File: index-list.html.template

package info (click to toggle)
rocq-stdlib 9.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 11,828 kB
  • sloc: python: 2,928; sh: 444; makefile: 319; javascript: 24; ml: 2
file content (704 lines) | stat: -rw-r--r-- 22,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

<h1>The Rocq Standard Library</h1>

<p>This is the index of the Rocq standard library.
It provides a set of modules directly available
through the <tt>From Stdlib Require Import</tt> command.</p>

<!-- #include depends.svg -->

<p>The standard library is composed of the following subdirectories:</p>

<dl>
  <dt> <a name="logic"></a><b>Logic</b>:
    Logic, dependent equality, extensionality, choice axioms.
    Look at <a href="#classical-logic">classical-logic</a> for more elaborate results.
  </dt>
  <dd>
    theories/Logic/SetIsType.v
    theories/Logic/StrictProp.v
    theories/Logic/Decidable.v
    theories/Logic/Eqdep_dec.v
    theories/Logic/EqdepFacts.v
    theories/Logic/Eqdep.v
    theories/Logic/JMeq.v
    theories/Logic/RelationalChoice.v
    theories/Logic/Berardi.v
    theories/Logic/Hurkens.v
    theories/Logic/ProofIrrelevance.v
    theories/Logic/ProofIrrelevanceFacts.v
    theories/Logic/ConstructiveEpsilon.v
    theories/Logic/PropExtensionalityFacts.v
    theories/Logic/FunctionalExtensionality.v
    theories/Logic/ExtensionalFunctionRepresentative.v
    theories/Logic/ExtensionalityFacts.v
    theories/Logic/WeakFan.v
    theories/Logic/PropFacts.v
    theories/Logic/HLevels.v
    theories/Logic/Adjointification.v
  </dd>

  <dt> <a name="program"></a><b>Program</b>:
    Support for dependently-typed programming
    Beware that there are also Tactics.v and Wf.v files in Init.
  </dt>
  <dd>
    theories/Program/Subset.v
    theories/Program/Equality.v
    theories/Program/Syntax.v
    theories/Program/WfExtensionality.v
    theories/Program/Program.v
    theories/Program/Combinators.v
  </dd>

  <dt> <a name="relations"></a><b>Relations</b>:
    Relations (definitions and basic results)
  </dt>
  <dd>
    theories/Relations/Relation_Operators.v
    theories/Relations/Relations.v
    theories/Relations/Operators_Properties.v
  </dd>

  <dt> <a name="classes"></a><b>Classes</b>:
  </dt>
  <dd>
    theories/Classes/Morphisms_Relations.v
    theories/Classes/CEquivalence.v
    theories/Classes/SetoidClass.v
    theories/Classes/RelationPairs.v
    theories/Classes/DecidableClass.v
  </dd>

  <dt><a name="bool"></a><b>Bool</b>:
    Booleans (basic functions and results)
  </dt>
  <dd>
    theories/Bool/Bool.v
    theories/Bool/BoolEq.v
    theories/Bool/DecBool.v
    theories/Bool/IfProp.v
  </dd>

  <dt> <a name="structures"></a><b>Structures</b>:
    Basic "algebraic" structures: types with decidable equality and with order.
    Common instances can be found in <a href="#orders-ex">orders-ex</a>.
    More developped algebra can be found in the
    <a href="https://github.com/math-comp/math-comp">mathematical components
    library</a>.
  </dt>
  <dd>
    theories/Structures/Equalities.v
    theories/Structures/Orders.v
    theories/Structures/OrdersTac.v
    theories/Structures/OrdersFacts.v
    theories/Structures/GenericMinMax.v
  </dd>

