1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
<h1>The Rocq Standard Library</h1>
<p>This is the index of the Rocq standard library.
It provides a set of modules directly available
through the <tt>From Stdlib Require Import</tt> command.</p>
<!-- #include depends.svg -->
<p>The standard library is composed of the following subdirectories:</p>
<dl>
<dt> <a name="logic"></a><b>Logic</b>:
Logic, dependent equality, extensionality, choice axioms.
Look at <a href="#classical-logic">classical-logic</a> for more elaborate results.
</dt>
<dd>
theories/Logic/SetIsType.v
theories/Logic/StrictProp.v
theories/Logic/Decidable.v
theories/Logic/Eqdep_dec.v
theories/Logic/EqdepFacts.v
theories/Logic/Eqdep.v
theories/Logic/JMeq.v
theories/Logic/RelationalChoice.v
theories/Logic/Berardi.v
theories/Logic/Hurkens.v
theories/Logic/ProofIrrelevance.v
theories/Logic/ProofIrrelevanceFacts.v
theories/Logic/ConstructiveEpsilon.v
theories/Logic/PropExtensionalityFacts.v
theories/Logic/FunctionalExtensionality.v
theories/Logic/ExtensionalFunctionRepresentative.v
theories/Logic/ExtensionalityFacts.v
theories/Logic/WeakFan.v
theories/Logic/PropFacts.v
theories/Logic/HLevels.v
theories/Logic/Adjointification.v
</dd>
<dt> <a name="program"></a><b>Program</b>:
Support for dependently-typed programming
Beware that there are also Tactics.v and Wf.v files in Init.
</dt>
<dd>
theories/Program/Subset.v
theories/Program/Equality.v
theories/Program/Syntax.v
theories/Program/WfExtensionality.v
theories/Program/Program.v
theories/Program/Combinators.v
</dd>
<dt> <a name="relations"></a><b>Relations</b>:
Relations (definitions and basic results)
</dt>
<dd>
theories/Relations/Relation_Operators.v
theories/Relations/Relations.v
theories/Relations/Operators_Properties.v
</dd>
<dt> <a name="classes"></a><b>Classes</b>:
</dt>
<dd>
theories/Classes/Morphisms_Relations.v
theories/Classes/CEquivalence.v
theories/Classes/SetoidClass.v
theories/Classes/RelationPairs.v
theories/Classes/DecidableClass.v
</dd>
<dt><a name="bool"></a><b>Bool</b>:
Booleans (basic functions and results)
</dt>
<dd>
theories/Bool/Bool.v
theories/Bool/BoolEq.v
theories/Bool/DecBool.v
theories/Bool/IfProp.v
</dd>
<dt> <a name="structures"></a><b>Structures</b>:
Basic "algebraic" structures: types with decidable equality and with order.
Common instances can be found in <a href="#orders-ex">orders-ex</a>.
More developped algebra can be found in the
<a href="https://github.com/math-comp/math-comp">mathematical components
library</a>.
</dt>
<dd>
theories/Structures/Equalities.v
theories/Structures/Orders.v
theories/Structures/OrdersTac.v
theories/Structures/OrdersFacts.v
theories/Structures/GenericMinMax.v
</dd>
<dt> <a name="arith-base"></a><b>Arith-base</b>:
Basic Peano Arithmetic.
Everything can be loaded with From Stdlib Require Import Arith_base.
To enjoy the ring and lia automatic tactic, you additionally need to load
arith below, using From Stdlib Require Import Arith Lia.
