1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
From Stdlib Require Import DecidableClass.
(** The type [bool] is defined in the prelude as
[[
Inductive bool : Set := true : bool | false : bool
]]
*)
(** Most of the lemmas in this file are trivial by case analysis *)
Local Ltac Tauto.intuition_solver ::= auto with bool.
Ltac destr_bool :=
intros; destruct_all bool; simpl in *; trivial; try discriminate.
(** Interpretation of booleans as propositions *)
Definition Is_true (b:bool) :=
match b with
| true => True
| false => False
end.
(*******************)
(** * Decidability *)
(*******************)
Lemma bool_dec : forall b1 b2 : bool, {b1 = b2} + {b1 <> b2}.
Proof.
decide equality.
Defined.
(*********************)
(** * Discrimination *)
(*********************)
Lemma diff_true_false : true <> false.
Proof.
discriminate.
Qed.
#[global]
Hint Resolve diff_true_false : bool.
Lemma diff_false_true : false <> true.
Proof.
discriminate.
Qed.
#[global]
Hint Resolve diff_false_true : bool.
#[global]
Hint Extern 1 (false <> true) => exact diff_false_true : core.
Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False.
Proof.
destr_bool.
Qed.
Lemma not_true_is_false : forall b:bool, b <> true -> b = false.
Proof.
destr_bool; intuition.
Qed.
Lemma not_false_is_true : forall b:bool, b <> false -> b = true.
Proof.
destr_bool; intuition.
Qed.
Lemma not_true_iff_false : forall b, b <> true <-> b = false.
Proof.
destr_bool; intuition.
Qed.
Lemma not_false_iff_true : forall b, b <> false <-> b = true.
Proof.
destr_bool; intuition.
Qed.
(************************)
(** * Order on booleans *)
(************************)
#[ local ] Definition le (b1 b2:bool) :=
match b1 with
| true => b2 = true
| false => True
end.
#[global]
Hint Unfold le: bool.
Lemma le_implb : forall b1 b2, le b1 b2 <-> implb b1 b2 = true.
Proof.
destr_bool; intuition.
Qed.
#[ local ] Definition lt (b1 b2:bool) :=
match b1 with
| true => False
| false => b2 = true
end.
#[global]
Hint Unfold lt: bool.
#[ local ] Definition compare (b1 b2 : bool) :=
match b1, b2 with
| false, true => Lt
| true, false => Gt
| _, _ => Eq
end.
Lemma compare_spec : forall b1 b2,
CompareSpec (b1 = b2) (lt b1 b2) (lt b2 b1) (compare b1 b2).
Proof. destr_bool; auto. Qed.
(***************)
(** * Equality *)
(***************)
Definition eqb (b1 b2:bool) : bool :=
match b1, b2 with
| true, true => true
| true, false => false
| false, true => false
| false, false => true
end.
Register eqb as core.bool.eqb.
Lemma eqb_subst :
forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2.
Proof.
destr_bool.
Qed.
Lemma eqb_reflx : forall b:bool, eqb b b = true.
Proof.
destr_bool.
Qed.
Lemma eqb_prop : forall a b:bool, eqb a b = true -> a = b.
Proof.
destr_bool.
Qed.
Lemma eqb_true_iff : forall a b:bool, eqb a b = true <-> a = b.
Proof.
destr_bool; intuition.
Qed.
#[global]
Instance Decidable_eq_bool : forall (x y : bool), Decidable (eq x y) := {
Decidable_spec := eqb_true_iff x y
}.
Lemma eqb_false_iff : forall a b:bool, eqb a b = false <-> a <> b.
Proof.
destr_bool; intuition.
Qed.
(**********************************)
(** * A synonym of [if] on [bool] *)
(**********************************)
Definition ifb (b1 b2 b3:bool) : bool :=
match b1 with
| true => b2
| false => b3
end.
Open Scope bool_scope.
(*********************)
(** * De Morgan laws *)
(*********************)
Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
Proof.
destr_bool.
Qed.
Lemma negb_andb : forall b1 b2:bool, negb (b1 && b2) = negb b1 || negb b2.
Proof.
destr_bool.
Qed.
