1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Finite map library. *)
(** * FMapAVL *)
(** This module implements maps using AVL trees.
It follows the implementation from Ocaml's standard library.
See the comments at the beginning of FSetAVL for more details.
*)
From Stdlib Require Import FMapInterface FMapList ZArith Int.
Set Implicit Arguments.
Unset Strict Implicit.
(** Notations and helper lemma about pairs *)
Declare Scope pair_scope.
Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
(** * The Raw functor
Functor of pure functions + separate proofs of invariant
preservation *)
Module Raw (Import I:Int)(X: OrderedType).
Local Open Scope pair_scope.
Local Open Scope lazy_bool_scope.
Local Open Scope Int_scope.
Local Notation int := I.t.
Definition key := X.t.
#[global]
Hint Transparent key : core.
(** * Trees *)
(** * Trees
The fifth field of [Node] is the height of the tree *)
#[universes(template)]
Inductive tree {elt : Type} :=
| Leaf : tree
| Node : tree -> key -> elt -> tree -> int -> tree.
Arguments tree : clear implicits.
Section Elt.
Variable elt : Type.
Notation t := (tree elt).
Implicit Types m : t.
(** * Basic functions on trees: height and cardinal *)
Definition height (m : t) : int :=
match m with
| Leaf => 0
| Node _ _ _ _ h => h
end.
Fixpoint cardinal (m : t) : nat :=
match m with
| Leaf => 0%nat
| Node l _ _ r _ => S (cardinal l + cardinal r)
end.
(** * Empty Map *)
Definition empty : t := Leaf.
(** * Emptyness test *)
Definition is_empty m := match m with Leaf => true | _ => false end.
(** * Membership *)
(** The [mem] function is deciding membership. It exploits the [bst] property
to achieve logarithmic complexity. *)
Fixpoint mem x m : bool :=
match m with
| Leaf => false
| Node l y _ r _ => match X.compare x y with
| LT _ => mem x l
| EQ _ => true
| GT _ => mem x r
end
end.
Fixpoint find x m : option elt :=
match m with
| Leaf => None
| Node l y d r _ => match X.compare x y with
| LT _ => find x l
| EQ _ => Some d
| GT _ => find x r
end
end.
(** * Helper functions *)
(** [create l x r] creates a node, assuming [l] and [r]
to be balanced and [|height l - height r| <= 2]. *)
Definition create l x e r :=
Node l x e r (max (height l) (height r) + 1).
(** [bal l x e r] acts as [create], but performs one step of
rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
Definition assert_false := create.
Definition bal l x d r :=
let hl := height l in
let hr := height r in
if gt_le_dec hl (hr+2) then
match l with
| Leaf => assert_false l x d r
| Node ll lx ld lr _ =>
if ge_lt_dec (height ll) (height lr) then
create ll lx ld (create lr x d r)
else
match lr with
| Leaf => assert_false l x d r
| Node lrl lrx lrd lrr _ =>
create (create ll lx ld lrl) lrx lrd (create lrr x d r)
end
end
else
if gt_le_dec hr (hl+2) then
match r with
| Leaf => assert_false l x d r
| Node rl rx rd rr _ =>
if ge_lt_dec (height rr) (height rl) then
create (create l x d rl) rx rd rr
else
match rl with
| Leaf => assert_false l x d r
| Node rll rlx rld rlr _ =>
create (create l x d rll) rlx rld (create rlr rx rd rr)
end
end
else
create l x d r.
(** * Insertion *)
Fixpoint add x d m :=
match m with
| Leaf => Node Leaf x d Leaf 1
| Node l y d' r h =>
match X.compare x y with
| LT _ => bal (add x d l) y d' r
| EQ _ => Node l y d r h
| GT _ => bal l y d' (add x d r)
end
end.
(** * Extraction of minimum binding
Morally, [remove_min] is to be applied to a non-empty tree
[t = Node l x e r h]. Since we can't deal here with [assert false]
for [t=Leaf], we pre-unpack [t] (and forget about [h]).
*)
Fixpoint remove_min l x d r : t*(key*elt) :=
match l with
| Leaf => (r,(x,d))
| Node ll lx ld lr lh =>
let (l',m) := remove_min ll lx ld lr in
(bal l' x d r, m)
end.
(** * Merging two trees
[merge t1 t2] builds the union of [t1] and [t2] assuming all elements
of [t1] to be smaller than all elements of [t2], and
[|height t1 - height t2| <= 2].
*)
Definition merge s1 s2 := match s1,s2 with
| Leaf, _ => s2
| _, Leaf => s1
| _, Node l2 x2 d2 r2 h2 =>
match remove_min l2 x2 d2 r2 with
(s2',(x,d)) => bal s1 x d s2'
end
end.
(** * Deletion *)
Fixpoint remove x m := match m with
| Leaf => Leaf
| Node l y d r h =>
match X.compare x y with
| LT _ => bal (remove x l) y d r
| EQ _ => merge l r
| GT _ => bal l y d (remove x r)
end
end.
(** * join
Same as [bal] but does not assume anything regarding heights of [l]
and [r].
*)
Fixpoint join l : key -> elt -> t -> t :=
match l with
| Leaf => add
| Node ll lx ld lr lh => fun x d =>
fix join_aux (r:t) : t := match r with
| Leaf => add x d l
| Node rl rx rd rr rh =>
if gt_le_dec lh (rh+2) then bal ll lx ld (join lr x d r)
else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rd rr
else create l x d r
end
end.
(** * Splitting
[split x m] returns a triple [(l, o, r)] where
- [l] is the set of elements of [m] that are [< x]
- [r] is the set of elements of [m] that are [> x]
- [o] is the result of [find x m].
*)
Record triple := mktriple { t_left:t; t_opt:option elt; t_right:t }.
Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
Fixpoint split x m : triple := match m with
| Leaf => << Leaf, None, Leaf >>
| Node l y d r h =>
match X.compare x y with
| LT _ => let (ll,o,rl) := split x l in << ll, o, join rl y d r >>
| EQ _ => << l, Some d, r >>
| GT _ => let (rl,o,rr) := split x r in << join l y d rl, o, rr >>
end
end.
(** * Concatenation
Same as [merge] but does not assume anything about heights.
*)
Definition concat m1 m2 :=
match m1, m2 with
| Leaf, _ => m2
| _ , Leaf => m1
| _, Node l2 x2 d2 r2 _ =>
let (m2',xd) := remove_min l2 x2 d2 r2 in
join m1 xd#1 xd#2 m2'
end.
(** * Elements *)
(** [elements_tree_aux acc t] catenates the elements of [t] in infix
order to the list [acc] *)
Fixpoint elements_aux (acc : list (key*elt)) m : list (key*elt) :=
match m with
| Leaf => acc
| Node l x d r _ => elements_aux ((x,d) :: elements_aux acc r) l
end.
(** then [elements] is an instantiation with an empty [acc] *)
Definition elements := elements_aux nil.
(** * Fold *)
Fixpoint fold (A : Type) (f : key -> elt -> A -> A) (m : t) : A -> A :=
fun a => match m with
| Leaf => a
| Node l x d r _ => fold f r (f x d (fold f l a))
end.
(** * Comparison *)
Variable cmp : elt->elt->bool.
(** ** Enumeration of the elements of a tree *)
Inductive enumeration :=
| End : enumeration
| More : key -> elt -> t -> enumeration -> enumeration.
(** [cons m e] adds the elements of tree [m] on the head of
enumeration [e]. *)
Fixpoint cons m e : enumeration :=
match m with
| Leaf => e
| Node l x d r h => cons l (More x d r e)
end.