</dt>
<dd>
theories/Arith/PeanoNat.v
theories/Arith/Between.v
theories/Arith/Peano_dec.v
theories/Arith/Compare_dec.v
(theories/Arith/Arith_base.v)
theories/Arith/Compare.v
theories/Arith/EqNat.v
theories/Arith/Euclid.v
theories/Arith/Factorial.v
theories/Arith/Wf_nat.v
theories/Arith/Cantor.v
theories/Arith/Zerob.v
theories/Numbers/NumPrelude.v
theories/Numbers/NatInt/NZAdd.v
theories/Numbers/NatInt/NZAddOrder.v
theories/Numbers/NatInt/NZAxioms.v
theories/Numbers/NatInt/NZBase.v
theories/Numbers/NatInt/NZMul.v
theories/Numbers/NatInt/NZDiv.v
theories/Numbers/NatInt/NZMulOrder.v
theories/Numbers/NatInt/NZOrder.v
theories/Numbers/NatInt/NZParity.v
theories/Numbers/NatInt/NZPow.v
theories/Numbers/NatInt/NZSqrt.v
theories/Numbers/NatInt/NZLog.v
theories/Numbers/NatInt/NZGcd.v
theories/Numbers/NatInt/NZBits.v
theories/Numbers/Natural/Abstract/NAdd.v
theories/Numbers/Natural/Abstract/NAddOrder.v
theories/Numbers/Natural/Abstract/NAxioms.v
theories/Numbers/Natural/Abstract/NBase.v
theories/Numbers/Natural/Abstract/NMulOrder.v
theories/Numbers/Natural/Abstract/NOrder.v
theories/Numbers/Natural/Abstract/NStrongRec.v
theories/Numbers/Natural/Abstract/NSub.v
theories/Numbers/Natural/Abstract/NDiv.v
theories/Numbers/Natural/Abstract/NDiv0.v
theories/Numbers/Natural/Abstract/NMaxMin.v
theories/Numbers/Natural/Abstract/NParity.v
theories/Numbers/Natural/Abstract/NPow.v
theories/Numbers/Natural/Abstract/NSqrt.v
theories/Numbers/Natural/Abstract/NLog.v
theories/Numbers/Natural/Abstract/NGcd.v
theories/Numbers/Natural/Abstract/NLcm.v
theories/Numbers/Natural/Abstract/NLcm0.v
theories/Numbers/Natural/Abstract/NBits.v
theories/Numbers/Natural/Abstract/NProperties.v
theories/Classes/SetoidDec.v
</dd>
<dt> <a name="lists"></a><b>Lists</b>:
Polymorphic lists
</dt>
<dd>
theories/Lists/List.v
theories/Lists/ListDec.v
theories/Lists/ListSet.v
theories/Lists/ListTactics.v
theories/Numbers/NaryFunctions.v
theories/Logic/WKL.v
theories/Classes/EquivDec.v
</dd>
<dt> <a name="streams"></a><b>Streams</b>:
Streams (infinite sequences)
</dt>
<dd>
theories/Streams/Streams.v
theories/Streams/StreamMemo.v
</dd>
<dt> <a name="positive"></a><b>PArith</b>:
Binary representation of positive integers for effective computation.
You may also want narith and zarith below for N and Z
built on top of <a href="#positive">positive</a>.
</dt>
<dd>
theories/Numbers/AltBinNotations.v
theories/PArith/BinPosDef.v
theories/PArith/BinPos.v
theories/PArith/Pnat.v
theories/PArith/POrderedType.v
(theories/PArith/PArith.v)
</dd>
<dt> <a name="narith-base"></a><b>NArith-base</b>:
Binary natural numbers.
Everything can be loaded with From Stdlib Require Import NArith_base.
To enjoy the ring automatic tactic, you need to load
<a href="#narith">narith</a> below, using From Stdlib Require Import NArith.
</dt>
<dd>
theories/NArith/BinNatDef.v
theories/NArith/BinNat.v
theories/NArith/Nnat.v
theories/NArith/Ndec.v
theories/NArith/Ndiv_def.v
theories/NArith/Ngcd_def.v
theories/NArith/Nsqrt_def.v
(theories/NArith/NArith_base.v)
</dd>
<dt> <a name="narith"></a><b>NArith</b>:
Binary natural numbers
</dt>
<dd>
(theories/NArith/NArith.v)
</dd>
<dt> <a name="zarith-base"></a><b>ZArith-base</b>:
Basic binary integers
</dt>
<dd>
theories/Numbers/Integer/Abstract/ZAdd.v
theories/Numbers/Integer/Abstract/ZAddOrder.v
theories/Numbers/Integer/Abstract/ZAxioms.v
theories/Numbers/Integer/Abstract/ZBase.v
theories/Numbers/Integer/Abstract/ZLt.v
theories/Numbers/Integer/Abstract/ZMul.v
theories/Numbers/Integer/Abstract/ZMulOrder.v
theories/Numbers/Integer/Abstract/ZSgnAbs.v
theories/Numbers/Integer/Abstract/ZMaxMin.v
theories/Numbers/Integer/Abstract/ZParity.v
theories/Numbers/Integer/Abstract/ZPow.v
theories/Numbers/Integer/Abstract/ZGcd.v
theories/Numbers/Integer/Abstract/ZLcm.v
theories/Numbers/Integer/Abstract/ZBits.v
theories/Numbers/Integer/Abstract/ZProperties.v
theories/Numbers/Integer/Abstract/ZDivFloor.v
theories/Numbers/Integer/Abstract/ZDivTrunc.v
theories/ZArith/BinIntDef.v
theories/ZArith/BinInt.v
theories/ZArith/Zorder.v
theories/ZArith/Zcompare.v
theories/ZArith/Znat.v
theories/ZArith/Zmin.v
theories/ZArith/Zmax.v
theories/ZArith/Zminmax.v
theories/ZArith/Zabs.v
theories/ZArith/Zeven.v
theories/ZArith/auxiliary.v
theories/ZArith/ZArith_dec.v
theories/ZArith/Zbool.v
theories/ZArith/Zmisc.v
theories/ZArith/Wf_Z.v
theories/ZArith/Zhints.v
(theories/ZArith/ZArith_base.v)
theories/ZArith/Zpow_alt.v
theories/ZArith/Int.v
</dd>
<dt> <a name="ring"></a><b>Ring</b>:
Ring tactic.
