File: benchmark_device_segmented_radix_sort_keys.cpp

package info (click to toggle)
rocprim 6.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,428 kB
  • sloc: cpp: 153,383; python: 1,397; sh: 404; xml: 217; makefile: 119
file content (331 lines) | stat: -rw-r--r-- 13,597 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// MIT License
//
// Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#include "benchmark_utils.hpp"
// CmdParser
#include "cmdparser.hpp"

// Google Benchmark
#include <benchmark/benchmark.h>

// HIP API
#include <hip/hip_runtime.h>

// rocPRIM
#include <rocprim/device/device_segmented_radix_sort.hpp>

#include <iostream>
#include <limits>
#include <locale>
#include <string>
#include <vector>

#ifndef DEFAULT_BYTES
const size_t DEFAULT_BYTES = 1024 * 1024 * 32 * 4;
#endif

namespace rp = rocprim;

namespace
{

constexpr unsigned int          warmup_size = 2;
constexpr size_t                min_size    = 30000;
constexpr std::array<size_t, 8> segment_counts{10, 100, 1000, 2500, 5000, 7500, 10000, 100000};
constexpr std::array<size_t, 4> segment_lengths{30, 256, 3000, 300000};
} // namespace

// This benchmark only handles the rocprim::segmented_radix_sort_keys function. The benchmark was separated into two (keys and pairs),
// because the binary became too large to link. Runs into a "relocation R_X86_64_PC32 out of range" error.
// This happens partially, because of the algorithm has 4 kernels, and decides at runtime which one to call.

template<class Key>
void run_sort_keys_benchmark(benchmark::State&   state,
                             size_t              num_segments,
                             size_t              mean_segment_length,
                             size_t              target_bytes,
                             const managed_seed& seed,
                             hipStream_t         stream)
{
    using offset_type = int;
    using key_type    = Key;

    // Calculate the number of elements 
    size_t target_size = target_bytes / sizeof(key_type);

    std::vector<offset_type> offsets;
    offsets.push_back(0);

    static constexpr int iseed = 716;
    engine_type          gen(iseed);

    std::normal_distribution<double> segment_length_dis(static_cast<double>(mean_segment_length),
                                                        0.1 * mean_segment_length);

    size_t offset = 0;
    for(size_t segment_index = 0; segment_index < num_segments;)
    {
        const double segment_length_candidate = std::round(segment_length_dis(gen));
        if(segment_length_candidate < 0)
        {
            continue;
        }
        const offset_type segment_length = static_cast<offset_type>(segment_length_candidate);
        offset += segment_length;
        offsets.push_back(offset);
        ++segment_index;
    }
    const size_t size           = offset;
    const size_t segments_count = offsets.size() - 1;

    std::vector<key_type> keys_input = get_random_data<key_type>(size,
                                                                 generate_limits<key_type>::min(),
                                                                 generate_limits<key_type>::max(),
                                                                 seed.get_0());

    size_t batch_size = 1;
    if(size < target_size)
    {
        batch_size = (target_size + size - 1) / size;
    }

    offset_type* d_offsets;
    HIP_CHECK(hipMalloc(&d_offsets, offsets.size() * sizeof(offset_type)));
    HIP_CHECK(hipMemcpy(d_offsets,
                        offsets.data(),
                        offsets.size() * sizeof(offset_type),
                        hipMemcpyHostToDevice));

    key_type* d_keys_input;
    key_type* d_keys_output;
    HIP_CHECK(hipMalloc(&d_keys_input, size * sizeof(key_type)));
    HIP_CHECK(hipMalloc(&d_keys_output, size * sizeof(key_type)));
    HIP_CHECK(
        hipMemcpy(d_keys_input, keys_input.data(), size * sizeof(key_type), hipMemcpyHostToDevice));

    void*  d_temporary_storage     = nullptr;
    size_t temporary_storage_bytes = 0;
    HIP_CHECK(rp::segmented_radix_sort_keys(d_temporary_storage,
                                            temporary_storage_bytes,
                                            d_keys_input,
                                            d_keys_output,
                                            size,
                                            segments_count,
                                            d_offsets,
                                            d_offsets + 1,
                                            0,
                                            sizeof(key_type) * 8,
                                            stream,
                                            false));

    HIP_CHECK(hipMalloc(&d_temporary_storage, temporary_storage_bytes));
    HIP_CHECK(hipDeviceSynchronize());

    // Warm-up
    for(size_t i = 0; i < warmup_size; i++)
    {
        HIP_CHECK(rp::segmented_radix_sort_keys(d_temporary_storage,
                                                temporary_storage_bytes,
                                                d_keys_input,
                                                d_keys_output,
                                                size,
                                                segments_count,
                                                d_offsets,
                                                d_offsets + 1,
                                                0,
                                                sizeof(key_type) * 8,
                                                stream,
                                                false));
    }
    HIP_CHECK(hipDeviceSynchronize());

    // HIP events creation
    hipEvent_t start, stop;
    HIP_CHECK(hipEventCreate(&start));
    HIP_CHECK(hipEventCreate(&stop));

    for(auto _ : state)
    {
        // Record start event
        HIP_CHECK(hipEventRecord(start, stream));

        for(size_t i = 0; i < batch_size; i++)
        {
            HIP_CHECK(rp::segmented_radix_sort_keys(d_temporary_storage,
                                                    temporary_storage_bytes,
                                                    d_keys_input,
                                                    d_keys_output,
                                                    size,
                                                    segments_count,
                                                    d_offsets,
                                                    d_offsets + 1,
                                                    0,
                                                    sizeof(key_type) * 8,
                                                    stream,
                                                    false));
        }