  <dt> <a name="arith-base"></a><b>Arith-base</b>:
    Basic Peano Arithmetic.
    Everything can be loaded with From Stdlib Require Import Arith_base.
    To enjoy the ring and lia automatic tactic, you additionally need to load
    arith below, using From Stdlib Require Import Arith Lia.
  </dt>
  <dd>
    theories/Arith/PeanoNat.v
    theories/Arith/Between.v
    theories/Arith/Peano_dec.v
    theories/Arith/Compare_dec.v
    (theories/Arith/Arith_base.v)
    theories/Arith/Compare.v
    theories/Arith/EqNat.v
    theories/Arith/Euclid.v
    theories/Arith/Factorial.v
    theories/Arith/Wf_nat.v
    theories/Arith/Cantor.v
    theories/Arith/Zerob.v
    theories/Numbers/NumPrelude.v
    theories/Numbers/NatInt/NZAdd.v
    theories/Numbers/NatInt/NZAddOrder.v
    theories/Numbers/NatInt/NZAxioms.v
    theories/Numbers/NatInt/NZBase.v
    theories/Numbers/NatInt/NZMul.v
    theories/Numbers/NatInt/NZDiv.v
    theories/Numbers/NatInt/NZMulOrder.v
    theories/Numbers/NatInt/NZOrder.v
    theories/Numbers/NatInt/NZParity.v
    theories/Numbers/NatInt/NZPow.v
    theories/Numbers/NatInt/NZSqrt.v
    theories/Numbers/NatInt/NZLog.v
    theories/Numbers/NatInt/NZGcd.v
    theories/Numbers/NatInt/NZBits.v
    theories/Numbers/Natural/Abstract/NAdd.v
    theories/Numbers/Natural/Abstract/NAddOrder.v
    theories/Numbers/Natural/Abstract/NAxioms.v
    theories/Numbers/Natural/Abstract/NBase.v
    theories/Numbers/Natural/Abstract/NMulOrder.v
    theories/Numbers/Natural/Abstract/NOrder.v
    theories/Numbers/Natural/Abstract/NStrongRec.v
    theories/Numbers/Natural/Abstract/NSub.v
    theories/Numbers/Natural/Abstract/NDiv.v
    theories/Numbers/Natural/Abstract/NDiv0.v
    theories/Numbers/Natural/Abstract/NMaxMin.v
    theories/Numbers/Natural/Abstract/NParity.v
    theories/Numbers/Natural/Abstract/NPow.v
    theories/Numbers/Natural/Abstract/NSqrt.v
    theories/Numbers/Natural/Abstract/NLog.v
    theories/Numbers/Natural/Abstract/NGcd.v
    theories/Numbers/Natural/Abstract/NLcm.v
    theories/Numbers/Natural/Abstract/NLcm0.v
    theories/Numbers/Natural/Abstract/NBits.v
    theories/Numbers/Natural/Abstract/NProperties.v
    theories/Classes/SetoidDec.v
  </dd>

  <dt> <a name="lists"></a><b>Lists</b>:
    Polymorphic lists
  </dt>
  <dd>
    theories/Lists/List.v
    theories/Lists/ListDec.v
    theories/Lists/ListSet.v
    theories/Lists/ListTactics.v
    theories/Numbers/NaryFunctions.v
    theories/Logic/WKL.v
    theories/Classes/EquivDec.v
  </dd>

  <dt> <a name="streams"></a><b>Streams</b>:
    Streams (infinite sequences)
  </dt>
  <dd>
    theories/Streams/Streams.v
    theories/Streams/StreamMemo.v
  </dd>

  <dt> <a name="positive"></a><b>PArith</b>:
    Binary representation of positive integers for effective computation.
    You may also want narith and zarith below for N and Z
    built on top of <a href="#positive">positive</a>.
  </dt>
  <dd>
    theories/Numbers/AltBinNotations.v
    theories/PArith/BinPosDef.v
    theories/PArith/BinPos.v
    theories/PArith/Pnat.v
    theories/PArith/POrderedType.v
    (theories/PArith/PArith.v)
  </dd>

  <dt> <a name="narith-base"></a><b>NArith-base</b>:
    Binary natural numbers.
    Everything can be loaded with From Stdlib Require Import NArith_base.
    To enjoy the ring automatic tactic, you need to load
    <a href="#narith">narith</a> below, using From Stdlib Require Import NArith.
  </dt>
  <dd>
    theories/NArith/BinNatDef.v
    theories/NArith/BinNat.v
    theories/NArith/Nnat.v
    theories/NArith/Ndec.v
    theories/NArith/Ndiv_def.v
    theories/NArith/Ngcd_def.v
    theories/NArith/Nsqrt_def.v
    (theories/NArith/NArith_base.v)
  </dd>