</dt>
<dd>
theories/ZArith/Zcomplements.v
theories/ZArith/Zpow_def.v
theories/ZArith/Zdiv.v
theories/ZArith/Znumtheory.v
</dd>
<dt> <a name="arith"></a><b>Arith</b>:
Basic Peano arithmetic
</dt>
<dd>
(theories/Arith/Arith.v)
</dd>
<dt> <a name="zarith"></a><b>ZArith</b>:
Binary encoding of integers.
This binary encoding was initially developped to enable effective
computations, compared to the unary encoding of nat. Proofs were then added
making the types usable for mathematical proofs, although this was not
the initial intent. If even-more efficient computations are needed, look
at the <a href="#primitive-int">primitive-int</a> package below for 63 bits machine arithmetic
or the coq-bignums package for arbitrary precision machine arithmetic.
Everything can be imported with From Stdlib Require Import ZArith.
Also contains the migromega tactic that can be loaded with
From Stdlib Require Import Lia.
</dt>
<dd>
theories/ZArith/Zpower.v
theories/ZArith/Zquot.v
(theories/ZArith/ZArith.v)
theories/ZArith/Zgcd_alt.v
theories/ZArith/Zwf.v
theories/ZArith/Zpow_facts.v
theories/ZArith/Zdiv_facts.v
theories/ZArith/Zbitwise.v
theories/Numbers/DecimalFacts.v
theories/Numbers/DecimalNat.v
theories/Numbers/DecimalPos.v
theories/Numbers/DecimalN.v
theories/Numbers/DecimalZ.v
theories/Numbers/HexadecimalFacts.v
theories/Numbers/HexadecimalNat.v
theories/Numbers/HexadecimalPos.v
theories/Numbers/HexadecimalN.v
theories/Numbers/HexadecimalZ.v
</dd>
<dt> <a name="unicode"></a><b>Unicode</b>:
Unicode-based alternative notations
</dt>
<dd>
theories/Unicode/Utf8_core.v
theories/Unicode/Utf8.v
</dd>
<dt> <a name="primitive-int"></a><b>Primitive Integers</b>:
Interface for hardware integers (63 rather than 64 bits due to OCaml
garbage collector). This enables very efficient arithmetic, for developing
tactics for proofs by reflection for instance.
</dt>
<dd>
theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
theories/Numbers/Cyclic/Abstract/NZCyclic.v
theories/Numbers/Cyclic/Abstract/DoubleType.v
theories/Numbers/Cyclic/Int63/Cyclic63.v
theories/Numbers/Cyclic/Int63/Uint63.v
theories/Numbers/Cyclic/Int63/Sint63.v
theories/Numbers/Cyclic/Int63/Ring63.v
</dd>
<dt> <a name="primitive-floats"></a><b>Floats</b>:
Efficient machine floating-point arithmetic
Interface to hardware floating-point arithmetic for efficient computations.
This offers a basic model of floating-point arithmetic but is not very
usable alone. Look at the coq-flocq package for an actual model of
floating-point arithmetic, including links to Stdlib <a href="#reals">reals</a> and the current
Floats.
</dt>
<dd>
theories/Floats/FloatLemmas.v
(theories/Floats/Floats.v)
</dd>
<dt> <a name="primitive-array"></a><b>Primitive Arrays</b>:
Persistent native arrays, enabling efficient computations with arrays.
