    data.d_input,
                    size,
                    d_histogram,
                    data.num_levels,
                    data.lower_level,
                    data.upper_level,
                    stream,
                    false)));
            }
        }
        HIP_CHECK(hipDeviceSynchronize());

        // HIP events creation
        hipEvent_t start, stop;
        HIP_CHECK(hipEventCreate(&start));
        HIP_CHECK(hipEventCreate(&stop));

        for(auto _ : state)
        {
            // Record start event
            HIP_CHECK(hipEventRecord(start, stream));

            for(auto& data : cases_data)
            {
                for(size_t i = 0; i < batch_size; i++)
                {
                    HIP_CHECK((rocprim::multi_histogram_even<Channels, ActiveChannels, Config>(
                        d_temporary_storage,
                        temporary_storage_bytes,
                        data.d_input,
                        size,
                        d_histogram,
                        data.num_levels,
                        data.lower_level,
                        data.upper_level,
                        stream,
                        false)));
                }
            }

            // Record stop event and wait until it completes
            HIP_CHECK(hipEventRecord(stop, stream));
            HIP_CHECK(hipEventSynchronize(stop));

            float elapsed_mseconds;
            HIP_CHECK(hipEventElapsedTime(&elapsed_mseconds, start, stop));
            state.SetIterationTime(elapsed_mseconds / 1000);
        }

        // Destroy HIP events
        HIP_CHECK(hipEventDestroy(start));
        HIP_CHECK(hipEventDestroy(stop));

        state.SetBytesProcessed(state.iterations() * cases_data.size() * batch_size * size
                                * Channels * sizeof(T));
        state.SetItemsProcessed(state.iterations() * cases_data.size() * batch_size * size
                                * Channels);

        HIP_CHECK(hipFree(d_temporary_storage));
        for(unsigned int channel = 0; channel < ActiveChannels; channel++)
        {
            HIP_CHECK(hipFree(d_histogram[channel]));
        }
    }
};

template<typename T, unsigned int BlockSize>
struct device_histogram_benchmark_generator
{
    static constexpr unsigned int min_items_per_thread       = 1;
    static constexpr unsigned int max_items_per_thread       = 16;
    static constexpr unsigned int min_shared_impl_histograms = 2;
    static constexpr unsigned int max_shared_impl_histograms = 4;

    template<unsigned int ItemsPerThread>
    struct create_ipt
    {
        template<unsigned int SharedImplHistograms>
        struct create_shared_impl_histograms
        {
            using generated_config
                = rocprim::histogram_config<rocprim::kernel_config<BlockSize, ItemsPerThread>,
                                            2048,
                                            2048,
                                            SharedImplHistograms>;

            template<unsigned int Channels,
                     unsigned int ActiveChannels,
                     unsigned int items_per_thread = ItemsPerThread>
            auto create(std::vector<std::unique_ptr<config_autotune_interface>>& storage,
                        const std::vector<unsigned int>&                         cases) ->
                typename std::enable_if<(items_per_thread * Channels <= max_items_per_thread),
                                        void>::type
            {
                storage.emplace_back(
                    std::make_unique<
                        device_histogram_benchmark<T, Channels, ActiveChannels, generated_config>>(
                        cases));
            }

            template<unsigned int Channels,
                     unsigned int ActiveChannels,
                     unsigned int items_per_thread = ItemsPerThread>
            auto create(std::vector<std::unique_ptr<config_autotune_interface>>& /*storage*/,
                        const std::vector<unsigned int>& /*cases*/) ->
                typename std::enable_if<!(items_per_thread * Channels <= max_items_per_thread),
                                        void>::type
            {}

            void operator()(std::vector<std::unique_ptr<config_autotune_interface>>& storage,
                            const std::vector<unsigned int>&                         cases)
            {
                // Tune histograms for single-channel data (histogram_even)
                create<1, 1>(storage, cases);
                // and some multi-channel configurations (multi_histogram_even)
                create<2, 2>(storage, cases);
                create<3, 3>(storage, cases);
                create<4, 4>(storage, cases);
                create<4, 3>(storage, cases);
            }
        };

        void operator()(std::vector<std::unique_ptr<config_autotune_interface>>& storage,
                        const std::vector<unsigned int>&                         cases)
        {
            static_for_each<make_index_range<unsigned int,
                                             min_shared_impl_histograms,
                                             max_shared_impl_histograms>,
                            create_shared_impl_histograms>(storage, cases);
        }
    };

    static void create(std::vector<std::unique_ptr<config_autotune_interface>>& storage)
    {
        // Benchmark multiple cases (with various sample distributions) and use sum of all cases
        // as a measurement for autotuning
        std::vector<unsigned int> cases;
        if(std::is_same<T, int8_t>::value)
        {
            cases = {16, 127};
        }
        else
        {
            cases = {
                10,
                100,
                1000,
                10000 // Multiple bins to trigger a global memory implementation
            };
        }
        static_for_each<make_index_range<unsigned int, min_items_per_thread, max_items_per_thread>,
                        create_ipt>(storage, cases);
    }
};

#endif // ROCPRIM_BENCHMARK_DEVICE_HISTOGRAM_PARALLEL_HPP_