(***************************)
(** * Properties of [negb] *)
(***************************)
Lemma negb_involutive : forall b:bool, negb (negb b) = b.
Proof.
destr_bool.
Qed.
Lemma negb_involutive_reverse : forall b:bool, b = negb (negb b).
Proof.
destr_bool.
Qed.
Notation negb_elim := negb_involutive (only parsing).
Notation negb_intro := negb_involutive_reverse (only parsing).
Lemma negb_sym : forall b b':bool, b' = negb b -> b = negb b'.
Proof.
destr_bool.
Qed.
Lemma no_fixpoint_negb : forall b:bool, negb b <> b.
Proof.
destr_bool.
Qed.
Lemma eqb_negb1 : forall b:bool, eqb (negb b) b = false.
Proof.
destr_bool.
Qed.
Lemma eqb_negb2 : forall b:bool, eqb b (negb b) = false.
Proof.
destr_bool.
Qed.
Lemma if_negb :
forall (A:Type) (b:bool) (x y:A),
(if negb b then x else y) = (if b then y else x).
Proof.
destr_bool.
Qed.
Lemma negb_true_iff : forall b, negb b = true <-> b = false.
Proof.
destr_bool; intuition.
Qed.
Lemma negb_false_iff : forall b, negb b = false <-> b = true.
Proof.
destr_bool; intuition.
Qed.
(**************************)
(** * Properties of [orb] *)
(**************************)
Lemma orb_true_iff :
forall b1 b2, b1 || b2 = true <-> b1 = true \/ b2 = true.
Proof.
destr_bool; intuition.
Qed.
Lemma orb_false_iff :
forall b1 b2, b1 || b2 = false <-> b1 = false /\ b2 = false.
Proof.
destr_bool; intuition.
Qed.
Lemma orb_true_elim :
forall b1 b2:bool, b1 || b2 = true -> {b1 = true} + {b2 = true}.
Proof.
intro b1; destruct b1; simpl; auto.
Defined.
Lemma orb_prop : forall a b:bool, a || b = true -> a = true \/ b = true.
Proof.
intros; apply orb_true_iff; trivial.
Qed.
Lemma orb_true_intro :
forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true.
Proof.
intros; apply orb_true_iff; trivial.
Qed.
#[global]
Hint Resolve orb_true_intro: bool.
Lemma orb_false_intro :
forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
Proof.
intros. subst. reflexivity.
Qed.
#[global]
Hint Resolve orb_false_intro: bool.
Lemma orb_false_elim :
forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
Proof.
intros. apply orb_false_iff; trivial.
Qed.
Lemma orb_diag : forall b, b || b = b.
Proof.
destr_bool.
Qed.
(** [true] is a zero for [orb] *)
Lemma orb_true_r : forall b:bool, b || true = true.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve orb_true_r: bool.
Lemma orb_true_l : forall b:bool, true || b = true.
Proof.
reflexivity.
Qed.
Notation orb_b_true := orb_true_r (only parsing).
Notation orb_true_b := orb_true_l (only parsing).
(** [false] is neutral for [orb] *)
Lemma orb_false_r : forall b:bool, b || false = b.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve orb_false_r: bool.
Lemma orb_false_l : forall b:bool, false || b = b.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve orb_false_l: bool.
Notation orb_b_false := orb_false_r (only parsing).
Notation orb_false_b := orb_false_l (only parsing).
(** Complementation *)
Lemma orb_negb_r : forall b:bool, b || negb b = true.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve orb_negb_r: bool.
Lemma orb_negb_l : forall b:bool, negb b || b = true.
Proof.
destr_bool.
Qed.
Notation orb_neg_b := orb_negb_r (only parsing).
(** Commutativity *)
Lemma orb_comm : forall b1 b2:bool, b1 || b2 = b2 || b1.
Proof.
destr_bool.
Qed.
(** Associativity *)
Lemma orb_assoc : forall b1 b2 b3:bool, b1 || (b2 || b3) = b1 || b2 || b3.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve orb_comm orb_assoc: bool.
(***************************)
(** * Properties of [andb] *)
(***************************)
Lemma andb_true_iff :
forall b1 b2:bool, b1 && b2 = true <-> b1 = true /\ b2 = true.
Proof.
destr_bool; intuition.