  <dt> <a name="narith"></a><b>NArith</b>:
    Binary natural numbers
  </dt>
  <dd>
    (theories/NArith/NArith.v)
  </dd>

  <dt> <a name="zarith-base"></a><b>ZArith-base</b>:
    Basic binary integers
  </dt>
  <dd>
    theories/Numbers/Integer/Abstract/ZAdd.v
    theories/Numbers/Integer/Abstract/ZAddOrder.v
    theories/Numbers/Integer/Abstract/ZAxioms.v
    theories/Numbers/Integer/Abstract/ZBase.v
    theories/Numbers/Integer/Abstract/ZLt.v
    theories/Numbers/Integer/Abstract/ZMul.v
    theories/Numbers/Integer/Abstract/ZMulOrder.v
    theories/Numbers/Integer/Abstract/ZSgnAbs.v
    theories/Numbers/Integer/Abstract/ZMaxMin.v
    theories/Numbers/Integer/Abstract/ZParity.v
    theories/Numbers/Integer/Abstract/ZPow.v
    theories/Numbers/Integer/Abstract/ZGcd.v
    theories/Numbers/Integer/Abstract/ZLcm.v
    theories/Numbers/Integer/Abstract/ZBits.v
    theories/Numbers/Integer/Abstract/ZProperties.v
    theories/Numbers/Integer/Abstract/ZDivFloor.v
    theories/Numbers/Integer/Abstract/ZDivTrunc.v
    theories/ZArith/BinIntDef.v
    theories/ZArith/BinInt.v
    theories/ZArith/Zorder.v
    theories/ZArith/Zcompare.v
    theories/ZArith/Znat.v
    theories/ZArith/Zmin.v
    theories/ZArith/Zmax.v
    theories/ZArith/Zminmax.v
    theories/ZArith/Zabs.v
    theories/ZArith/Zeven.v
    theories/ZArith/auxiliary.v
    theories/ZArith/ZArith_dec.v
    theories/ZArith/Zbool.v
    theories/ZArith/Zmisc.v
    theories/ZArith/Wf_Z.v
    theories/ZArith/Zhints.v
    (theories/ZArith/ZArith_base.v)
    theories/ZArith/Zpow_alt.v
    theories/ZArith/Int.v
  </dd>

  <dt> <a name="ring"></a><b>Ring</b>:
    Ring tactic.
  </dt>
  <dd>
    theories/ZArith/Zcomplements.v
    theories/ZArith/Zpow_def.v
    theories/ZArith/Zdiv.v
    theories/ZArith/Znumtheory.v
  </dd>

  <dt> <a name="arith"></a><b>Arith</b>:
    Basic Peano arithmetic
  </dt>
  <dd>
    (theories/Arith/Arith.v)
  </dd>

  <dt> <a name="zarith"></a><b>ZArith</b>:
    Binary encoding of integers.
    This binary encoding was initially developped to enable effective
    computations, compared to the unary encoding of nat. Proofs were then added
    making the types usable for mathematical proofs, although this was not
    the initial intent. If even-more efficient computations are needed, look
    at the <a href="#primitive-int">primitive-int</a> package below for 63 bits machine arithmetic
    or the coq-bignums package for arbitrary precision machine arithmetic.
    Everything can be imported with From Stdlib Require Import ZArith.
    Also contains the migromega tactic that can be loaded with
    From Stdlib Require Import Lia.
  </dt>
  <dd>
    theories/ZArith/Zpower.v
    theories/ZArith/Zquot.v
    (theories/ZArith/ZArith.v)
    theories/ZArith/Zgcd_alt.v
    theories/ZArith/Zwf.v
    theories/ZArith/Zpow_facts.v
    theories/ZArith/Zdiv_facts.v
    theories/ZArith/Zbitwise.v
    theories/Numbers/DecimalFacts.v
    theories/Numbers/DecimalNat.v
    theories/Numbers/DecimalPos.v
    theories/Numbers/DecimalN.v
    theories/Numbers/DecimalZ.v
    theories/Numbers/HexadecimalFacts.v
    theories/Numbers/HexadecimalNat.v
    theories/Numbers/HexadecimalPos.v
    theories/Numbers/HexadecimalN.v
    theories/Numbers/HexadecimalZ.v
  </dd>