(** One step of comparison of elements *)
Definition equal_more x1 d1 (cont:enumeration->bool) e2 :=
match e2 with
| End => false
| More x2 d2 r2 e2 =>
match X.compare x1 x2 with
| EQ _ => cmp d1 d2 &&& cont (cons r2 e2)
| _ => false
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint equal_cont m1 (cont:enumeration->bool) e2 :=
match m1 with
| Leaf => cont e2
| Node l1 x1 d1 r1 _ =>
equal_cont l1 (equal_more x1 d1 (equal_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition equal_end e2 := match e2 with End => true | _ => false end.
(** The complete comparison *)
Definition equal m1 m2 := equal_cont m1 equal_end (cons m2 End).
End Elt.
Notation t := tree.
Arguments Leaf : clear implicits.
Arguments Node [elt].
Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
Notation "t #l" := (t_left t) (at level 9, format "t '#l'").
Notation "t #o" := (t_opt t) (at level 9, format "t '#o'").
Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
(** * Map *)
Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' :=
match m with
| Leaf _ => Leaf _
| Node l x d r h => Node (map f l) x (f d) (map f r) h
end.
(* * Mapi *)
Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' :=
match m with
| Leaf _ => Leaf _
| Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h
end.
(** * Map with removal *)
Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt)
: t elt' :=
match m with
| Leaf _ => Leaf _
| Node l x d r h =>
match f x d with
| Some d' => join (map_option f l) x d' (map_option f r)
| None => concat (map_option f l) (map_option f r)
end
end.
(** * Optimized map2
Suggestion by B. Gregoire: a [map2] function with specialized
arguments that allows bypassing some tree traversal. Instead of one
[f0] of type [key -> option elt -> option elt' -> option elt''],
we ask here for:
- [f] which is a specialisation of [f0] when first option isn't [None]
- [mapl] treats a [tree elt] with [f0] when second option is [None]
- [mapr] treats a [tree elt'] with [f0] when first option is [None]
The idea is that [mapl] and [mapr] can be instantaneous (e.g.
the identity or some constant function).
*)
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Fixpoint map2_opt m1 m2 :=
match m1, m2 with
| Leaf _, _ => mapr m2
| _, Leaf _ => mapl m1
| Node l1 x1 d1 r1 h1, _ =>
let (l2',o2,r2') := split x1 m2 in
match f x1 d1 o2 with
| Some e => join (map2_opt l1 l2') x1 e (map2_opt r1 r2')
| None => concat (map2_opt l1 l2') (map2_opt r1 r2')
end
end.
End Map2_opt.
(** * Map2
The [map2] function of the Map interface can be implemented
via [map2_opt] and [map_option].
*)
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Definition map2 : t elt -> t elt' -> t elt'' :=
map2_opt
(fun _ d o => f (Some d) o)
(map_option (fun _ d => f (Some d) None))
(map_option (fun _ d' => f None (Some d'))).
End Map2.
(** * Invariants *)
Section Invariants.
Variable elt : Type.
(** ** Occurrence in a tree *)
Inductive MapsTo (x : key)(e : elt) : t elt -> Prop :=
| MapsRoot : forall l r h y,
X.eq x y -> MapsTo x e (Node l y e r h)
| MapsLeft : forall l r h y e',
MapsTo x e l -> MapsTo x e (Node l y e' r h)
| MapsRight : forall l r h y e',
MapsTo x e r -> MapsTo x e (Node l y e' r h).
Inductive In (x : key) : t elt -> Prop :=
| InRoot : forall l r h y e,
X.eq x y -> In x (Node l y e r h)
| InLeft : forall l r h y e',
In x l -> In x (Node l y e' r h)
| InRight : forall l r h y e',
In x r -> In x (Node l y e' r h).
Definition In0 k m := exists e:elt, MapsTo k e m.
(** ** Binary search trees *)
(** [lt_tree x s]: all elements in [s] are smaller than [x]
(resp. greater for [gt_tree]) *)
Definition lt_tree x m := forall y, In y m -> X.lt y x.
Definition gt_tree x m := forall y, In y m -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
Inductive bst : t elt -> Prop :=
| BSLeaf : bst (Leaf _)
| BSNode : forall x e l r h, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (Node l x e r h).
End Invariants.
(** * Correctness proofs, isolated in a sub-module *)
Module Proofs.
Module MX := OrderedTypeFacts X.
Module PX := KeyOrderedType X.
Module L := FMapList.Raw X.
#[local] Ltac caseq :=
match goal with [ |- context [match ?t with _ => _ end] ] =>
let cmp := fresh in
let H := fresh in
remember t as cmp eqn:H; symmetry in H; destruct cmp
end.
Lemma mem_ind [elt : Type] [x : X.t] [P : t elt -> bool -> Prop] :
(forall m : t elt, m = Leaf elt -> P (Leaf elt) false) ->
(forall (m l : t elt) (y : key) (_x : elt) (r : t elt) (_x0 : int),
m = Node l y _x r _x0 ->
forall _x1 : X.lt x y,
X.compare x y = LT _x1 -> P l (mem x l) -> P (Node l y _x r _x0) (mem x l)) ->
(forall (m l : t elt) (y : key) (_x : elt) (r : t elt) (_x0 : int),
m = Node l y _x r _x0 ->
forall _x1 : X.eq x y, X.compare x y = EQ _x1 -> P (Node l y _x r _x0) true) ->
(forall (m l : t elt) (y : key) (_x : elt) (r : t elt) (_x0 : int),
m = Node l y _x r _x0 ->
forall _x1 : X.lt y x,
X.compare x y = GT _x1 -> P r (mem x r) -> P (Node l y _x r _x0) (mem x r)) ->
forall m : t elt, P m (mem x m).
Proof.
intros; induction m; cbn; repeat caseq; eauto.
Qed.
Lemma find_ind [elt : Type] [x : X.t] [P : t elt -> option elt -> Prop] :
(forall m : t elt, m = Leaf elt -> P (Leaf elt) None) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.lt x y,
X.compare x y = LT _x0 -> P l (find x l) -> P (Node l y d r _x) (find x l)) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.eq x y, X.compare x y = EQ _x0 -> P (Node l y d r _x) (Some d)) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.lt y x,
X.compare x y = GT _x0 -> P r (find x r) -> P (Node l y d r _x) (find x r)) ->
forall m : t elt, P m (find x m).
Proof.
intros; induction m; cbn; repeat caseq; eauto.
Qed.