Qed.
Lemma andb_false_iff :
forall b1 b2:bool, b1 && b2 = false <-> b1 = false \/ b2 = false.
Proof.
destr_bool; intuition.
Qed.
Lemma andb_true_eq :
forall a b:bool, true = a && b -> true = a /\ true = b.
Proof.
destr_bool. auto.
Defined.
Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
Proof.
intros. apply andb_false_iff. auto.
Qed.
Lemma andb_false_intro2 : forall b1 b2:bool, b2 = false -> b1 && b2 = false.
Proof.
intros. apply andb_false_iff. auto.
Qed.
(** [false] is a zero for [andb] *)
Lemma andb_false_r : forall b:bool, b && false = false.
Proof.
destr_bool.
Qed.
Lemma andb_false_l : forall b:bool, false && b = false.
Proof.
reflexivity.
Qed.
Notation andb_b_false := andb_false_r (only parsing).
Notation andb_false_b := andb_false_l (only parsing).
Lemma andb_diag : forall b, b && b = b.
Proof.
destr_bool.
Qed.
(** [true] is neutral for [andb] *)
Lemma andb_true_r : forall b:bool, b && true = b.
Proof.
destr_bool.
Qed.
Lemma andb_true_l : forall b:bool, true && b = b.
Proof.
reflexivity.
Qed.
Notation andb_b_true := andb_true_r (only parsing).
Notation andb_true_b := andb_true_l (only parsing).
Lemma andb_false_elim :
forall b1 b2:bool, b1 && b2 = false -> {b1 = false} + {b2 = false}.
Proof.
intro b1; destruct b1; simpl; auto.
Defined.
#[global]
Hint Resolve andb_false_elim: bool.
(** Complementation *)
Lemma andb_negb_r : forall b:bool, b && negb b = false.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve andb_negb_r: bool.
Lemma andb_negb_l : forall b:bool, negb b && b = false.
Proof.
destr_bool.
Qed.
Notation andb_neg_b := andb_negb_r (only parsing).
(** Commutativity *)
Lemma andb_comm : forall b1 b2:bool, b1 && b2 = b2 && b1.
Proof.
destr_bool.
Qed.
(** Associativity *)
Lemma andb_assoc : forall b1 b2 b3:bool, b1 && (b2 && b3) = b1 && b2 && b3.
Proof.
destr_bool.
Qed.
#[global]
Hint Resolve andb_comm andb_assoc: bool.
(*****************************************)
(** * Properties mixing [andb] and [orb] *)
(*****************************************)
(** Distributivity *)
Lemma andb_orb_distrib_r :
forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3.
Proof.
destr_bool.
Qed.
Lemma andb_orb_distrib_l :
forall b1 b2 b3:bool, (b1 || b2) && b3 = b1 && b3 || b2 && b3.
Proof.
destr_bool.
Qed.
Lemma orb_andb_distrib_r :
forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3).
Proof.
destr_bool.
Qed.
Lemma orb_andb_distrib_l :
forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3).
Proof.
destr_bool.
Qed.
(* Compatibility *)
Notation demorgan1 := andb_orb_distrib_r (only parsing).
Notation demorgan2 := andb_orb_distrib_l (only parsing).
Notation demorgan3 := orb_andb_distrib_r (only parsing).
Notation demorgan4 := orb_andb_distrib_l (only parsing).
(** Absorption *)
Lemma absorption_andb : forall b1 b2:bool, b1 && (b1 || b2) = b1.
Proof.
destr_bool.
Qed.
Lemma absorption_orb : forall b1 b2:bool, b1 || b1 && b2 = b1.
Proof.
destr_bool.
Qed.
(* begin hide *)
(* Compatibility *)
Notation absoption_andb := absorption_andb (only parsing).
Notation absoption_orb := absorption_orb (only parsing).
(* end hide *)
(****************************)
(** * Properties of [implb] *)
(****************************)
Lemma implb_true_iff : forall b1 b2:bool, implb b1 b2 = true <-> (b1 = true -> b2 = true).
Proof.
destr_bool; intuition.
Qed.
Lemma implb_false_iff : forall b1 b2:bool, implb b1 b2 = false <-> (b1 = true /\ b2 = false).