  <dt> <a name="unicode"></a><b>Unicode</b>:
    Unicode-based alternative notations
  </dt>
  <dd>
    theories/Unicode/Utf8_core.v
    theories/Unicode/Utf8.v
  </dd>

  <dt> <a name="primitive-int"></a><b>Primitive Integers</b>:
    Interface for hardware integers (63 rather than 64 bits due to OCaml
    garbage collector). This enables very efficient arithmetic, for developing
    tactics for proofs by reflection for instance.
  </dt>
  <dd>
    theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
    theories/Numbers/Cyclic/Abstract/NZCyclic.v
    theories/Numbers/Cyclic/Abstract/DoubleType.v
    theories/Numbers/Cyclic/Int63/Cyclic63.v
    theories/Numbers/Cyclic/Int63/Uint63.v
    theories/Numbers/Cyclic/Int63/Sint63.v
    theories/Numbers/Cyclic/Int63/Ring63.v
  </dd>

  <dt> <a name="primitive-floats"></a><b>Floats</b>:
    Efficient machine floating-point arithmetic
    Interface to hardware floating-point arithmetic for efficient computations.
    This offers a basic model of floating-point arithmetic but is not very
    usable alone. Look at the coq-flocq package for an actual model of
    floating-point arithmetic, including links to Stdlib <a href="#reals">reals</a> and the current
    Floats.
  </dt>
  <dd>
    theories/Floats/FloatLemmas.v
    (theories/Floats/Floats.v)
  </dd>

  <dt> <a name="primitive-array"></a><b>Primitive Arrays</b>:
    Persistent native arrays, enabling efficient computations with arrays.
  </dt>
  <dd>
    theories/Array/PArray.v
  </dd>

  <dt> <a name="vectors"></a><b>Vectors</b>:
    Dependent datastructures storing their length.
    This is known to be technically difficult to use. It is often much better
    to use a dependent pair with a list and a proof about its length,
    as provided by the tuple type in package coq-mathcomp-ssreflect,
    allowing almost transparent mixing with lists.
  </dt>
  <dd>
    theories/Vectors/Fin.v
    theories/Vectors/VectorDef.v
    theories/Vectors/VectorSpec.v
    theories/Vectors/VectorEq.v
    (theories/Vectors/Vector.v)
    theories/Vectors/FinFun.v
    theories/Vectors/Bvector.v
  </dd>

  <dt> <a name="strings"></a><b>Strings</b>
    Implementation of string as list of ASCII characters
    Beware that there is also a Byte.v file in Init.
  </dt>
  <dd>
    theories/Strings/Byte.v
    theories/Strings/Ascii.v
    theories/Strings/String.v
    theories/Strings/BinaryString.v
    theories/Strings/HexString.v
    theories/Strings/OctalString.v
    theories/Numbers/DecimalString.v
    theories/Numbers/HexadecimalString.v
  </dd>

  <dt> <a name="classical-logic"></a><b>Classical Logic</b>:
    Classical logic, dependent equality, extensionality, choice axioms
  </dt>
  <dd>
    theories/Logic/Classical_Pred_Type.v
    theories/Logic/Classical_Prop.v
    (theories/Logic/Classical.v)
    theories/Logic/ClassicalFacts.v
    theories/Logic/ChoiceFacts.v
    theories/Logic/ClassicalChoice.v
    theories/Logic/ClassicalDescription.v
    theories/Logic/ClassicalEpsilon.v
    theories/Logic/ClassicalUniqueChoice.v
    theories/Logic/SetoidChoice.v
    theories/Logic/Diaconescu.v
    theories/Logic/Description.v
    theories/Logic/Epsilon.v
    theories/Logic/IndefiniteDescription.v
    theories/Logic/PropExtensionality.v
  </dd>