Lemma bal_ind [elt : Type] [P : t elt -> key -> elt -> t elt -> t elt -> Prop] :
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl > hr + 2,
gt_le_dec hl (hr + 2) = left _x -> l = Leaf elt -> P (Leaf elt) x d r (assert_false l x d r)) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl > hr + 2,
gt_le_dec hl (hr + 2) = left _x ->
forall (ll : t elt) (lx : key) (ld : elt) (lr : t elt) (_x0 : int),
l = Node ll lx ld lr _x0 ->
forall _x1 : height ll >= height lr,
ge_lt_dec (height ll) (height lr) = left _x1 ->
P (Node ll lx ld lr _x0) x d r (create ll lx ld (create lr x d r))) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl > hr + 2,
gt_le_dec hl (hr + 2) = left _x ->
forall (ll : t elt) (lx : key) (ld : elt) (lr : t elt) (_x0 : int),
l = Node ll lx ld lr _x0 ->
forall _x1 : height ll < height lr,
ge_lt_dec (height ll) (height lr) = right _x1 ->
lr = Leaf elt -> P (Node ll lx ld (Leaf elt) _x0) x d r (assert_false l x d r)) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl > hr + 2,
gt_le_dec hl (hr + 2) = left _x ->
forall (ll : t elt) (lx : key) (ld : elt) (lr : t elt) (_x0 : int),
l = Node ll lx ld lr _x0 ->
forall _x1 : height ll < height lr,
ge_lt_dec (height ll) (height lr) = right _x1 ->
forall (lrl : t elt) (lrx : key) (lrd : elt) (lrr : t elt) (_x2 : int),
lr = Node lrl lrx lrd lrr _x2 ->
P (Node ll lx ld (Node lrl lrx lrd lrr _x2) _x0) x d r
(create (create ll lx ld lrl) lrx lrd (create lrr x d r))) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl <= hr + 2,
gt_le_dec hl (hr + 2) = right _x ->
forall _x0 : hr > hl + 2,
gt_le_dec hr (hl + 2) = left _x0 -> r = Leaf elt -> P l x d (Leaf elt) (assert_false l x d r)) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl <= hr + 2,
gt_le_dec hl (hr + 2) = right _x ->
forall _x0 : hr > hl + 2,
gt_le_dec hr (hl + 2) = left _x0 ->
forall (rl : t elt) (rx : key) (rd : elt) (rr : t elt) (_x1 : int),
r = Node rl rx rd rr _x1 ->
forall _x2 : height rr >= height rl,
ge_lt_dec (height rr) (height rl) = left _x2 ->
P l x d (Node rl rx rd rr _x1) (create (create l x d rl) rx rd rr)) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl <= hr + 2,
gt_le_dec hl (hr + 2) = right _x ->
forall _x0 : hr > hl + 2,
gt_le_dec hr (hl + 2) = left _x0 ->
forall (rl : t elt) (rx : key) (rd : elt) (rr : t elt) (_x1 : int),
r = Node rl rx rd rr _x1 ->
forall _x2 : height rr < height rl,
ge_lt_dec (height rr) (height rl) = right _x2 ->
rl = Leaf elt -> P l x d (Node (Leaf elt) rx rd rr _x1) (assert_false l x d r)) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl <= hr + 2,
gt_le_dec hl (hr + 2) = right _x ->
forall _x0 : hr > hl + 2,
gt_le_dec hr (hl + 2) = left _x0 ->
forall (rl : t elt) (rx : key) (rd : elt) (rr : t elt) (_x1 : int),
r = Node rl rx rd rr _x1 ->
forall _x2 : height rr < height rl,
ge_lt_dec (height rr) (height rl) = right _x2 ->
forall (rll : t elt) (rlx : key) (rld : elt) (rlr : t elt) (_x3 : int),
rl = Node rll rlx rld rlr _x3 ->
P l x d (Node (Node rll rlx rld rlr _x3) rx rd rr _x1)
(create (create l x d rll) rlx rld (create rlr rx rd rr))) ->
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
let hl := height l in
let hr := height r in
forall _x : hl <= hr + 2,
gt_le_dec hl (hr + 2) = right _x ->
forall _x0 : hr <= hl + 2, gt_le_dec hr (hl + 2) = right _x0 -> P l x d r (create l x d r)) ->
forall (l : t elt) (x : key) (d : elt) (r : t elt), P l x d r (bal l x d r).
Proof.
intros; unfold bal; repeat caseq; eauto.
Qed.
Lemma add_ind [elt : Type] [x : key] [d : elt] [P : t elt -> t elt -> Prop] :
(forall m : t elt, m = Leaf elt -> P (Leaf elt) (Node (Leaf elt) x d (Leaf elt) 1)) ->
(forall (m l : t elt) (y : key) (d' : elt) (r : t elt) (h : int),
m = Node l y d' r h ->
forall _x : X.lt x y,
X.compare x y = LT _x -> P l (add x d l) -> P (Node l y d' r h) (bal (add x d l) y d' r)) ->
(forall (m l : t elt) (y : key) (d' : elt) (r : t elt) (h : int),
m = Node l y d' r h ->
forall _x : X.eq x y, X.compare x y = EQ _x -> P (Node l y d' r h) (Node l y d r h)) ->
(forall (m l : t elt) (y : key) (d' : elt) (r : t elt) (h : int),
m = Node l y d' r h ->
forall _x : X.lt y x,
X.compare x y = GT _x -> P r (add x d r) -> P (Node l y d' r h) (bal l y d' (add x d r))) ->
forall m : t elt, P m (add x d m).
Proof.
intros; induction m; cbn; repeat caseq; eauto.
Qed.
Lemma remove_min_ind [elt : Type] [P : t elt -> key -> elt -> t elt -> t elt * (key * elt) -> Prop] :
(forall (l : t elt) (x : key) (d : elt) (r : t elt),
l = Leaf elt -> P (Leaf elt) x d r (r, (x, d))) ->
(forall (l : t elt) (x : key) (d : elt) (r ll : t elt) (lx : key)
(ld : elt) (lr : t elt) (_x : int),
l = Node ll lx ld lr _x ->
P ll lx ld lr (remove_min ll lx ld lr) ->
forall (l' : t elt) (m : key * elt),
remove_min ll lx ld lr = (l', m) -> P (Node ll lx ld lr _x) x d r (bal l' x d r, m)) ->
forall (l : t elt) (x : key) (d : elt) (r : t elt), P l x d r (remove_min l x d r).
Proof.
induction l; cbn; repeat caseq; eauto.
Qed.
Lemma merge_ind [elt : Type] [P : t elt -> t elt -> t elt -> Prop] :
(forall s1 s2 : t elt, s1 = Leaf elt -> P (Leaf elt) s2 s2) ->
(forall (s1 s2 _x : t elt) (_x0 : key) (_x1 : elt) (_x2 : t elt) (_x3 : int),
s1 = Node _x _x0 _x1 _x2 _x3 -> s2 = Leaf elt -> P (Node _x _x0 _x1 _x2 _x3) (Leaf elt) s1) ->
(forall (s1 s2 _x : t elt) (_x0 : key) (_x1 : elt) (_x2 : t elt) (_x3 : int),
s1 = Node _x _x0 _x1 _x2 _x3 ->
forall (l2 : t elt) (x2 : key) (d2 : elt) (r2 : t elt) (_x4 : int),
s2 = Node l2 x2 d2 r2 _x4 ->
forall (s2' : t elt) (p : key * elt),
remove_min l2 x2 d2 r2 = (s2', p) ->
forall (x : key) (d : elt),
p = (x, d) -> P (Node _x _x0 _x1 _x2 _x3) (Node l2 x2 d2 r2 _x4) (bal s1 x d s2')) ->
forall s1 s2 : t elt, P s1 s2 (merge s1 s2).
Proof.
intros; induction s1; cbn; repeat caseq; eauto.
Qed.
Lemma remove_ind [elt : Type] [x : X.t] [P : t elt -> t elt -> Prop] :
(forall m : t elt, m = Leaf elt -> P (Leaf elt) (Leaf elt)) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.lt x y,
X.compare x y = LT _x0 -> P l (remove x l) -> P (Node l y d r _x) (bal (remove x l) y d r)) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.eq x y, X.compare x y = EQ _x0 -> P (Node l y d r _x) (merge l r)) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.lt y x,
X.compare x y = GT _x0 -> P r (remove x r) -> P (Node l y d r _x) (bal l y d (remove x r))) ->
forall m : t elt, P m (remove x m).
Proof.
intros; induction m; cbn; repeat caseq; eauto.
Qed.