Proof.
destr_bool; intuition.
Qed.
Lemma implb_orb : forall b1 b2:bool, implb b1 b2 = negb b1 || b2.
Proof.
destr_bool.
Qed.
Lemma implb_negb_orb : forall b1 b2:bool, implb (negb b1) b2 = b1 || b2.
Proof.
destr_bool.
Qed.
Lemma implb_true_r : forall b:bool, implb b true = true.
Proof.
destr_bool.
Qed.
Lemma implb_false_r : forall b:bool, implb b false = negb b.
Proof.
destr_bool.
Qed.
Lemma implb_true_l : forall b:bool, implb true b = b.
Proof.
destr_bool.
Qed.
Lemma implb_false_l : forall b:bool, implb false b = true.
Proof.
destr_bool.
Qed.
Lemma implb_same : forall b:bool, implb b b = true.
Proof.
destr_bool.
Qed.
Lemma implb_contrapositive : forall b1 b2:bool, implb (negb b1) (negb b2) = implb b2 b1.
Proof.
destr_bool.
Qed.
Lemma implb_negb : forall b1 b2:bool, implb (negb b1) b2 = implb (negb b2) b1.
Proof.
destr_bool.
Qed.
Lemma implb_curry : forall b1 b2 b3:bool, implb (b1 && b2) b3 = implb b1 (implb b2 b3).
Proof.
destr_bool.
Qed.
Lemma implb_andb_distrib_r : forall b1 b2 b3:bool, implb b1 (b2 && b3) = implb b1 b2 && implb b1 b3.
Proof.
destr_bool.
Qed.
Lemma implb_orb_distrib_r : forall b1 b2 b3:bool, implb b1 (b2 || b3) = implb b1 b2 || implb b1 b3.
Proof.
destr_bool.
Qed.
Lemma implb_orb_distrib_l : forall b1 b2 b3:bool, implb (b1 || b2) b3 = implb b1 b3 && implb b2 b3.
Proof.
destr_bool.
Qed.
(***************************)
(** * Properties of [xorb] *)
(***************************)
(** [false] is neutral for [xorb] *)
Lemma xorb_false_r : forall b:bool, xorb b false = b.
Proof.
destr_bool.
Qed.
Lemma xorb_false_l : forall b:bool, xorb false b = b.
Proof.
destr_bool.
Qed.
Notation xorb_false := xorb_false_r (only parsing).
Notation false_xorb := xorb_false_l (only parsing).
(** [true] is "complementing" for [xorb] *)
Lemma xorb_true_r : forall b:bool, xorb b true = negb b.
Proof.
reflexivity.
Qed.
Lemma xorb_true_l : forall b:bool, xorb true b = negb b.
Proof.
reflexivity.
Qed.
Notation xorb_true := xorb_true_r (only parsing).
Notation true_xorb := xorb_true_l (only parsing).
(** Nilpotency (alternatively: identity is a inverse for [xorb]) *)
Lemma xorb_nilpotent : forall b:bool, xorb b b = false.
Proof.
destr_bool.
Qed.
(** Commutativity *)
Lemma xorb_comm : forall b b':bool, xorb b b' = xorb b' b.
Proof.
destr_bool.
Qed.
(** Associativity *)
Lemma xorb_assoc_reverse :
forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b'').
Proof.
destr_bool.
Qed.
Notation xorb_assoc := xorb_assoc_reverse (only parsing). (* Compatibility *)
Lemma xorb_eq : forall b b':bool, xorb b b' = false -> b = b'.
Proof.
destr_bool.
Qed.
Lemma xorb_move_l_r_1 :
forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''.
Proof.
destr_bool.
Qed.
Lemma xorb_move_l_r_2 :
forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'.
Proof.
destr_bool.
Qed.
Lemma xorb_move_r_l_1 :
forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''.
Proof.
destr_bool.
Qed.
Lemma xorb_move_r_l_2 :
forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'.
Proof.
destr_bool.
Qed.
Lemma negb_xorb a b : negb (xorb a b) = Bool.eqb a b.
Proof.
destruct a, b; trivial.
Qed.
Lemma negb_xorb_l : forall b b', negb (xorb b b') = xorb (negb b) b'.