  <dt> <a name="sets"></a><b>Sets</b>:
    Classical sets. This is known to be outdated. More modern alternatives
    can be found in coq-mathcomp-ssreflect (for finite sets)
    and coq-mathcomp-classical (for classical sets) or coq-stdpp.
  </dt>
  <dd>
    theories/Sets/Classical_sets.v
    theories/Sets/Constructive_sets.v
    theories/Sets/Cpo.v
    theories/Sets/Ensembles.v
    theories/Sets/Finite_sets_facts.v
    theories/Sets/Finite_sets.v
    theories/Sets/Image.v
    theories/Sets/Infinite_sets.v
    theories/Sets/Integers.v
    theories/Sets/Multiset.v
    theories/Sets/Partial_Order.v
    theories/Sets/Permut.v
    theories/Sets/Powerset_Classical_facts.v
    theories/Sets/Powerset_facts.v
    theories/Sets/Powerset.v
    theories/Sets/Relations_1_facts.v
    theories/Sets/Relations_1.v
    theories/Sets/Relations_2_facts.v
    theories/Sets/Relations_2.v
    theories/Sets/Relations_3_facts.v
    theories/Sets/Relations_3.v
    theories/Sets/Uniset.v
  </dd>

  <dt> <a name="sorting"></a><b>Sorting</b>:
    Axiomatizations of sorts
  </dt>
  <dd>
    theories/Sorting/SetoidList.v
    theories/Sorting/SetoidPermutation.v
    theories/Sorting/Heap.v
    theories/Sorting/Permutation.v
    theories/Sorting/Sorting.v
    theories/Sorting/PermutEq.v
    theories/Sorting/PermutSetoid.v
    theories/Sorting/Mergesort.v
    theories/Sorting/Sorted.v
    theories/Sorting/CPermutation.v
  </dd>

  <dt> <a name="orders-ex"></a><b>Structure Instances</b>:
    Instances of order structures from <a href="#structures">Structures</a> above.
    DecidableType* and OrderedType* are there only for compatibility.
  </dt>
  <dd>
    theories/Structures/EqualitiesFacts.v
    theories/Structures/OrdersAlt.v
    theories/Structures/OrdersEx.v
    theories/Structures/OrdersLists.v
    theories/Structures/DecidableType.v
    theories/Structures/DecidableTypeEx.v
    theories/Structures/OrderedType.v
    theories/Structures/OrderedTypeAlt.v
    theories/Structures/OrderedTypeEx.v
    theories/Structures/BoolOrder.v
  </dd>

  <dt> <a name="primitive-string"></a><b>Primitive Strings</b>
    Native string type
  </dt>
  <dd>
    theories/Strings/PString.v
  </dd>

  <dt> <a name="qarith-base"></a><b>QArith-base</b>:
    Basic binary rational numbers.
    Look at <a href="#qarith">qarith</a> below for more functionalities with the field
    and Lqa tactics.
  </dt>
  <dd>
    theories/QArith/QArith_base.v
    theories/QArith/Qreduction.v
    theories/QArith/QOrderedType.v
    theories/QArith/Qminmax.v
  </dd>

  <dt> <a name="field"></a><b>Field</b>:
    Field tactic.
  </dt>
  <dd>
    theories/QArith/Qpower.v
    theories/QArith/Qring.v
    theories/QArith/Qfield.v
    theories/QArith/Qcanon.v
    theories/QArith/Qround.v
  </dd>

  <dt> <a name="qarith"></a><b>QArith</b>:
    Binary rational numbers, made on top of <a href="#zarith">zarith</a>.
    Those enable effective computations in arbitrary precision exact rational
    arithmetic. Those rationals are known to be difficult to use for
    mathematical proofs because there is no canonical representation
    (2/3 and 4/6 are not equal for instance). For even more efficient
    computation, look at the coq-bignums package which uses machine integers.
    For mathematical proofs, the rat type of the coq-mathcomp-algebra package
    are much more comfortable, although they don't enjoy efficient computation
    (coq-coqeal offers a refinement with coq-bignums that enables to enjoy
    both aspects).
  </dt>
  <dd>
    theories/QArith/Qabs.v
    (theories/QArith/QArith.v)
    theories/QArith/Qcabs.v
    theories/Numbers/DecimalQ.v
    theories/Numbers/HexadecimalQ.v
  </dd>

