1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// MIT License
//
// Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// required test headers
#include "../common_test_header.hpp"
// required rocprim headers
#include "../rocprim/test_seed.hpp"
#include "../rocprim/test_utils.hpp"
#include <rocprim/device/device_binary_search.hpp>
#include <rocprim/device/device_merge_sort.hpp>
// required STL headers
#include <algorithm>
template<typename KeyType>
void generate_needles(const std::vector<KeyType>& input, std::vector<KeyType>& output, const size_t search_needle_size, const std::pair<KeyType, KeyType>& bounds, const seed_type& seed_value)
{
// Pick 50% of the needles from the input vector
std::vector<KeyType> indices = test_utils::get_random_data<KeyType>(search_needle_size / 2, 0, input.size() - 1, seed_value);
// Do selection on the in-bounds indices and write the results to the output vector
std::transform(indices.begin(), indices.end(), output.begin(), [&input](const KeyType& index)
{
return input[index];
});
// Generate the other 50% from outside the input vector
const KeyType max_val = std::get<1>(bounds);
std::vector<KeyType> out_of_bounds_vals = test_utils::get_random_data<KeyType>(search_needle_size - search_needle_size / 2, max_val, max_val * 2, seed_value);
// Append the out-of-bounds values
for (size_t i = 0; i < out_of_bounds_vals.size(); i++)
output[indices.size() + i] = out_of_bounds_vals[i];
// Mix up the in-bounds and out-of-bounds values to make the test a bit more robust
std::random_device rd;
std::default_random_engine gen(rd());
std::shuffle(output.begin(), output.end(), gen);
}
template<typename KeyType, typename BinaryFunction>
void computeExpectedSortAndSearchResult(std::vector<KeyType>& sort_input, const std::vector<KeyType>& search_needles, std::vector<KeyType>& expected_search_output, BinaryFunction compare_op)
{
// Sort
std::stable_sort(sort_input.begin(), sort_input.end(), compare_op);
// Search
for (size_t i = 0; i < search_needles.size(); i++)
expected_search_output[i] = std::binary_search(sort_input.begin(), sort_input.end(), search_needles[i], compare_op);
}
// This test creates a graph that performs a device-wide merge_sort followed by a device-wide binary_search.
// After the graph is created, it is launched multiple times, each time using different data.
TEST(TestHipGraphAlgs, SortAndSearch)
{
// Test case params
using key_type = int;
using compare_fcn_type = typename ::rocprim::less<key_type>;
compare_fcn_type compare_op;
const size_t sort_data_size = 4096;
const size_t search_needle_size = 100;
const size_t num_trials = 5;
std::pair<key_type, key_type> bounds = std::make_pair(-10000, 10000); // generated data will fall in this range
const bool debug_synchronous = false;
// Set the device
int device_id = test_common_utils::obtain_device_from_ctest();
SCOPED_TRACE(testing::Message() << "with device_id = " << device_id);
HIP_CHECK(hipSetDevice(device_id));
// Generate data on the host
const seed_type seed_value = seeds[random_seeds_count - 1];
SCOPED_TRACE(testing::Message() << "with seed = " << seed_value);
SCOPED_TRACE(testing::Message() << "with sort_data_size = " << sort_data_size);
SCOPED_TRACE(testing::Message() << "with search_needle_size = " << search_needle_size);
// Allocate device buffers and copy data into them
key_type* d_sort_input = nullptr;
key_type* d_sort_output = nullptr; // also used as search_input
key_type* d_search_output = nullptr;
key_type* d_search_needles = nullptr;
HIP_CHECK(test_common_utils::hipMallocHelper(&d_sort_input, sort_data_size * sizeof(key_type)));
HIP_CHECK(test_common_utils::hipMallocHelper(&d_sort_output, sort_data_size * sizeof(key_type)));
HIP_CHECK(test_common_utils::hipMallocHelper(&d_search_output, search_needle_size * sizeof(key_type)));
HIP_CHECK(test_common_utils::hipMallocHelper(&d_search_needles, search_needle_size * sizeof(key_type)));
// Default stream does not support hipGraph stream capture, so create a non-blocking one
hipStream_t stream = 0;
HIP_CHECK(hipStreamCreateWithFlags(&stream, hipStreamNonBlocking));
// Get temporary storage size required for merge_sort.