</dt>
<dd>
theories/Array/PArray.v
</dd>
<dt> <a name="vectors"></a><b>Vectors</b>:
Dependent datastructures storing their length.
This is known to be technically difficult to use. It is often much better
to use a dependent pair with a list and a proof about its length,
as provided by the tuple type in package coq-mathcomp-ssreflect,
allowing almost transparent mixing with lists.
</dt>
<dd>
theories/Vectors/Fin.v
theories/Vectors/VectorDef.v
theories/Vectors/VectorSpec.v
theories/Vectors/VectorEq.v
(theories/Vectors/Vector.v)
theories/Vectors/FinFun.v
theories/Vectors/Bvector.v
</dd>
<dt> <a name="strings"></a><b>Strings</b>
Implementation of string as list of ASCII characters
Beware that there is also a Byte.v file in Init.
</dt>
<dd>
theories/Strings/Byte.v
theories/Strings/Ascii.v
theories/Strings/String.v
theories/Strings/BinaryString.v
theories/Strings/HexString.v
theories/Strings/OctalString.v
theories/Numbers/DecimalString.v
theories/Numbers/HexadecimalString.v
</dd>
<dt> <a name="classical-logic"></a><b>Classical Logic</b>:
Classical logic, dependent equality, extensionality, choice axioms
</dt>
<dd>
theories/Logic/Classical_Pred_Type.v
theories/Logic/Classical_Prop.v
(theories/Logic/Classical.v)
theories/Logic/ClassicalFacts.v
theories/Logic/ChoiceFacts.v
theories/Logic/ClassicalChoice.v
theories/Logic/ClassicalDescription.v
theories/Logic/ClassicalEpsilon.v
theories/Logic/ClassicalUniqueChoice.v
theories/Logic/SetoidChoice.v
theories/Logic/Diaconescu.v
theories/Logic/Description.v
theories/Logic/Epsilon.v
theories/Logic/IndefiniteDescription.v
theories/Logic/PropExtensionality.v
</dd>
<dt> <a name="sets"></a><b>Sets</b>:
Classical sets. This is known to be outdated. More modern alternatives
can be found in coq-mathcomp-ssreflect (for finite sets)
and coq-mathcomp-classical (for classical sets) or coq-stdpp.
</dt>
<dd>
theories/Sets/Classical_sets.v
theories/Sets/Constructive_sets.v
theories/Sets/Cpo.v
theories/Sets/Ensembles.v
theories/Sets/Finite_sets_facts.v
theories/Sets/Finite_sets.v
theories/Sets/Image.v
theories/Sets/Infinite_sets.v
theories/Sets/Integers.v
theories/Sets/Multiset.v
theories/Sets/Partial_Order.v
theories/Sets/Permut.v
theories/Sets/Powerset_Classical_facts.v
theories/Sets/Powerset_facts.v
theories/Sets/Powerset.v
theories/Sets/Relations_1_facts.v
theories/Sets/Relations_1.v
theories/Sets/Relations_2_facts.v
theories/Sets/Relations_2.v
theories/Sets/Relations_3_facts.v
theories/Sets/Relations_3.v
theories/Sets/Uniset.v
</dd>
<dt> <a name="sorting"></a><b>Sorting</b>:
Axiomatizations of sorts
</dt>
<dd>
theories/Sorting/SetoidList.v
theories/Sorting/SetoidPermutation.v
theories/Sorting/Heap.v
theories/Sorting/Permutation.v
theories/Sorting/Sorting.v
theories/Sorting/PermutEq.v
theories/Sorting/PermutSetoid.v
theories/Sorting/Mergesort.v
theories/Sorting/Sorted.v
theories/Sorting/CPermutation.v
</dd>
<dt> <a name="orders-ex"></a><b>Structure Instances</b>:
Instances of order structures from <a href="#structures">Structures</a> above.
DecidableType* and OrderedType* are there only for compatibility.
</dt>
<dd>
theories/Structures/EqualitiesFacts.v
theories/Structures/OrdersAlt.v
theories/Structures/OrdersEx.v
theories/Structures/OrdersLists.v
theories/Structures/DecidableType.v
theories/Structures/DecidableTypeEx.v
theories/Structures/OrderedType.v
theories/Structures/OrderedTypeAlt.v
theories/Structures/OrderedTypeEx.v
theories/Structures/BoolOrder.v
</dd>
<dt> <a name="primitive-string"></a><b>Primitive Strings</b>
Native string type
</dt>
<dd>
theories/Strings/PString.v
</dd>
<dt> <a name="qarith-base"></a><b>QArith-base</b>:
Basic binary rational numbers.