  <dt> <a name="reals"></a><b>Reals</b>:
    Formalization of real numbers.
    Most of it can be loaded with From Stdlib Require Import Reals.
    Also contains the micromega tactics, loadable with
    From Stdlib Require Import Lra. and From Stdlib Require Import Psatz.
  </dt>
  <dd>
    <dl>
  <dt> <b>Classical Reals</b>:
    Real numbers with excluded middle, total order and least upper bounds
  </dt>
  <dd>
    theories/Reals/Rdefinitions.v
    theories/Reals/ClassicalDedekindReals.v
    theories/Reals/ClassicalConstructiveReals.v
    theories/Reals/Raxioms.v
    theories/Reals/RIneq.v
    theories/Reals/DiscrR.v
    theories/Reals/ROrderedType.v
    theories/Reals/Rminmax.v
    (theories/Reals/Rbase.v)
    theories/Reals/RList.v
    theories/Reals/Ranalysis.v
    theories/Reals/Rbasic_fun.v
    theories/Reals/Rderiv.v
    theories/Reals/Rfunctions.v
    theories/Reals/Zfloor.v
    theories/Reals/Rgeom.v
    theories/Reals/R_Ifp.v
    theories/Reals/Rlimit.v
    theories/Reals/Rseries.v
    theories/Reals/Rsigma.v
    theories/Reals/R_sqr.v
    theories/Reals/Rtrigo_fun.v
    theories/Reals/Rtrigo1.v
    theories/Reals/Rtrigo.v
    theories/Reals/Rtrigo_facts.v
    theories/Reals/Ratan.v
    theories/Reals/Machin.v
    theories/Reals/SplitAbsolu.v
    theories/Reals/SplitRmult.v
    theories/Reals/Alembert.v
    theories/Reals/AltSeries.v
    theories/Reals/ArithProp.v
    theories/Reals/Binomial.v
    theories/Reals/Cauchy_prod.v
    theories/Reals/Cos_plus.v
    theories/Reals/Cos_rel.v
    theories/Reals/Exp_prop.v
    theories/Reals/Integration.v
    theories/Reals/MVT.v
    theories/Reals/NewtonInt.v
    theories/Reals/PSeries_reg.v
    theories/Reals/PartSum.v
    theories/Reals/R_sqrt.v
    theories/Reals/Ranalysis1.v
    theories/Reals/Ranalysis2.v
    theories/Reals/Ranalysis3.v
    theories/Reals/Ranalysis4.v
    theories/Reals/Ranalysis5.v
    theories/Reals/Ranalysis_reg.v
    theories/Reals/Rcomplete.v
    theories/Reals/RiemannInt.v
    theories/Reals/RiemannInt_SF.v
    theories/Reals/Rpow_def.v
    theories/Reals/Rpower.v
    theories/Reals/Rprod.v
    theories/Reals/Rsqrt_def.v
    theories/Reals/Rtopology.v
    theories/Reals/Rtrigo_alt.v
    theories/Reals/Rtrigo_calc.v
    theories/Reals/Rtrigo_def.v
    theories/Reals/Rtrigo_reg.v
    theories/Reals/SeqProp.v
    theories/Reals/SeqSeries.v
    theories/Reals/Sqrt_reg.v
    theories/Reals/Rlogic.v
    theories/Reals/Rregisternames.v
    (theories/Reals/Reals.v)
    theories/Reals/Runcountable.v
  </dd>
  <dt> <b>Abstract Constructive Reals</b>:
    Interface of constructive reals, proof of equivalence of all implementations. EXPERIMENTAL 
  </dt>
  <dd>
    theories/Reals/Abstract/ConstructiveReals.v
    theories/Reals/Abstract/ConstructiveRealsMorphisms.v
    theories/Reals/Abstract/ConstructiveLUB.v
    theories/Reals/Abstract/ConstructiveAbs.v
    theories/Reals/Abstract/ConstructiveLimits.v
    theories/Reals/Abstract/ConstructiveMinMax.v
    theories/Reals/Abstract/ConstructivePower.v
    theories/Reals/Abstract/ConstructiveSum.v
  </dd>
  <dt> <b>Constructive Cauchy Reals</b>:
    Cauchy sequences of rational numbers, implementation of the interface. EXPERIMENTAL
  </dt>
  <dd>
    theories/Reals/Cauchy/ConstructiveRcomplete.v
    theories/Reals/Cauchy/ConstructiveCauchyReals.v
    theories/Reals/Cauchy/ConstructiveCauchyRealsMult.v
    theories/Reals/Cauchy/ConstructiveCauchyAbs.v
    theories/Reals/Qreals.v
    theories/Numbers/DecimalR.v
    theories/Numbers/HexadecimalR.v
  </dd>