Proof.
intros b b'; destruct b,b'; trivial.
Qed.
Lemma negb_xorb_r : forall b b', negb (xorb b b') = xorb b (negb b').
Proof.
intros b b'; destruct b,b'; trivial.
Qed.
Lemma xorb_negb_negb : forall b b', xorb (negb b) (negb b') = xorb b b'.
Proof.
intros b b'; destruct b,b'; trivial.
Qed.
(** Lemmas about the [b = true] embedding of [bool] to [Prop] *)
Lemma eq_iff_eq_true : forall b1 b2, b1 = b2 <-> (b1 = true <-> b2 = true).
Proof.
destr_bool; intuition.
Qed.
Lemma eq_true_iff_eq : forall b1 b2, (b1 = true <-> b2 = true) -> b1 = b2.
Proof.
apply eq_iff_eq_true.
Qed.
Notation bool_1 := eq_true_iff_eq (only parsing). (* Compatibility *)
Lemma eq_true_negb_classical : forall b:bool, negb b <> true -> b = true.
Proof.
destr_bool; intuition.
Qed.
Notation bool_3 := eq_true_negb_classical (only parsing). (* Compatibility *)
Lemma eq_true_negb_classical_iff : forall b:bool, negb b <> true <-> b = true.
Proof.
destr_bool; intuition.
Qed.
Lemma eq_true_not_negb : forall b:bool, b <> true -> negb b = true.
Proof.
destr_bool; intuition.
Qed.
Lemma eq_true_not_negb_iff : forall b:bool, b <> true <-> negb b = true.
Proof.
destr_bool; intuition.
Qed.
Notation bool_6 := eq_true_not_negb (only parsing). (* Compatibility *)
#[global]
Hint Resolve eq_true_not_negb : bool.
(* An interesting lemma for auto but too strong to keep compatibility *)
Lemma absurd_eq_bool : forall b b':bool, False -> b = b'.
Proof.
contradiction.
Qed.
(* A more specific one that preserves compatibility with old hint bool_3 *)
Lemma absurd_eq_true : forall b, False -> b = true.
Proof.
contradiction.
Qed.
#[global]
Hint Resolve absurd_eq_true : core.
(* A specific instance of eq_trans that preserves compatibility with
old hint bool_2 *)
Lemma trans_eq_bool : forall x y z:bool, x = y -> y = z -> x = z.
Proof.
apply eq_trans.
Qed.
#[global]
Hint Resolve trans_eq_bool : core.
(***************************************)
(** * Reflection of [bool] into [Prop] *)
(***************************************)
(** [Is_true] and equality *)
#[global]
Hint Unfold Is_true: bool.
Lemma Is_true_eq_true : forall x:bool, Is_true x -> x = true.
Proof.
destr_bool; tauto.
Qed.
Lemma Is_true_eq_left : forall x:bool, x = true -> Is_true x.
Proof.
intros; subst; auto with bool.
Qed.
Lemma Is_true_eq_right : forall x:bool, true = x -> Is_true x.
Proof.
intros; subst; auto with bool.
Qed.
Notation Is_true_eq_true2 := Is_true_eq_right (only parsing).
#[global]
Hint Immediate Is_true_eq_right Is_true_eq_left: bool.
Lemma eqb_refl : forall x:bool, Is_true (eqb x x).
Proof.
destr_bool.
Qed.
Lemma eqb_eq : forall x y:bool, Is_true (eqb x y) -> x = y.
Proof.
destr_bool; tauto.
Qed.
(** [Is_true] and connectives *)
Lemma orb_prop_elim :
forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b.
Proof.
destr_bool; tauto.
Qed.
Notation orb_prop2 := orb_prop_elim (only parsing).
Lemma orb_prop_intro :
forall a b:bool, Is_true a \/ Is_true b -> Is_true (a || b).
Proof.
destr_bool; tauto.
Qed.
Lemma andb_prop_intro :
forall b1 b2:bool, Is_true b1 /\ Is_true b2 -> Is_true (b1 && b2).
Proof.
destr_bool; tauto.
Qed.
#[global]
Hint Resolve andb_prop_intro: bool.