Lemma concat_ind [elt : Type] [P : t elt -> t elt -> t elt -> Prop] :
(forall m1 m2 : t elt, m1 = Leaf elt -> P (Leaf elt) m2 m2) ->
(forall (m1 m2 _x : t elt) (_x0 : key) (_x1 : elt) (_x2 : t elt) (_x3 : int),
m1 = Node _x _x0 _x1 _x2 _x3 -> m2 = Leaf elt -> P (Node _x _x0 _x1 _x2 _x3) (Leaf elt) m1) ->
(forall (m1 m2 _x : t elt) (_x0 : key) (_x1 : elt) (_x2 : t elt) (_x3 : int),
m1 = Node _x _x0 _x1 _x2 _x3 ->
forall (l2 : t elt) (x2 : key) (d2 : elt) (r2 : t elt) (_x4 : int),
m2 = Node l2 x2 d2 r2 _x4 ->
forall (m2' : t elt) (xd : key * elt),
remove_min l2 x2 d2 r2 = (m2', xd) ->
P (Node _x _x0 _x1 _x2 _x3) (Node l2 x2 d2 r2 _x4) (join m1 xd#1 xd#2 m2')) ->
forall m1 m2 : t elt, P m1 m2 (concat m1 m2).
Proof.
intros; unfold concat; cbn; repeat caseq; eauto.
Qed.
Lemma split_ind [elt : Type] [x : X.t] [P : t elt -> triple elt -> Prop] :
(forall m : t elt, m = Leaf elt -> P (Leaf elt) << Leaf elt, None, Leaf elt >>) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.lt x y,
X.compare x y = LT _x0 ->
P l (split x l) ->
forall (ll : t elt) (o : option elt) (rl : t elt),
split x l = << ll, o, rl >> -> P (Node l y d r _x) << ll, o, join rl y d r >>) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.eq x y, X.compare x y = EQ _x0 -> P (Node l y d r _x) << l, Some d, r >>) ->
(forall (m l : t elt) (y : key) (d : elt) (r : t elt) (_x : int),
m = Node l y d r _x ->
forall _x0 : X.lt y x,
X.compare x y = GT _x0 ->
P r (split x r) ->
forall (rl : t elt) (o : option elt) (rr : t elt),
split x r = << rl, o, rr >> -> P (Node l y d r _x) << join l y d rl, o, rr >>) ->
forall m : t elt, P m (split x m).
Proof.
intros; induction m; cbn; repeat caseq; eauto.
+ eapply H0; eauto; congruence.
+ eapply H2; eauto; congruence.
Qed.
Lemma map_option_ind [elt elt' : Type] [f : key -> elt -> option elt'] [P : t elt -> t elt' -> Prop] :
(forall m : t elt, m = Leaf elt -> P (Leaf elt) (Leaf elt')) ->
(forall (m l : t elt) (x : key) (d : elt) (r : t elt) (_x : int),
m = Node l x d r _x ->
forall d' : elt',
f x d = Some d' ->
P l (map_option f l) ->
P r (map_option f r) -> P (Node l x d r _x) (join (map_option f l) x d' (map_option f r))) ->
(forall (m l : t elt) (x : key) (d : elt) (r : t elt) (_x : int),
m = Node l x d r _x ->
f x d = None ->
P l (map_option f l) ->
P r (map_option f r) -> P (Node l x d r _x) (concat (map_option f l) (map_option f r))) ->
forall m : t elt, P m (map_option f m).
Proof.
intros; induction m; cbn; repeat caseq; eauto.
Qed.
Lemma map2_opt_ind [elt elt' elt'' : Type] [f : key -> elt -> option elt' -> option elt'']
[mapl : t elt -> t elt''] [mapr : t elt' -> t elt'']
[P : t elt -> t elt' -> t elt'' -> Prop] :
(forall (m1 : t elt) (m2 : t elt'), m1 = Leaf elt -> P (Leaf elt) m2 (mapr m2)) ->
(forall (m1 : t elt) (m2 : t elt') (l1 : t elt) (x1 : key) (d1 : elt) (r1 : t elt) (_x : int),
m1 = Node l1 x1 d1 r1 _x -> m2 = Leaf elt' -> P (Node l1 x1 d1 r1 _x) (Leaf elt') (mapl m1)) ->
(forall (m1 : t elt) (m2 : t elt') (l1 : t elt) (x1 : key) (d1 : elt) (r1 : t elt) (_x : int),
m1 = Node l1 x1 d1 r1 _x ->
forall (_x0 : t elt') (_x1 : key) (_x2 : elt') (_x3 : t elt') (_x4 : int),
m2 = Node _x0 _x1 _x2 _x3 _x4 ->
forall (l2' : t elt') (o2 : option elt') (r2' : t elt'),
split x1 m2 = << l2', o2, r2' >> ->
forall e : elt'',
f x1 d1 o2 = Some e ->
P l1 l2' (map2_opt f mapl mapr l1 l2') ->
P r1 r2' (map2_opt f mapl mapr r1 r2') ->
P (Node l1 x1 d1 r1 _x) (Node _x0 _x1 _x2 _x3 _x4)
(join (map2_opt f mapl mapr l1 l2') x1 e (map2_opt f mapl mapr r1 r2'))) ->
(forall (m1 : t elt) (m2 : t elt') (l1 : t elt) (x1 : key) (d1 : elt) (r1 : t elt) (_x : int),
m1 = Node l1 x1 d1 r1 _x ->
forall (_x0 : t elt') (_x1 : key) (_x2 : elt') (_x3 : t elt') (_x4 : int),
m2 = Node _x0 _x1 _x2 _x3 _x4 ->
forall (l2' : t elt') (o2 : option elt') (r2' : t elt'),
split x1 m2 = << l2', o2, r2' >> ->
f x1 d1 o2 = None ->
P l1 l2' (map2_opt f mapl mapr l1 l2') ->
P r1 r2' (map2_opt f mapl mapr r1 r2') ->
P (Node l1 x1 d1 r1 _x) (Node _x0 _x1 _x2 _x3 _x4)
(concat (map2_opt f mapl mapr l1 l2') (map2_opt f mapl mapr r1 r2'))) ->
forall (m1 : t elt) (m2 : t elt'), P m1 m2 (map2_opt f mapl mapr m1 m2).
Proof.
induction m1; intros; cbn; repeat caseq; eauto.
Qed.
(** * Automation and dedicated tactics. *)
#[global]
Hint Constructors tree MapsTo In bst : core.
#[global]
Hint Unfold lt_tree gt_tree : core.
Tactic Notation "factornode" ident(l) ident(x) ident(d) ident(r) ident(h)
"as" ident(s) :=
set (s:=Node l x d r h) in *; clearbody s; clear l x d r h.
(** A tactic for cleaning hypothesis after use of functional induction. *)
Ltac clearf :=
match goal with
| H := _ |- _ => subst; subst H; clearf
| H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf
| H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf
| _ => idtac
end.
(** A tactic to repeat [inversion_clear] on all hyps of the
form [(f (Node ...))] *)
Ltac inv f :=
match goal with
| H:f (Leaf _) |- _ => inversion_clear H; inv f
| H:f _ (Leaf _) |- _ => inversion_clear H; inv f
| H:f _ _ (Leaf _) |- _ => inversion_clear H; inv f
| H:f _ _ _ (Leaf _) |- _ => inversion_clear H; inv f
| H:f (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| H:f _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| H:f _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| H:f _ _ _ (Node _ _ _ _ _) |- _ => inversion_clear H; inv f
| _ => idtac
end.
Ltac inv_all f :=
match goal with
| H: f _ |- _ => inversion_clear H; inv f
| H: f _ _ |- _ => inversion_clear H; inv f
| H: f _ _ _ |- _ => inversion_clear H; inv f
| H: f _ _ _ _ |- _ => inversion_clear H; inv f
| _ => idtac
end.
(** Helper tactic concerning order of elements. *)
Ltac order := match goal with
| U: lt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
| U: gt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
| _ => MX.order
end.
Ltac intuition_in := repeat (intuition auto; inv In; inv MapsTo).
(* Function/Functional Scheme can't deal with internal fix.