Look at <a href="#qarith">qarith</a> below for more functionalities with the field
and Lqa tactics.
</dt>
<dd>
theories/QArith/QArith_base.v
theories/QArith/Qreduction.v
theories/QArith/QOrderedType.v
theories/QArith/Qminmax.v
</dd>
<dt> <a name="field"></a><b>Field</b>:
Field tactic.
</dt>
<dd>
theories/QArith/Qpower.v
theories/QArith/Qring.v
theories/QArith/Qfield.v
theories/QArith/Qcanon.v
theories/QArith/Qround.v
</dd>
<dt> <a name="qarith"></a><b>QArith</b>:
Binary rational numbers, made on top of <a href="#zarith">zarith</a>.
Those enable effective computations in arbitrary precision exact rational
arithmetic. Those rationals are known to be difficult to use for
mathematical proofs because there is no canonical representation
(2/3 and 4/6 are not equal for instance). For even more efficient
computation, look at the coq-bignums package which uses machine integers.
For mathematical proofs, the rat type of the coq-mathcomp-algebra package
are much more comfortable, although they don't enjoy efficient computation
(coq-coqeal offers a refinement with coq-bignums that enables to enjoy
both aspects).
</dt>
<dd>
theories/QArith/Qabs.v
(theories/QArith/QArith.v)
theories/QArith/Qcabs.v
theories/Numbers/DecimalQ.v
theories/Numbers/HexadecimalQ.v
</dd>
<dt> <a name="reals"></a><b>Reals</b>:
Formalization of real numbers.
Most of it can be loaded with From Stdlib Require Import Reals.
Also contains the micromega tactics, loadable with
From Stdlib Require Import Lra. and From Stdlib Require Import Psatz.
</dt>
<dd>
<dl>
<dt> <b>Classical Reals</b>:
Real numbers with excluded middle, total order and least upper bounds
</dt>
<dd>
theories/Reals/Rdefinitions.v
theories/Reals/ClassicalDedekindReals.v
theories/Reals/ClassicalConstructiveReals.v
theories/Reals/Raxioms.v
theories/Reals/RIneq.v
theories/Reals/DiscrR.v
theories/Reals/ROrderedType.v
theories/Reals/Rminmax.v
(theories/Reals/Rbase.v)
theories/Reals/RList.v
theories/Reals/Ranalysis.v
theories/Reals/Rbasic_fun.v
theories/Reals/Rderiv.v
theories/Reals/Rfunctions.v
theories/Reals/Zfloor.v
theories/Reals/Rgeom.v
theories/Reals/R_Ifp.v
theories/Reals/Rlimit.v
theories/Reals/Rseries.v
theories/Reals/Rsigma.v
theories/Reals/R_sqr.v
theories/Reals/Rtrigo_fun.v
theories/Reals/Rtrigo1.v
theories/Reals/Rtrigo.v
theories/Reals/Rtrigo_facts.v
theories/Reals/Ratan.v
theories/Reals/Machin.v
theories/Reals/SplitAbsolu.v
theories/Reals/SplitRmult.v
theories/Reals/Alembert.v
theories/Reals/AltSeries.v
theories/Reals/ArithProp.v
theories/Reals/Binomial.v
theories/Reals/Cauchy_prod.v
theories/Reals/Cos_plus.v
theories/Reals/Cos_rel.v
theories/Reals/Exp_prop.v
theories/Reals/Integration.v
theories/Reals/MVT.v
theories/Reals/NewtonInt.v
theories/Reals/PSeries_reg.v
theories/Reals/PartSum.v
theories/Reals/R_sqrt.v
theories/Reals/Ranalysis1.v
theories/Reals/Ranalysis2.v
theories/Reals/Ranalysis3.v
theories/Reals/Ranalysis4.v
theories/Reals/Ranalysis5.v
theories/Reals/Ranalysis_reg.v
theories/Reals/Rcomplete.v
theories/Reals/RiemannInt.v
theories/Reals/RiemannInt_SF.v
theories/Reals/Rpow_def.v
theories/Reals/Rpower.v
theories/Reals/Rprod.v
theories/Reals/Rsqrt_def.v
theories/Reals/Rtopology.v
theories/Reals/Rtrigo_alt.v
theories/Reals/Rtrigo_calc.v
