1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
// MIT License
//
// Copyright (c) 2025 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef ROCPRIM_BENCHMARK_DEVICE_RUN_LENGTH_ENCODE_PARALLEL_HPP_
#define ROCPRIM_BENCHMARK_DEVICE_RUN_LENGTH_ENCODE_PARALLEL_HPP_
#include "benchmark_utils.hpp"
// Google Benchmark
#include <benchmark/benchmark.h>
// HIP API
#include <hip/hip_runtime.h>
// rocPRIM
#include <rocprim/device/detail/device_config_helper.hpp>
#include <rocprim/device/device_run_length_encode.hpp>
#include <algorithm>
#include <string>
#include <type_traits>
#include <vector>
#ifdef BENCHMARK_CONFIG_TUNING
#include <memory>
#endif
template<typename Config>
std::string run_length_encode_config_name()
{
const rocprim::detail::reduce_by_key_config_params config = Config();
return "{bs:" + std::to_string(config.kernel_config.block_size)
+ ",ipt:" + std::to_string(config.kernel_config.items_per_thread) + "}";
}
template<>
inline std::string run_length_encode_config_name<rocprim::default_config>()
{
return "default_config";
}
template<typename T, size_t MaxLength, typename Config = rocprim::default_config>
struct device_run_length_encode_benchmark : public config_autotune_interface
{
std::string name() const override
{
return bench_naming::format_name("{lvl:device,algo:run_length_encode,key_type:"
+ std::string(Traits<T>::name())
+ ",keys_max_length:" + std::to_string(MaxLength)
+ ",cfg:" + run_length_encode_config_name<Config>() + "}");
}
void run(benchmark::State& state,
size_t bytes,
const managed_seed& seed,
hipStream_t stream) const override
{
using key_type = T;
using count_type = unsigned int;
const size_t size = bytes / sizeof(T);
// Generate data
std::vector<key_type> input(size);
unsigned int runs_count = 0;
const auto random_range = limit_random_range<size_t>(1, MaxLength);
std::vector<size_t> key_counts = get_random_data<size_t>(100000,
random_range.first,
random_range.second,
seed.get_0());
size_t offset = 0;
while(offset < size)
{
const size_t key_count = key_counts[runs_count % key_counts.size()];
const size_t end = std::min(size, offset + key_count);
for(size_t i = offset; i < end; ++i)
{
input[i] = runs_count;
}
++runs_count;
offset += key_count;
}
key_type* d_input;
HIP_CHECK(hipMalloc(reinterpret_cast<void**>(&d_input), size * sizeof(key_type)));
HIP_CHECK(hipMemcpy(d_input, input.data(), size * sizeof(key_type), hipMemcpyHostToDevice));
key_type* d_unique_output;
count_type* d_counts_output;
count_type* d_runs_count_output;
HIP_CHECK(
hipMalloc(reinterpret_cast<void**>(&d_unique_output), runs_count * sizeof(key_type)));
HIP_CHECK(
hipMalloc(reinterpret_cast<void**>(&d_counts_output), runs_count * sizeof(count_type)));
HIP_CHECK(hipMalloc(reinterpret_cast<void**>(&d_runs_count_output), sizeof(count_type)));
void* d_temporary_storage = nullptr;
size_t temporary_storage_bytes = 0;
HIP_CHECK(rocprim::run_length_encode<Config>(nullptr,
temporary_storage_bytes,
d_input,
size,
d_unique_output,
d_counts_output,
d_runs_count_output,
stream,
false));
HIP_CHECK(hipMalloc(&d_temporary_storage, temporary_storage_bytes));
HIP_CHECK(hipDeviceSynchronize());
// Warm-up
for(size_t i = 0; i < 10; ++i)
{
HIP_CHECK(rocprim::run_length_encode<Config>(d_temporary_storage,
temporary_storage_bytes,
d_input,
size,
d_unique_output,
d_counts_output,
d_runs_count_output,
stream,
false));
}
HIP_CHECK(hipDeviceSynchronize());
// HIP events creation
hipEvent_t start, stop;
HIP_CHECK(hipEventCreate(&start));
HIP_CHECK(hipEventCreate(&stop));
const unsigned int batch_size = 10;
for(auto _ : state)
{
// Record start event
HIP_CHECK(hipEventRecord(start, stream));
for(size_t i = 0; i < batch_size; ++i)
{
HIP_CHECK(rocprim::run_length_encode<Config>(d_temporary_storage,
temporary_storage_bytes,
d_input,
size,
d_unique_output,
d_counts_output,
d_runs_count_output,
stream,
false));
}
// Record stop event and wait until it completes
HIP_CHECK(hipEventRecord(stop, stream));
HIP_CHECK(hipEventSynchronize(stop));
float elapsed_mseconds;
HIP_CHECK(hipEventElapsedTime(&elapsed_mseconds, start, stop));
state.SetIterationTime(elapsed_mseconds / 1000);
}
// Destroy HIP events
HIP_CHECK(hipEventDestroy(start));
HIP_CHECK(hipEventDestroy(stop));
state.SetBytesProcessed(state.iterations() * batch_size * size * sizeof(key_type));
state.SetItemsProcessed(state.iterations() * batch_size * size);
HIP_CHECK(hipFree(d_temporary_storage));
HIP_CHECK(hipFree(d_input));
HIP_CHECK(hipFree(d_unique_output));
HIP_CHECK(hipFree(d_counts_output));
HIP_CHECK(hipFree(d_runs_count_output));
}
};
#ifdef BENCHMARK_CONFIG_TUNING
template<typename T, unsigned int BlockSize>
struct device_run_length_encode_benchmark_generator
{
template<unsigned int ItemsPerThread>
struct create_ipt
{
void operator()(std::vector<std::unique_ptr<config_autotune_interface>>& storage)
{
using config
= rocprim::reduce_by_key_config<BlockSize,
ItemsPerThread,
rocprim::block_load_method::block_load_transpose,
rocprim::block_load_method::block_load_transpose,
rocprim::block_scan_algorithm::using_warp_scan>;
storage.emplace_back(
std::make_unique<device_run_length_encode_benchmark<T, 10, config>>());
storage.emplace_back(
std::make_unique<device_run_length_encode_benchmark<T, 1000, config>>());
}
};
static void create(std::vector<std::unique_ptr<config_autotune_interface>>& storage)
{
static_for_each<make_index_range<unsigned int, 4u, 15u>, create_ipt>(storage);
}
};
#endif // BENCHMARK_CONFIG_TUNING
#endif // ROCPRIM_BENCHMARK_DEVICE_RUN_LENGTH_ENCODE_PARALLEL_HPP_
|