1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
(* Bug report #2830 (evar defined twice) covers different bugs *)
(* 1- This was submitted by qb.h.agws *)
Module A.
Set Implicit Arguments.
Inductive Bit := O | I.
Inductive BitString: nat -> Set :=
| bit: Bit -> BitString 0
| bitStr: forall n: nat, Bit -> BitString n -> BitString (S n).
Definition BitOr (a b: Bit) :=
match a, b with
| O, O => O
| _, _ => I
end.
(* Should fail with an error; used to failed in 8.4 and trunk with
anomaly Evd.define: cannot define an evar twice *)
Fail Fixpoint StringOr (n m: nat) (a: BitString n) (b: BitString m) :=
match a with
| bit a' =>
match b with
| bit b' => bit (BitOr a' b')
| bitStr b' bT => bitStr b' (StringOr (bit a') bT)
end
| bitStr a' aT =>
match b with
| bit b' => bitStr a' (StringOr aT (bit b'))
| bitStr b' bT => bitStr (BitOr a' b') (StringOr aT bT)
end
end.
End A.
(* 2- This was submitted by Andrew Appel *)
Module B.
From Stdlib Require Import Program Relations.
Record ageable_facts (A:Type) (level: A -> nat) (age1:A -> option A) :=
{ af_unage : forall x x' y', level x' = level y' -> age1 x = Some x' -> exists y, age1 y = Some y'
; af_level1 : forall x, age1 x = None <-> level x = 0
; af_level2 : forall x y, age1 x = Some y -> level x = S (level y)
}.
Arguments af_unage {A level age1}.
Arguments af_level1 {A level age1}.
Arguments af_level2 {A level age1}.
Class ageable (A:Type) := mkAgeable
{ level : A -> nat
; age1 : A -> option A
; age_facts : ageable_facts A level age1
}.
Definition age {A} `{ageable A} (x y:A) := age1 x = Some y.
Definition necR {A} `{ageable A} : relation A := clos_refl_trans A age.
Delimit Scope pred with pred.
Local Open Scope pred.
Definition hereditary {A} (R:A->A->Prop) (p:A->Prop) :=
forall a a':A, R a a' -> p a -> p a'.
Definition pred (A:Type) {AG:ageable A} :=
{ p:A -> Prop | hereditary age p }.
Bind Scope pred with pred.
Definition app_pred {A} `{ageable A} (p:pred A) : A -> Prop := proj1_sig p.
Definition pred_hereditary `{ageable} (p:pred A) := proj2_sig p.
Coercion app_pred : pred >-> Funclass.
Global Opaque pred.
Definition derives {A} `{ageable A} (P Q:pred A) := forall a:A, P a -> Q a.
Arguments derives : default implicits.
Program Definition andp {A} `{ageable A} (P Q:pred A) : pred A :=
fun a:A => P a /\ Q a.
Next Obligation.
intros; intro; intuition; apply pred_hereditary with a; auto.
Qed.
Program Definition imp {A} `{ageable A} (P Q:pred A) : pred A :=
fun a:A => forall a':A, necR a a' -> P a' -> Q a'.
Next Obligation.
intros; intro; intuition.
apply H1; auto.
apply rt_trans with a'; auto.
apply rt_step; auto.
Qed.
Program Definition allp {A} `{ageable A} {B: Type} (f: B -> pred A) : pred A
:= fun a => forall b, f b a.
Next Obligation.
intros; intro; intuition.
apply pred_hereditary with a; auto.
apply H1.
Qed.
Notation "P '<-->' Q" := (andp (imp P Q) (imp Q P)) (at level 57, no associativity) : pred.
Notation "P '|--' Q" := (derives P Q) (at level 80, no associativity).
Notation "'All' x ':' T ',' P " := (allp (fun x:T => P%pred)) (at level 65, x at level 99) : pred.
Lemma forall_pred_ext {A} `{agA : ageable A}: forall B P Q,
(All x : B, (P x <--> Q x)) |-- (All x : B, P x) <--> (All x: B, Q x).
Abort.
End B.
(* 3. *)
(* This was submitted by Anthony Cowley *)
From Stdlib Require Import Morphisms.
From Stdlib Require Import Setoid.
Module C.
Reserved Notation "a ~> b" (at level 70, right associativity).
Reserved Notation "a ≈ b" (at level 54).
Reserved Notation "a ∘ b" (at level 50, left associativity).
Generalizable All Variables.
