1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Set Implicit Arguments.
Definition ifdec (A B:Prop) (C:Type) (H:{A} + {B}) (x y:C) : C :=
if H then x else y.
Theorem ifdec_left :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~ B -> forall x y:C, ifdec H x y = x.
Proof.
intros A B C H **; case H; auto.
intro; absurd B; trivial.
Qed.
Theorem ifdec_right :
forall (A B:Prop) (C:Set) (H:{A} + {B}),
~ A -> forall x y:C, ifdec H x y = y.
Proof.
intros A B C H **; case H; auto.
intro; absurd A; trivial.
Qed.
Unset Implicit Arguments.
|