        // Record stop event and wait until it completes
        HIP_CHECK(hipEventRecord(stop, stream));
        HIP_CHECK(hipEventSynchronize(stop));

        float elapsed_mseconds;
        HIP_CHECK(hipEventElapsedTime(&elapsed_mseconds, start, stop));
        state.SetIterationTime(elapsed_mseconds / 1000);
    }

    // Destroy HIP events
    HIP_CHECK(hipEventDestroy(start));
    HIP_CHECK(hipEventDestroy(stop));

    state.SetBytesProcessed(state.iterations() * batch_size * size * sizeof(key_type));
    state.SetItemsProcessed(state.iterations() * batch_size * size);

    HIP_CHECK(hipFree(d_temporary_storage));
    HIP_CHECK(hipFree(d_offsets));
    HIP_CHECK(hipFree(d_keys_input));
    HIP_CHECK(hipFree(d_keys_output));
}

template<class KeyT>
void add_sort_keys_benchmarks(std::vector<benchmark::internal::Benchmark*>& benchmarks,
                              size_t                                        max_bytes,
                              size_t                                        min_size,
                              size_t                                        target_size,
                              const managed_seed&                           seed,
                              hipStream_t                                   stream)
{
    // Calculate the number of elements 
    size_t max_size = max_bytes / sizeof(KeyT);

    std::string key_name   = Traits<KeyT>::name();
    std::string value_name = Traits<rocprim::empty_type>::name();
    for(const auto segment_count : segment_counts)
    {
        for(const auto segment_length : segment_lengths)
        {
            const auto number_of_elements = segment_count * segment_length;
            if(number_of_elements > max_size || number_of_elements < min_size)
            {
                continue;
            }
            benchmarks.push_back(benchmark::RegisterBenchmark(
                bench_naming::format_name(
                    "{lvl:device,algo:radix_sort_segmented,key_type:" + key_name + ",value_type:"
                    + value_name + ",segment_count:" + std::to_string(segment_count)
                    + ",segment_length:" + std::to_string(segment_length) + ",cfg:default_config}")
                    .c_str(),
                [=](benchmark::State& state)
                {
                    run_sort_keys_benchmark<KeyT>(state,
                                                  segment_count,
                                                  segment_length,
                                                  target_size,
                                                  seed,
                                                  stream);
                }));
        }
    }
}

int main(int argc, char* argv[])
{
    cli::Parser parser(argc, argv);
    parser.set_optional<size_t>("size", "size", DEFAULT_BYTES, "number of bytes");
    parser.set_optional<int>("trials", "trials", -1, "number of iterations");
    parser.set_optional<std::string>("name_format",
                                     "name_format",
                                     "human",
                                     "either: json,human,txt");
    parser.set_optional<std::string>("seed", "seed", "random", get_seed_message());

#ifdef BENCHMARK_CONFIG_TUNING
    // optionally run an evenly split subset of benchmarks, when making multiple program invocations
    parser.set_optional<int>("parallel_instance",
                             "parallel_instance",
                             0,
                             "parallel instance index");
    parser.set_optional<int>("parallel_instances",
                             "parallel_instances",
                             1,
                             "total parallel instances");
#endif

    parser.run_and_exit_if_error();

    // Parse argv
    benchmark::Initialize(&argc, argv);
    const size_t bytes   = parser.get<size_t>("size");
    const int    trials = parser.get<int>("trials");
    bench_naming::set_format(parser.get<std::string>("name_format"));
    const std::string  seed_type = parser.get<std::string>("seed");
    const managed_seed seed(seed_type);

    // HIP
    hipStream_t stream = 0; // default

    // Benchmark info
    add_common_benchmark_info();
    benchmark::AddCustomContext("bytes", std::to_string(bytes));
    benchmark::AddCustomContext("seed", seed_type);

    // Add benchmarks
    std::vector<benchmark::internal::Benchmark*> benchmarks;
#ifdef BENCHMARK_CONFIG_TUNING
    (void)min_size;
    const int parallel_instance  = parser.get<int>("parallel_instance");
    const int parallel_instances = parser.get<int>("parallel_instances");
    config_autotune_register::register_benchmark_subset(benchmarks,
                                                        parallel_instance,
                                                        parallel_instances,
                                                        min_size,
                                                        seed,
                                                        stream);
#else
    add_sort_keys_benchmarks<float>(benchmarks, bytes, min_size, bytes / 2, seed, stream);
    add_sort_keys_benchmarks<double>(benchmarks, bytes, min_size, bytes / 2, seed, stream);
    add_sort_keys_benchmarks<int8_t>(benchmarks, bytes, min_size, bytes / 2, seed, stream);
    add_sort_keys_benchmarks<uint8_t>(benchmarks, bytes, min_size, bytes / 2, seed, stream);
    add_sort_keys_benchmarks<rocprim::half>(benchmarks, bytes, min_size, bytes / 2, seed, stream);
    add_sort_keys_benchmarks<int>(benchmarks, bytes, min_size, bytes / 2, seed, stream);
#endif

    // Use manual timing
    for(auto& b : benchmarks)
    {
        b->UseManualTime();
        b->Unit(benchmark::kMillisecond);
    }

    // Force number of iterations
    if(trials > 0)
    {
        for(auto& b : benchmarks)
        {
            b->Iterations(trials);
        }
    }

    // Run benchmarks
    benchmark::RunSpecifiedBenchmarks();
    return 0;
}