Let's do its job by hand: *)
Ltac join_tac :=
intros ?l; induction l as [| ?ll _ ?lx ?ld ?lr ?Hlr ?lh];
[ | intros ?x ?d ?r; induction r as [| ?rl ?Hrl ?rx ?rd ?rr _ ?rh]; unfold join;
[ | destruct (gt_le_dec lh (rh+2)) as [?GT|?LE];
[ match goal with |- context [ bal ?u ?v ?w ?z ] =>
replace (bal u v w z)
with (bal ll lx ld (join lr x d (Node rl rx rd rr rh))); [ | auto]
end
| destruct (gt_le_dec rh (lh+2)) as [?GT'|?LE'];
[ match goal with |- context [ bal ?u ?v ?w ?z ] =>
replace (bal u v w z)
with (bal (join (Node ll lx ld lr lh) x d rl) rx rd rr); [ | auto]
end
| ] ] ] ]; intros.
Section Elt.
Variable elt:Type.
Implicit Types m r : t elt.
(** * Basic results about [MapsTo], [In], [lt_tree], [gt_tree], [height] *)
(** Facts about [MapsTo] and [In]. *)
Lemma MapsTo_In : forall k e m, MapsTo k e m -> In k m.
Proof.
induction 1; auto.
Qed.
#[local]
Hint Resolve MapsTo_In : core.
Lemma In_MapsTo : forall k m, In k m -> exists e, MapsTo k e m.
Proof.
induction 1; try destruct IHIn as (e,He); exists e; auto.
Qed.
Lemma In_alt : forall k m, In0 k m <-> In k m.
Proof.
split.
- intros (e,H); eauto.
- unfold In0; apply In_MapsTo; auto.
Qed.
Lemma MapsTo_1 :
forall m x y e, X.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof.
induction m; simpl; intuition_in; eauto with ordered_type.
Qed.
#[local]
Hint Immediate MapsTo_1 : core.
Lemma In_1 :
forall m x y, X.eq x y -> In x m -> In y m.
Proof.
intros m x y; induction m; simpl; intuition_in; eauto with ordered_type.
Qed.
Lemma In_node_iff :
forall l x e r h y,
In y (Node l x e r h) <-> In y l \/ X.eq y x \/ In y r.
Proof.
intuition_in.
Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x, lt_tree x (Leaf elt).
Proof.
unfold lt_tree; intros; intuition_in.
Qed.
Lemma gt_leaf : forall x, gt_tree x (Leaf elt).
Proof.
unfold gt_tree; intros; intuition_in.
Qed.
Lemma lt_tree_node : forall x y l r e h,
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y e r h).
Proof.
unfold lt_tree in *; intuition_in; order.
Qed.
Lemma gt_tree_node : forall x y l r e h,
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y e r h).
Proof.
unfold gt_tree in *; intuition_in; order.
Qed.
#[local]
Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node : core.
Lemma lt_left : forall x y l r e h,
lt_tree x (Node l y e r h) -> lt_tree x l.
Proof.
intuition_in.
Qed.
Lemma lt_right : forall x y l r e h,
lt_tree x (Node l y e r h) -> lt_tree x r.
Proof.
intuition_in.
Qed.
Lemma gt_left : forall x y l r e h,
gt_tree x (Node l y e r h) -> gt_tree x l.
Proof.
intuition_in.
Qed.
Lemma gt_right : forall x y l r e h,
gt_tree x (Node l y e r h) -> gt_tree x r.
Proof.
intuition_in.
Qed.
#[local]
Hint Resolve lt_left lt_right gt_left gt_right : core.
Lemma lt_tree_not_in :
forall x m, lt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma lt_tree_trans :
forall x y, X.lt x y -> forall m, lt_tree x m -> lt_tree y m.
Proof.
eauto with ordered_type.
Qed.
Lemma gt_tree_not_in :
forall x m, gt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma gt_tree_trans :
forall x y, X.lt y x -> forall m, gt_tree x m -> gt_tree y m.
Proof.
eauto with ordered_type.
Qed.
#[local]
Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans : core.
(** * Empty map *)
Definition Empty m := forall (a:key)(e:elt) , ~ MapsTo a e m.
Lemma empty_bst : bst (empty elt).
Proof.
unfold empty; auto.
Qed.
Lemma empty_1 : Empty (empty elt).
Proof.
unfold empty, Empty; intuition_in.
Qed.
(** * Emptyness test *)
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof.
destruct m as [|r x e l h]; simpl; auto.
intro H; elim (H x e); auto with ordered_type.
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof.
destruct m; simpl; intros; try discriminate; red; intuition_in.
Qed.
(** * Membership *)
Lemma mem_1 : forall m x, bst m -> In x m -> mem x m = true.
Proof.
intros m x; induction elt, x, m, (mem x m) using mem_ind; auto; intros; clearf;
inv bst; intuition_in; order.
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
intros m x; induction elt, x, m, (mem x m) using mem_ind; auto; intros; discriminate.
Qed.
Lemma find_1 : forall m x e, bst m -> MapsTo x e m -> find x m = Some e.
Proof.
intros m x; induction elt, x, m, (find x m) using find_ind; auto; intros; clearf;
inv bst; intuition_in; simpl; auto;
try solve [order | absurd (X.lt x y); eauto with ordered_type | absurd (X.lt y x); eauto with ordered_type].
Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
intros m x; induction elt, x, m, (find x m) using find_ind; subst; intros; clearf;
try discriminate.
- constructor 2; auto.
- inversion H; auto.
- constructor 3; auto.
Qed.
Lemma find_iff : forall m x e, bst m ->
(find x m = Some e <-> MapsTo x e m).
Proof.
split; auto using find_1, find_2.
Qed.
Lemma find_in : forall m x, find x m <> None -> In x m.
Proof.
intros.
case_eq (find x m); [intros|congruence].
apply MapsTo_In with e; apply find_2; auto.
Qed.
Lemma in_find : forall m x, bst m -> In x m -> find x m <> None.
Proof.
intros.
destruct (In_MapsTo H0) as (d,Hd).
rewrite (find_1 H Hd); discriminate.
Qed.
Lemma find_in_iff : forall m x, bst m ->
(find x m <> None <-> In x m).
Proof.
split; auto using find_in, in_find.
Qed.
Lemma not_find_iff : forall m x, bst m ->
(find x m = None <-> ~In x m).
Proof.
split; intros.
- red; intros.
elim (in_find H H1 H0).
- case_eq (find x m); [ intros | auto ].
elim H0; apply find_in; congruence.
Qed.
Lemma find_find : forall m m' x,
find x m = find x m' <->
(forall d, find x m = Some d <-> find x m' = Some d).
Proof.
intros; destruct (find x m); destruct (find x m'); split; intros;
try split; try congruence.
- rewrite H; auto.
- symmetry; rewrite <- H; auto.
- rewrite H; auto.
Qed.
Lemma find_mapsto_equiv : forall m m' x, bst m -> bst m' ->
(find x m = find x m' <->
(forall d, MapsTo x d m <-> MapsTo x d m')).
Proof.
intros m m' x Hm Hm'.
rewrite find_find.
split; intros H d; specialize H with d.
- rewrite <- 2 find_iff; auto.
- rewrite 2 find_iff; auto.
Qed.
Lemma find_in_equiv : forall m m' x, bst m -> bst m' ->
find x m = find x m' ->
(In x m <-> In x m').
Proof.
split; intros; apply find_in; [ rewrite <- H1 | rewrite H1 ];
apply in_find; auto.
Qed.
(** * Helper functions *)
Lemma create_bst :
forall l x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
bst (create l x e r).
Proof.
unfold create; auto.
Qed.