Class Category (Object:Type) (Hom:Object -> Object -> Type) := {
hom := Hom where "a ~> b" := (hom a b) : category_scope
; ob := Object
; id : forall a, hom a a
; comp : forall c b a, hom b c -> hom a b -> hom a c
where "g ∘ f" := (comp _ _ _ g f) : category_scope
; eqv : forall a b, hom a b -> hom a b -> Prop
where "f ≈ g" := (eqv _ _ f g) : category_scope
; eqv_equivalence : forall a b, Equivalence (eqv a b)
; comp_respects : forall a b c,
Proper (eqv b c ==> eqv a b ==> eqv a c) (comp c b a)
; left_identity : forall `(f:a ~> b), id b ∘ f ≈ f
; right_identity : forall `(f:a ~> b), f ∘ id a ≈ f
; associativity : forall `(f:a~>b) `(g:b~>c) `(h:c~>d),
h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f
}.
Notation "a ~> b" := (@hom _ _ _ a b) : category_scope.
Notation "g ∘ f" := (@comp _ _ _ _ _ _ g f) : category_scope.
Notation "a ≈ b" := (@eqv _ _ _ _ _ a b) : category_scope.
Notation "a ~{ C }~> b" := (@hom _ _ C a b) (at level 100) : category_scope.
Coercion ob : Category >-> Sortclass.
Open Scope category_scope.
Add Parametric Relation `(C:Category Ob Hom) (a b : Ob) : (hom a b) (eqv a b)
reflexivity proved by (@Equivalence_Reflexive _ _ (eqv_equivalence a b))
symmetry proved by (@Equivalence_Symmetric _ _ (eqv_equivalence a b))
transitivity proved by (@Equivalence_Transitive _ _ (eqv_equivalence a b))
as parametric_relation_eqv.
Add Parametric Morphism `(C:Category Ob Hom) (c b a : Ob) : (comp c b a)
with signature (eqv _ _ ==> eqv _ _ ==> eqv _ _) as parametric_morphism_comp.
intros x y Heq x' y'. apply comp_respects. exact Heq.
Defined.
Class Functor `(C:Category) `(D:Category) (im : C -> D) := {
functor_im := im
; fmap : forall {a b}, `(a ~> b) -> im a ~> im b
; fmap_respects : forall a b (f f' : a ~> b), f ≈ f' -> fmap f ≈ fmap f'
; fmap_preserves_id : forall a, fmap (id a) ≈ id (im a)
; fmap_preserves_comp : forall `(f:a~>b) `(g:b~>c),
fmap g ∘ fmap f ≈ fmap (g ∘ f)
}.
Coercion functor_im : Functor >-> Funclass.
Arguments fmap [Object Hom C Object0 Hom0 D im] _ [a b].
Add Parametric Morphism `(C:Category) `(D:Category)
(Im:C->D) (F:Functor C D Im) (a b:C) : (@fmap _ _ C _ _ D Im F a b)
with signature (@eqv C _ C a b ==> @eqv D _ D (Im a) (Im b))
as parametric_morphism_fmap.
intros. apply fmap_respects. assumption. Qed.
(* HERE IS THE PROBLEMATIC INSTANCE. If we change this to a regular Definition,
then the problem goes away. *)
#[export] Instance functor_comp `{C:Category} `{D:Category} `{E:Category}
{Gim} (G:Functor D E Gim) {Fim} (F:Functor C D Fim)
: Functor C E (Basics.compose Gim Fim).
intros. apply Build_Functor with (fmap := fun a b f => fmap G (fmap F f)).
abstract (intros; rewrite H; reflexivity).
abstract (intros; repeat (rewrite fmap_preserves_id); reflexivity).
abstract (intros; repeat (rewrite fmap_preserves_comp); reflexivity).
Defined.
Definition skel {A:Type} : relation A := @eq A.
#[export] Instance skel_equiv A : Equivalence (@skel A).
Admitted.
Import FunctionalExtensionality.
#[export] Instance set_cat : Category Type (fun A B => A -> B).
refine {|
id := fun A => fun x => x
; comp c b a f g := fun x => f (g x)
; eqv := fun A B => @skel (A -> B)
|}.
intros. compute. symmetry. apply eta_expansion.
intros. compute. symmetry. apply eta_expansion.
intros. compute. reflexivity.
Defined.
(* The [list] type constructor is a Functor. *)
From Stdlib Require Import List.
Definition setList (A:set_cat) := list A.
#[export] Instance list_functor : Functor set_cat set_cat setList.
apply Build_Functor with (fmap := @map).
intros. rewrite H. reflexivity.
intros; simpl; apply functional_extensionality.
induction x; [auto|simpl]. rewrite IHx. reflexivity.
intros; simpl; apply functional_extensionality.
induction x; [auto|simpl]. rewrite IHx. reflexivity.
Defined.
Local Notation "[ a , .. , b ]" := (a :: .. (b :: nil) ..) : list_scope.
Definition setFmap {Fim} {F:Functor set_cat set_cat Fim} `(f:A~>B) (xs:Fim A) := fmap F f xs.
(* We want to infer the [Functor] instance based on the value's
structure, but the [functor_comp] instance throws things awry. *)
Eval cbv in setFmap (fun x => x * 3) [67,8].
End C.
|