// Note: doing this inside a graph doesn't gain us any benefit,
// since these calls run entirely on the host - however, it is
// important to validate that they work inside a graph capture block.
size_t sort_temp_storage_bytes = 0;
HIP_CHECK(rocprim::merge_sort(nullptr,
sort_temp_storage_bytes,
d_sort_input,
d_sort_output,
sort_data_size,
compare_op,
stream,
debug_synchronous
));
// Get size of temporary storage required for binary_search
size_t search_temp_storage_bytes = 0;
HIP_CHECK(rocprim::binary_search(nullptr,
search_temp_storage_bytes,
d_sort_output,
d_search_needles,
d_search_output,
sort_data_size,
search_needle_size,
compare_op,
stream,
debug_synchronous
));
// Allocate the temp storage
// Note: a single store will be used for both the sort and search algorithms
size_t temp_storage_bytes = std::max(sort_temp_storage_bytes, search_temp_storage_bytes);
// temp_storage_size_bytes must be > 0
ASSERT_GT(temp_storage_bytes, 0);
void* d_temp_storage = nullptr;
HIP_CHECK(test_common_utils::hipMallocHelper(&d_temp_storage, temp_storage_bytes));
HIP_CHECK(hipDeviceSynchronize());
// Begin graph capture
test_utils::GraphHelper gHelper;
gHelper.startStreamCapture(stream);
// Launch merge_sort
HIP_CHECK(
rocprim::merge_sort(d_temp_storage,
sort_temp_storage_bytes,
d_sort_input,
d_sort_output,
sort_data_size,
compare_op,
stream,
false
)
);
// Launch binary_search
HIP_CHECK(
rocprim::binary_search<rocprim::default_config>(d_temp_storage,
search_temp_storage_bytes,
d_sort_output,
d_search_needles,
d_search_output,
sort_data_size,
search_needle_size,
compare_op,
stream,
false
);
);
// End graph capture, but do not execute the graph yet.
gHelper.endStreamCapture(stream);
gHelper.createGraph();
std::vector<key_type> sort_input;
std::vector<key_type> search_needles(search_needle_size);
std::vector<key_type> expected_search_output(search_needle_size);
std::vector<key_type> device_output(search_needle_size);
// We'll launch the graph multiple times with different data.
for (size_t i = 0; i < num_trials; i++)
{
// Generate the test data
sort_input = test_utils::get_random_data<key_type>(sort_data_size, std::get<0>(bounds), std::get<1>(bounds), seed_value);
generate_needles(sort_input, search_needles, search_needle_size, bounds, seed_value);
// Compute the expected result on the host
computeExpectedSortAndSearchResult<key_type, compare_fcn_type>(sort_input, search_needles, expected_search_output, compare_op);
// Copy input data to the device
HIP_CHECK(hipMemcpy(d_sort_input, sort_input.data(), sort_data_size * sizeof(key_type), hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(d_search_needles, search_needles.data(), search_needle_size * sizeof(key_type), hipMemcpyHostToDevice));
// Launch the graph
gHelper.launchGraph(stream, true);
// Copy output back to host
HIP_CHECK(hipMemcpy(device_output.data(), d_search_output, search_needle_size * sizeof(key_type), hipMemcpyDeviceToHost));
// Validate the results
ASSERT_NO_FATAL_FAILURE(test_utils::assert_eq(device_output, expected_search_output));
}
// Clean up
HIP_CHECK(hipFree(d_sort_input));
HIP_CHECK(hipFree(d_sort_output));
HIP_CHECK(hipFree(d_search_output));
HIP_CHECK(hipFree(d_search_needles));
HIP_CHECK(hipFree(d_temp_storage));
gHelper.cleanupGraphHelper();
HIP_CHECK(hipStreamDestroy(stream));
}
|