#[local]
Hint Resolve create_bst : core.
Lemma create_in :
forall l x e r y,
In y (create l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
unfold create; split; [ inversion_clear 1 | ]; intuition.
Qed.
Lemma bal_bst : forall l x e r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (bal l x e r).
Proof.
intros l x e r; induction elt, l, x, e, r, (bal l x e r) using bal_ind; subst; intros; clearf;
inv bst; repeat apply create_bst; auto; unfold create; try constructor;
(apply lt_tree_node || apply gt_tree_node); auto with ordered_type;
(eapply lt_tree_trans || eapply gt_tree_trans); eauto with ordered_type.
Qed.
#[local]
Hint Resolve bal_bst : core.
Lemma bal_in : forall l x e r y,
In y (bal l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
intros l x e r; induction elt, l, x, e, r, (bal l x e r) using bal_ind; subst; intros; clearf;
rewrite !create_in; intuition_in.
Qed.
Lemma bal_mapsto : forall l x e r y e',
MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r).
Proof.
intros l x e r; induction elt, l, x, e, r, (bal l x e r) using bal_ind; subst; intros; clearf;
unfold assert_false, create; intuition_in.
Qed.
Lemma bal_find : forall l x e r y,
bst l -> bst r -> lt_tree x l -> gt_tree x r ->
find y (bal l x e r) = find y (create l x e r).
Proof.
intros; rewrite find_mapsto_equiv; auto; intros; apply bal_mapsto.
Qed.
(** * Insertion *)
Lemma add_in : forall m x y e,
In y (add x e m) <-> X.eq y x \/ In y m.
Proof.
intros m x y e; induction elt, x, e, m, (add x e m) using add_ind; clearf; auto; intros;
try (rewrite bal_in, IHt); intuition_in.
apply In_1 with x; auto with ordered_type.
Qed.
Lemma add_bst : forall m x e, bst m -> bst (add x e m).
Proof.
intros m x e; induction elt, x, e, m, (add x e m) using add_ind; clearf; intros;
inv bst; try apply bal_bst; auto;
intro z; rewrite add_in; intuition.
- apply MX.eq_lt with x; auto.
- apply MX.lt_eq with x; auto with ordered_type.
Qed.
#[local]
Hint Resolve add_bst : core.
Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Proof.
intros m x y e; induction elt, x, e, m, (add x e m) using add_ind; clearf;
intros; inv bst; try rewrite bal_mapsto; unfold create; eauto with ordered_type.
Qed.
Lemma add_2 : forall m x y e e', ~X.eq x y ->
MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
intros m x y e e'; induction m; simpl; auto.
destruct (X.compare x k);
intros; inv bst; try rewrite bal_mapsto; unfold create; auto;
inv MapsTo; auto; order.
Qed.
Lemma add_3 : forall m x y e e', ~X.eq x y ->
MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
intros m x y e e'; induction m; simpl; auto.
- intros; inv MapsTo; auto; order.
- destruct (X.compare x k); intro;
try rewrite bal_mapsto; auto; unfold create; intros; inv MapsTo; auto;
order.
Qed.
Lemma add_find : forall m x y e, bst m ->
find y (add x e m) =
match X.compare y x with EQ _ => Some e | _ => find y m end.
Proof.
intros.
assert (~X.eq x y -> find y (add x e m) = find y m).
- intros; rewrite find_mapsto_equiv; auto.
split; eauto using add_2, add_3.
- destruct X.compare; try (apply H0; order).
auto using find_1, add_1 with ordered_type.
Qed.
(** * Extraction of minimum binding *)
Lemma remove_min_in : forall l x e r h y,
In y (Node l x e r h) <->
X.eq y (remove_min l x e r)#2#1 \/ In y (remove_min l x e r)#1.
Proof.
intros l x e r; induction elt, l, x, e, r, (remove_min l x e r) using remove_min_ind; clearf; simpl in *; intros.
- intuition_in.
- rewrite H0 in *; simpl; intros.
rewrite bal_in, In_node_iff, IHp; intuition.
Qed.
Lemma remove_min_mapsto : forall l x e r h y e',
MapsTo y e' (Node l x e r h) <->
((X.eq y (remove_min l x e r)#2#1) /\ e' = (remove_min l x e r)#2#2)
\/ MapsTo y e' (remove_min l x e r)#1.
Proof.
intros l x e r; induction elt, l, x, e, r, (remove_min l x e r) using remove_min_ind; clearf; simpl in *; intros.
- intuition_in; subst; auto.
- rewrite H0 in *; simpl; intros.
rewrite bal_mapsto; auto; unfold create.
simpl in *;destruct (IHp _x y e').
intuition.
+ inversion_clear H2; intuition.
+ inversion_clear H4; intuition.
Qed.
Lemma remove_min_bst : forall l x e r h,
bst (Node l x e r h) -> bst (remove_min l x e r)#1.
Proof.
intros l x e r; induction elt, l, x, e, r, (remove_min l x e r) using remove_min_ind; clearf; simpl in *; intros.
- inv bst; auto.
- inversion_clear H; inversion_clear H1.
apply bal_bst; auto.
+ rewrite H0 in *; simpl in *; apply (IHp _x); auto.
+ intro; intros.
generalize (remove_min_in ll lx ld lr _x y).
rewrite H0; simpl in *.
destruct 1.
apply H3; intuition.
Qed.
#[local]
Hint Resolve remove_min_bst : core.
Lemma remove_min_gt_tree : forall l x e r h,
bst (Node l x e r h) ->
gt_tree (remove_min l x e r)#2#1 (remove_min l x e r)#1.
Proof.
intros l x e r; induction elt, l, x, e, r, (remove_min l x e r) using remove_min_ind; clearf; simpl in *; intros.
- inv bst; auto.
- inversion_clear H.
intro; intro.
rewrite H0 in *;simpl in *.
generalize (IHp _x H1).
generalize (remove_min_in ll lx ld lr _x m#1).
rewrite H0; simpl; intros.
rewrite (bal_in l' x d r y) in H.
assert (In m#1 (Node ll lx ld lr _x)) by (rewrite H5; auto with ordered_type); clear H5.
assert (X.lt m#1 x) by order.
decompose [or] H; order.
Qed.
#[local]
Hint Resolve remove_min_gt_tree : core.
Lemma remove_min_find : forall l x e r h y,
bst (Node l x e r h) ->
find y (Node l x e r h) =
match X.compare y (remove_min l x e r)#2#1 with
| LT _ => None
| EQ _ => Some (remove_min l x e r)#2#2
| GT _ => find y (remove_min l x e r)#1
end.
Proof.
intros.
destruct X.compare.
- rewrite not_find_iff; auto.
rewrite remove_min_in; red; destruct 1 as [H'|H']; [ order | ].
generalize (remove_min_gt_tree H H'); order.
- apply find_1; auto.
rewrite remove_min_mapsto; auto.
- rewrite find_mapsto_equiv; eauto; intros.
rewrite remove_min_mapsto; intuition; order.
Qed.
(** * Merging two trees *)
Lemma merge_in : forall m1 m2 y, bst m1 -> bst m2 ->
(In y (merge m1 m2) <-> In y m1 \/ In y m2).
Proof.
intros m1 m2; induction elt, m1, m2, (merge m1 m2) using merge_ind; clearf; intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
- intuition_in.
- intuition_in.
- rewrite bal_in, remove_min_in, H1; simpl; intuition.
Qed.
Lemma merge_mapsto : forall m1 m2 y e, bst m1 -> bst m2 ->
(MapsTo y e (merge m1 m2) <-> MapsTo y e m1 \/ MapsTo y e m2).
Proof.
intros m1 m2; induction elt, m1, m2, (merge m1 m2) using merge_ind; clearf; intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
- intuition_in.
