1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import PeanoNat.
Local Open Scope nat_scope.
Implicit Types k l p q r : nat.
Section Between.
Variables P Q : nat -> Prop.
(** The [between] type expresses the concept
[forall i: nat, k <= i < l -> P i.]. *)
Inductive between k : nat -> Prop :=
| bet_emp : between k k
| bet_S : forall l, between k l -> P l -> between k (S l).
#[local]
Hint Constructors between: core.
Lemma bet_eq : forall k l, l = k -> between k l.
Proof.
intros * ->; constructor.
Qed.
#[local]
Hint Resolve bet_eq: core.
Lemma between_le : forall k l, between k l -> k <= l.
Proof.
induction 1; auto.
Qed.
#[local]
Hint Immediate between_le: core.
Lemma between_Sk_l : forall k l, between k l -> S k <= l -> between (S k) l.
Proof.
induction 1 as [|* [|]]; auto.
- intros Hle; exfalso; apply (Nat.nle_succ_diag_l _ Hle).
- intros Hle; inversion Hle; constructor; auto.
Qed.
#[local]
Hint Resolve between_Sk_l: core.
Lemma between_restr :
forall k l (m:nat), k <= l -> l <= m -> between k m -> between l m.
Proof.
induction 1; auto.
intros; auto.
apply between_Sk_l; auto.
apply IHle; auto.
transitivity (S m0); auto.
Qed.
(** The [exists_between] type expresses the concept
[exists i: nat, k <= i < l /\ Q i]. *)
Inductive exists_between k : nat -> Prop :=
| exists_S : forall l, exists_between k l -> exists_between k (S l)
| exists_le : forall l, k <= l -> Q l -> exists_between k (S l).
#[local]
Hint Constructors exists_between: core.
Lemma exists_le_S : forall k l, exists_between k l -> S k <= l.
Proof.
induction 1; auto.
apply -> Nat.succ_le_mono; assumption.
Qed.
Lemma exists_lt : forall k l, exists_between k l -> k < l.
Proof exists_le_S.
#[local]
Hint Immediate exists_le_S exists_lt: core.
Lemma exists_S_le : forall k l, exists_between k (S l) -> k <= l.
Proof.
intros; apply le_S_n; auto.
Qed.
#[local]
Hint Immediate exists_S_le: core.
Definition in_int p q r := p <= r /\ r < q.
Lemma in_int_intro : forall p q r, p <= r -> r < q -> in_int p q r.
Proof.
split; assumption.
Qed.
#[local]
Hint Resolve in_int_intro: core.
Lemma in_int_lt : forall p q r, in_int p q r -> p < q.
Proof.
intros * [].
eapply Nat.le_lt_trans; eassumption.
Qed.
Lemma in_int_p_Sq :
forall p q r, in_int p (S q) r -> in_int p q r \/ r = q.
Proof.
intros p q r [].
destruct (proj1 (Nat.lt_eq_cases r q)); auto.
apply Nat.lt_succ_r; assumption.
Qed.
Lemma in_int_S : forall p q r, in_int p q r -> in_int p (S q) r.
Proof.
intros * []; auto.
Qed.
#[local]
Hint Resolve in_int_S: core.
Lemma in_int_Sp_q : forall p q r, in_int (S p) q r -> in_int p q r.
Proof.
intros * []; auto.
apply in_int_intro; auto.
transitivity (S p); auto.
Qed.
#[local]
Hint Immediate in_int_Sp_q: core.
Lemma between_in_int :
forall k l, between k l -> forall r, in_int k l r -> P r.
Proof.
intro k; induction 1 as [|l]; intros r ?.
- absurd (k < k). { apply Nat.lt_irrefl. }
eapply in_int_lt; eassumption.
- destruct (in_int_p_Sq k l r) as [| ->]; auto.
Qed.
Lemma in_int_between :
forall k l, k <= l -> (forall r, in_int k l r -> P r) -> between k l.
Proof.
induction 1; auto.
Qed.
Lemma exists_in_int :
forall k l, exists_between k l -> exists2 m : nat, in_int k l m & Q m.
Proof.
induction 1 as [* ? (p, ?, ?)|l].
- exists p; auto.
- exists l; auto.
Qed.
Lemma in_int_exists : forall k l r, in_int k l r -> Q r -> exists_between k l.
Proof.
intros * (?, lt_r_l) ?.
induction lt_r_l; auto.
Qed.
Lemma between_or_exists :
forall k l,
k <= l ->
(forall n:nat, in_int k l n -> P n \/ Q n) ->
between k l \/ exists_between k l.
Proof.
induction 1 as [|m ? IHle].
- auto.
- intros P_or_Q.
destruct IHle; auto.
destruct (P_or_Q m); auto.
Qed.
Lemma between_not_exists :
forall k l,
between k l ->
(forall n:nat, in_int k l n -> P n -> ~ Q n) -> ~ exists_between k l.
Proof.
intro k; induction 1 as [|l]; red; intros.
- absurd (k < k). { apply Nat.lt_irrefl. } auto.
- absurd (Q l). { auto. }
destruct (exists_in_int k (S l)) as (l',[],?).
+ auto.
+ replace l with l'. { trivial. }
destruct (proj1 (Nat.lt_eq_cases l' l)); auto.
* apply Nat.lt_succ_r; assumption.
* absurd (exists_between k l). { auto. }
apply in_int_exists with l'; auto.
Qed.
Inductive P_nth (init:nat) : nat -> nat -> Prop :=
| nth_O : P_nth init init 0
| nth_S :
forall k l (n:nat),
P_nth init k n -> between (S k) l -> Q l -> P_nth init l (S n).
Lemma nth_le : forall (init:nat) l (n:nat), P_nth init l n -> init <= l.
Proof.
induction 1 as [|a b c H0 H1 H2 H3].
- auto.
- eapply Nat.le_trans; eauto.
apply between_le in H2.
transitivity (S a); auto.
Qed.
Definition eventually (n:nat) := exists2 k : nat, k <= n & Q k.
Lemma event_O : eventually 0 -> Q 0.
Proof.
intros (x, ?, ?).
replace 0 with x; auto.
apply Nat.le_0_r; assumption.
Qed.
End Between.
|