theories/Reals/Rtrigo_def.v
theories/Reals/Rtrigo_reg.v
theories/Reals/SeqProp.v
theories/Reals/SeqSeries.v
theories/Reals/Sqrt_reg.v
theories/Reals/Rlogic.v
theories/Reals/Rregisternames.v
(theories/Reals/Reals.v)
theories/Reals/Runcountable.v
</dd>
<dt> <b>Abstract Constructive Reals</b>:
Interface of constructive reals, proof of equivalence of all implementations. EXPERIMENTAL
</dt>
<dd>
theories/Reals/Abstract/ConstructiveReals.v
theories/Reals/Abstract/ConstructiveRealsMorphisms.v
theories/Reals/Abstract/ConstructiveLUB.v
theories/Reals/Abstract/ConstructiveAbs.v
theories/Reals/Abstract/ConstructiveLimits.v
theories/Reals/Abstract/ConstructiveMinMax.v
theories/Reals/Abstract/ConstructivePower.v
theories/Reals/Abstract/ConstructiveSum.v
</dd>
<dt> <b>Constructive Cauchy Reals</b>:
Cauchy sequences of rational numbers, implementation of the interface. EXPERIMENTAL
</dt>
<dd>
theories/Reals/Cauchy/ConstructiveRcomplete.v
theories/Reals/Cauchy/ConstructiveCauchyReals.v
theories/Reals/Cauchy/ConstructiveCauchyRealsMult.v
theories/Reals/Cauchy/ConstructiveCauchyAbs.v
theories/Reals/Qreals.v
theories/Numbers/DecimalR.v
theories/Numbers/HexadecimalR.v
</dd>
</dl>
</dd>
<dt> <a name="fmaps-fsets-msets"></a><b>MSets</b>:
Modular implementation of finite sets using lists or
efficient trees. This is a modernization of FSets.
</dt>
<dd>
theories/MSets/MSetInterface.v
theories/MSets/MSetFacts.v
theories/MSets/MSetDecide.v
theories/MSets/MSetProperties.v
theories/MSets/MSetEqProperties.v
theories/MSets/MSetWeakList.v
theories/MSets/MSetList.v
theories/MSets/MSetGenTree.v
theories/MSets/MSetAVL.v
theories/MSets/MSetRBT.v
theories/MSets/MSetPositive.v
theories/MSets/MSetToFiniteSet.v
(theories/MSets/MSets.v)
</dd>
<dt> <b>FSets</b>:
Modular implementation of finite sets/maps using lists or
efficient trees. For sets, please consider the more
modern MSets.
</dt>
<dd>
theories/FSets/FSetInterface.v
theories/FSets/FSetBridge.v
theories/FSets/FSetFacts.v
theories/FSets/FSetDecide.v
theories/FSets/FSetProperties.v
theories/FSets/FSetEqProperties.v
theories/FSets/FSetList.v
theories/FSets/FSetWeakList.v
theories/FSets/FSetCompat.v
theories/FSets/FSetAVL.v
theories/FSets/FSetPositive.v
(theories/FSets/FSets.v)
theories/FSets/FSetToFiniteSet.v
theories/FSets/FMapInterface.v
theories/FSets/FMapWeakList.v
theories/FSets/FMapList.v
theories/FSets/FMapPositive.v
theories/FSets/FMapFacts.v
(theories/FSets/FMaps.v)
theories/FSets/FMapAVL.v
theories/FSets/FMapFullAVL.v
</dd>
<dt> <a name="wellfounded"></a><b>Wellfounded</b>:
Well-founded Relations
</dt>
<dd>
theories/Wellfounded/Disjoint_Union.v
theories/Wellfounded/Inclusion.v
theories/Wellfounded/Inverse_Image.v
theories/Wellfounded/Lexicographic_Exponentiation.v
theories/Wellfounded/Lexicographic_Product.v
theories/Wellfounded/List_Extension.v
theories/Wellfounded/Transitive_Closure.v
theories/Wellfounded/Union.v
theories/Wellfounded/Wellfounded.v
theories/Wellfounded/Well_Ordering.v
</dd>
<dt> <a name="compat"></a><b>Compat</b>:
Compatibility wrappers for previous versions of Stdlib
</dt>
<dd>
theories/Compat/AdmitAxiom.v
theories/Compat/Stdlib818.v
</dd>
<dt> <a name="all"></a><b>All</b>:
Require the whole Stdlib
</dt>
<dd>
(theories/All/All.v)
</dd>
</dl>
|