- intuition_in.
- rewrite bal_mapsto, remove_min_mapsto, H1; simpl; auto.
unfold create.
intuition; subst; auto.
inversion_clear H2; intuition.
Qed.
Lemma merge_bst : forall m1 m2, bst m1 -> bst m2 ->
(forall y1 y2 : key, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
bst (merge m1 m2).
Proof.
intros m1 m2; induction elt, m1, m2, (merge m1 m2) using merge_ind; clearf; intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
apply bal_bst; auto.
- generalize (remove_min_bst H0); rewrite H1; simpl in *; auto.
- intro; intro.
apply H2; auto.
generalize (remove_min_in l2 x2 d2 r2 _x4 x); rewrite H1; simpl; intuition auto with relations.
- generalize (remove_min_gt_tree H0); rewrite H1; simpl; auto.
Qed.
(** * Deletion *)
Lemma remove_in : forall m x y, bst m ->
(In y (remove x m) <-> ~ X.eq y x /\ In y m).
Proof.
intros m x; induction elt, x, m, (remove x m) using remove_ind; subst T; simpl; intros.
- intuition_in.
- (* LT *)
inv bst; clear H0.
rewrite bal_in; auto.
generalize (IHt y0 H2); intuition; [ order | order | intuition_in ].
- (* EQ *)
inv bst; clear H0.
rewrite merge_in; intuition; [ order | order | intuition_in ].
elim H1; eauto with ordered_type.
- (* GT *)
inv bst; clear H0.
rewrite bal_in; auto.
generalize (IHt y0 H3); intuition; [ order | order | intuition_in ].
Qed.
Lemma remove_bst : forall m x, bst m -> bst (remove x m).
Proof.
intros m x; induction elt, x, m, (remove x m) using remove_ind; subst T; simpl; intros.
- auto.
- (* LT *)
inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H2) in H1; auto.
destruct H1; eauto.
- (* EQ *)
inv bst.
apply merge_bst; eauto with ordered_type.
- (* GT *)
inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H3) in H1; auto.
destruct H1; eauto.
Qed.
Lemma remove_1 : forall m x y, bst m -> X.eq x y -> ~ In y (remove x m).
Proof.
intros; rewrite remove_in; intuition auto with relations.
Qed.
Lemma remove_2 : forall m x y e, bst m -> ~X.eq x y ->
MapsTo y e m -> MapsTo y e (remove x m).
Proof.
intros m x y e; induction m; simpl; auto.
destruct (X.compare x k);
intros; inv bst; try rewrite bal_mapsto; unfold create; auto;
try solve [inv MapsTo; auto].
rewrite merge_mapsto; auto.
inv MapsTo; auto; order.
Qed.
Lemma remove_3 : forall m x y e, bst m ->
MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
intros m x y e; induction m; simpl; auto.
destruct (X.compare x k); intros Bs; inv bst;
try rewrite bal_mapsto; auto; unfold create.
- intros; inv MapsTo; auto.
- rewrite merge_mapsto; intuition.
- intros; inv MapsTo; auto.
Qed.
(** * join *)
Lemma join_in : forall l x d r y,
In y (join l x d r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
join_tac.
- simpl.
rewrite add_in; intuition_in.
- rewrite add_in; intuition_in.
- rewrite bal_in, Hlr; clear Hlr Hrl; intuition_in.
- rewrite bal_in, Hrl; clear Hlr Hrl; intuition_in.
- apply create_in.
Qed.
Lemma join_bst : forall l x d r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (join l x d r).
Proof.
join_tac; auto; try (simpl; auto; fail); inv bst; apply bal_bst; auto;
clear Hrl Hlr; intro; intros; rewrite join_in in *.
- intuition; [ apply MX.lt_eq with x | ]; eauto with ordered_type.
- intuition; [ apply MX.eq_lt with x | ]; eauto with ordered_type.
Qed.
#[local]
Hint Resolve join_bst : core.
Lemma join_find : forall l x d r y,
bst l -> bst r -> lt_tree x l -> gt_tree x r ->
find y (join l x d r) = find y (create l x d r).
Proof.
join_tac; auto; inv bst;
simpl (join (Leaf elt));
try (assert (X.lt lx x) by auto with ordered_type);
try (assert (X.lt x rx) by auto with ordered_type);
rewrite ?add_find, ?bal_find; auto.
- simpl; destruct X.compare; auto.
rewrite not_find_iff; auto; intro; order.
- simpl; repeat (destruct X.compare; auto); try (order; fail).
rewrite not_find_iff by auto; intro.
assert (X.lt y x) by auto; order.
- simpl; rewrite Hlr; simpl; auto.
repeat (destruct X.compare; auto); order.
- intros u Hu; rewrite join_in in Hu.
destruct Hu as [Hu|[Hu|Hu]]; try generalize (H2 _ Hu); order.
- simpl; rewrite Hrl; simpl; auto.
repeat (destruct X.compare; auto); order.
- intros u Hu; rewrite join_in in Hu.
destruct Hu as [Hu|[Hu|Hu]]; order.
Qed.
(** * split *)
Lemma split_in_1 : forall m x, bst m -> forall y,
(In y (split x m)#l <-> In y m /\ X.lt y x).
Proof.
intros m x; induction elt, x, m, (split x m) using split_ind; clearf; simpl; intros;
inv bst; try clear e0.
- intuition_in.
- rewrite H1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
- intuition_in; order.
- rewrite join_in.
rewrite H1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
Lemma split_in_2 : forall m x, bst m -> forall y,
(In y (split x m)#r <-> In y m /\ X.lt x y).
Proof.
intros m x; induction elt, x, m, (split x m) using split_ind; clearf; subst; simpl; intros;
inv bst; try clear e0.
- intuition_in.
- rewrite join_in.
rewrite H1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
- intuition_in; order.
- rewrite H1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
Lemma split_in_3 : forall m x, bst m ->
(split x m)#o = find x m.
Proof.
intros m x; induction elt, x, m, (split x m) using split_ind; clearf; subst; simpl; auto;
intros; inv bst; try clear e0;
destruct X.compare; try order; trivial; rewrite <- IHt, H1; auto.
Qed.
Lemma split_bst : forall m x, bst m ->
bst (split x m)#l /\ bst (split x m)#r.
Proof.
intros m x; induction elt, x, m, (split x m) using split_ind; clearf; subst; simpl; intros;
inv bst; try clear e0; try rewrite H1 in *; simpl in *; intuition;
apply join_bst; auto.
- intros y0.
generalize (split_in_2 x H0 y0); rewrite H1; simpl; intuition.
- intros y0.
generalize (split_in_1 x H2 y0); rewrite H1; simpl; intuition.
Qed.
Lemma split_lt_tree : forall m x, bst m -> lt_tree x (split x m)#l.
Proof.
intros m x B y Hy; rewrite split_in_1 in Hy; intuition.
Qed.
Lemma split_gt_tree : forall m x, bst m -> gt_tree x (split x m)#r.
Proof.
intros m x B y Hy; rewrite split_in_2 in Hy; intuition.
Qed.
Lemma split_find : forall m x y, bst m ->
find y m = match X.compare y x with
| LT _ => find y (split x m)#l
| EQ _ => (split x m)#o
| GT _ => find y (split x m)#r
end.
Proof.
intros m x; induction elt, x, m, (split x m) using split_ind; clearf; subst; simpl; intros;
inv bst; try clear e0; try rewrite H1 in *; simpl in *;
[ destruct X.compare; auto | .. ];
try match goal with E:split ?x ?t = _, B:bst ?t |- _ =>
generalize (split_in_1 x B)(split_in_2 x B)(split_bst x B);
rewrite E; simpl; destruct 3 end.