  </dl>
  </dd>

  <dt> <a name="fmaps-fsets-msets"></a><b>MSets</b>:
    Modular implementation of finite sets using lists or
    efficient trees. This is a modernization of FSets.
  </dt>
  <dd>
    theories/MSets/MSetInterface.v
    theories/MSets/MSetFacts.v
    theories/MSets/MSetDecide.v
    theories/MSets/MSetProperties.v
    theories/MSets/MSetEqProperties.v
    theories/MSets/MSetWeakList.v
    theories/MSets/MSetList.v
    theories/MSets/MSetGenTree.v
    theories/MSets/MSetAVL.v
    theories/MSets/MSetRBT.v
    theories/MSets/MSetPositive.v
    theories/MSets/MSetToFiniteSet.v
    (theories/MSets/MSets.v)
  </dd>

  <dt> <b>FSets</b>:
    Modular implementation of finite sets/maps using lists or
    efficient trees. For sets, please consider the more
    modern MSets.
  </dt>
  <dd>
    theories/FSets/FSetInterface.v
    theories/FSets/FSetBridge.v
    theories/FSets/FSetFacts.v
    theories/FSets/FSetDecide.v
    theories/FSets/FSetProperties.v
    theories/FSets/FSetEqProperties.v
    theories/FSets/FSetList.v
    theories/FSets/FSetWeakList.v
    theories/FSets/FSetCompat.v
    theories/FSets/FSetAVL.v
    theories/FSets/FSetPositive.v
    (theories/FSets/FSets.v)
    theories/FSets/FSetToFiniteSet.v
    theories/FSets/FMapInterface.v
    theories/FSets/FMapWeakList.v
    theories/FSets/FMapList.v
    theories/FSets/FMapPositive.v
    theories/FSets/FMapFacts.v
    (theories/FSets/FMaps.v)
    theories/FSets/FMapAVL.v
    theories/FSets/FMapFullAVL.v
  </dd>

  <dt> <a name="wellfounded"></a><b>Wellfounded</b>:
    Well-founded Relations
  </dt>
  <dd>
    theories/Wellfounded/Disjoint_Union.v
    theories/Wellfounded/Inclusion.v
    theories/Wellfounded/Inverse_Image.v
    theories/Wellfounded/Lexicographic_Exponentiation.v
    theories/Wellfounded/Lexicographic_Product.v
    theories/Wellfounded/List_Extension.v
    theories/Wellfounded/Transitive_Closure.v
    theories/Wellfounded/Union.v
    theories/Wellfounded/Wellfounded.v
    theories/Wellfounded/Well_Ordering.v
  </dd>

  <dt> <a name="compat"></a><b>Compat</b>:
    Compatibility wrappers for previous versions of Stdlib
  </dt>
  <dd>
    theories/Compat/AdmitAxiom.v
    theories/Compat/Stdlib818.v
  </dd>

  <dt> <a name="all"></a><b>All</b>:
    Require the whole Stdlib
  </dt>
  <dd>
    (theories/All/All.v)
  </dd>
</dl>