Notation andb_true_intro2 :=
(fun b1 b2 H1 H2 => andb_prop_intro b1 b2 (conj H1 H2))
(only parsing).
Lemma andb_prop_elim :
forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b.
Proof.
destr_bool; auto.
Qed.
#[global]
Hint Resolve andb_prop_elim: bool.
Notation andb_prop2 := andb_prop_elim (only parsing).
Lemma eq_bool_prop_intro :
forall b1 b2, (Is_true b1 <-> Is_true b2) -> b1 = b2.
Proof.
destr_bool; tauto.
Qed.
Lemma eq_bool_prop_elim : forall b1 b2, b1 = b2 -> (Is_true b1 <-> Is_true b2).
Proof.
destr_bool; tauto.
Qed.
Lemma negb_prop_elim : forall b, Is_true (negb b) -> ~ Is_true b.
Proof.
destr_bool; tauto.
Qed.
Lemma negb_prop_intro : forall b, ~ Is_true b -> Is_true (negb b).
Proof.
destr_bool; tauto.
Qed.
Lemma negb_prop_classical : forall b, ~ Is_true (negb b) -> Is_true b.
Proof.
destr_bool; tauto.
Qed.
Lemma negb_prop_involutive : forall b, Is_true b -> ~ Is_true (negb b).
Proof.
destr_bool; tauto.
Qed.
(** Rewrite rules about andb, orb and if (used in romega) *)
Lemma andb_if : forall (A:Type)(a a':A)(b b' : bool),
(if b && b' then a else a') =
(if b then if b' then a else a' else a').
Proof.
destr_bool.
Qed.
Lemma negb_if : forall (A:Type)(a a':A)(b:bool),
(if negb b then a else a') =
(if b then a' else a).
Proof.
destr_bool.
Qed.
(***********************************************)
(** * Alternative versions of [andb] and [orb]
with lazy behavior (for vm_compute) *)
(***********************************************)
Declare Scope lazy_bool_scope.
Notation "a &&& b" := (if a then b else false)
(at level 40, left associativity) : lazy_bool_scope.
Notation "a ||| b" := (if a then true else b)
(at level 50, left associativity) : lazy_bool_scope.
Local Open Scope lazy_bool_scope.
Lemma andb_lazy_alt : forall a b : bool, a && b = a &&& b.
Proof.
reflexivity.
Qed.
Lemma orb_lazy_alt : forall a b : bool, a || b = a ||| b.
Proof.
reflexivity.
Qed.
(************************************************)
(** * Reflect: a specialized inductive type for
relating propositions and booleans,
as popularized by the Ssreflect library. *)
(************************************************)
Notation reflect := Datatypes.reflect (only parsing).
Notation ReflectT := Datatypes.ReflectT (only parsing).
Notation ReflectF := Datatypes.ReflectF (only parsing).
(** Interest: a case on a reflect lemma or hyp performs clever
unification, and leave the goal in a convenient shape
(a bit like case_eq). *)
(** Relation with iff : *)
Lemma reflect_iff : forall P b, reflect P b -> (P<->b=true).
Proof.
destruct 1; intuition; discriminate.
Qed.
Lemma iff_reflect : forall P b, (P<->b=true) -> reflect P b.
Proof.
destr_bool; intuition.
Defined.
(** It would be nice to join [reflect_iff] and [iff_reflect]
in a unique [iff] statement, but this isn't allowed since
[iff] is in Prop. *)
(** Reflect implies decidability of the proposition *)
Lemma reflect_dec : forall P b, reflect P b -> {P}+{~P}.
Proof.
destruct 1; auto.
Defined.
(** Reciprocally, from a decidability, we could state a
[reflect] as soon as we have a [bool_of_sumbool]. *)
(** For instance, we could state the correctness of [Bool.eqb] via [reflect]: *)
Lemma eqb_spec (b b' : bool) : reflect (b = b') (eqb b b').
Proof.
destruct b, b'; now constructor.
Defined.
(** Notations *)
Module BoolNotations.
Infix "<=" := le : bool_scope.
Infix "<" := lt : bool_scope.
Infix "?=" := compare (at level 70) : bool_scope.
Infix "=?" := eqb (at level 70) : bool_scope.
End BoolNotations.
|