- rewrite join_find, IHt; auto; clear IHt; simpl.
+ repeat (destruct X.compare; auto); order.
+ intro y1; rewrite H5; intuition.
- repeat (destruct X.compare; auto); order.
- rewrite join_find, IHt; auto; clear IHt; simpl.
+ repeat (destruct X.compare; auto); order.
+ intros y1; rewrite H; intuition.
Qed.
(** * Concatenation *)
Lemma concat_in : forall m1 m2 y,
In y (concat m1 m2) <-> In y m1 \/ In y m2.
Proof.
intros m1 m2; induction elt, m1, m2, (concat m1 m2) using concat_ind; clearf; intros;
try factornode _x _x0 _x1 _x2 _x3 as m1.
- intuition_in.
- intuition_in.
- rewrite join_in, remove_min_in, H1; simpl; intuition.
Qed.
Lemma concat_bst : forall m1 m2, bst m1 -> bst m2 ->
(forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
bst (concat m1 m2).
Proof.
intros m1 m2; induction elt, m1, m2, (concat m1 m2) using concat_ind; clearf; intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
apply join_bst; auto.
- change (bst (m2',xd)#1). rewrite <- H1; eauto.
- intros y Hy.
apply H2; auto.
rewrite remove_min_in, H1; simpl; auto with ordered_type.
- change (gt_tree (m2',xd)#2#1 (m2',xd)#1). rewrite <- H1; eauto.
Qed.
#[local]
Hint Resolve concat_bst : core.
Lemma concat_find : forall m1 m2 y, bst m1 -> bst m2 ->
(forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
find y (concat m1 m2) =
match find y m2 with Some d => Some d | None => find y m1 end.
Proof.
intros m1 m2; induction elt, m1, m2, (concat m1 m2) using concat_ind; clearf; intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
- simpl; destruct (find y m2); auto.
- generalize (remove_min_find y H0)(remove_min_in l2 x2 d2 r2 _x4)
(remove_min_bst H0)(remove_min_gt_tree H0);
rewrite H1; simpl fst; simpl snd; intros.
inv bst.
rewrite H3, join_find; auto; clear H3.
+ simpl; destruct X.compare as [Hlt| |Hlt]; simpl; auto.
destruct (find y m2'); auto.
symmetry; rewrite not_find_iff; auto; intro.
apply (MX.lt_not_gt Hlt); apply H2; auto; rewrite H4; auto with ordered_type.
+ intros z Hz; apply H2; auto; rewrite H4; auto with ordered_type.
Qed.
(** * Elements *)
Notation eqk := (PX.eqk (elt:= elt)).
Notation eqke := (PX.eqke (elt:= elt)).
Notation ltk := (PX.ltk (elt:= elt)).
Lemma elements_aux_mapsto : forall (s:t elt) acc x e,
InA eqke (x,e) (elements_aux acc s) <-> MapsTo x e s \/ InA eqke (x,e) acc.
Proof.
induction s as [ | l Hl x e r Hr h ]; simpl; auto.
- intuition.
inversion H0.
- intros.
rewrite Hl.
destruct (Hr acc x0 e0); clear Hl Hr.
intuition; inversion_clear H3; intuition auto with ordered_type.
destruct H0; simpl in *; subst; intuition.
Qed.
Lemma elements_mapsto : forall (s:t elt) x e, InA eqke (x,e) (elements s) <-> MapsTo x e s.
Proof.
intros; generalize (elements_aux_mapsto s nil x e); intuition.
inversion_clear H0.
Qed.
Lemma elements_in : forall (s:t elt) x, L.PX.In x (elements s) <-> In x s.
Proof.
intros.
unfold L.PX.In.
rewrite <- In_alt; unfold In0.
firstorder.
- exists x0.
rewrite <- elements_mapsto; auto.
- exists x0.
unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
Lemma elements_aux_sort : forall (s:t elt) acc, bst s -> sort ltk acc ->
(forall x e y, InA eqke (x,e) acc -> In y s -> X.lt y x) ->
sort ltk (elements_aux acc s).
Proof.
induction s as [ | l Hl y e r Hr h]; simpl; intuition.
inv bst.
apply Hl; auto.
- constructor.
+ apply Hr; eauto.
+ apply InA_InfA with (eqA:=eqke).
* auto with typeclass_instances.
* intros (y',e') H6.
destruct (elements_aux_mapsto r acc y' e'); intuition.
-- red; simpl; eauto.
-- red; simpl; eauto with ordered_type.
- intros x e0 y0 H H6.
inversion_clear H.
+ destruct H7; simpl in *.
order.
+ destruct (elements_aux_mapsto r acc x e0); intuition eauto with ordered_type.
Qed.
Lemma elements_sort : forall s : t elt, bst s -> sort ltk (elements s).
Proof.
intros; unfold elements; apply elements_aux_sort; auto.
intros; inversion H0.
Qed.
#[local]
Hint Resolve elements_sort : core.
Lemma elements_nodup : forall s : t elt, bst s -> NoDupA eqk (elements s).
Proof.
intros; apply PX.Sort_NoDupA; auto.
Qed.
Lemma elements_aux_cardinal :
forall (m:t elt) acc, (length acc + cardinal m)%nat = length (elements_aux acc m).
Proof.
simple induction m; simpl; intuition.
rewrite <- H; simpl.
rewrite <- H0, Nat.add_succ_r, (Nat.add_comm (cardinal t)), Nat.add_assoc.
reflexivity.
Qed.
Lemma elements_cardinal : forall (m:t elt), cardinal m = length (elements m).
Proof.
exact (fun m => elements_aux_cardinal m nil).
Qed.
Lemma elements_app :
forall (s:t elt) acc, elements_aux acc s = elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
rewrite 2 IHs1, IHs2, !app_nil_r, <- !app_assoc; auto.
Qed.
Lemma elements_node :
forall (t1 t2:t elt) x e z l,
elements t1 ++ (x,e) :: elements t2 ++ l =
elements (Node t1 x e t2 z) ++ l.
Proof.
unfold elements; simpl; intros.
rewrite !elements_app, !app_nil_r, <- !app_assoc; auto.
Qed.
(** * Fold *)
Definition fold' (A : Type) (f : key -> elt -> A -> A)(s : t elt) :=
L.fold f (elements s).
Lemma fold_equiv_aux :
forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A) acc,
L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
- simpl; intuition.
- simpl; intros.
rewrite H.
simpl.
apply H0.
Qed.
Lemma fold_equiv :
forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A),
fold f s a = fold' f s a.
Proof.
unfold fold', elements.
simple induction s; simpl; auto; intros.
rewrite fold_equiv_aux.
rewrite H0.
simpl; auto.
Qed.
Lemma fold_1 :
forall (s:t elt)(Hs:bst s)(A : Type)(i:A)(f : key -> elt -> A -> A),
fold f s i = fold_left (fun a p => f p#1 p#2 a) (elements s) i.
Proof.
intros.
rewrite fold_equiv.
unfold fold'.
rewrite L.fold_1.
unfold L.elements; auto.
Qed.
(** * Comparison *)
(** [flatten_e e] returns the list of elements of the enumeration [e]
i.e. the list of elements actually compared *)
Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with
| End _ => nil
| More x e t r => (x,e) :: elements t ++ flatten_e r
end.
Lemma flatten_e_elements :
forall (l:t elt) r x d z e,
elements l ++ flatten_e (More x d r e) =
elements (Node l x d r z) ++ flatten_e e.
Proof.
intros; apply elements_node.
Qed.
Lemma cons_1 : forall (s:t elt) e,
flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
induction s; auto; intros.
simpl flatten_e; rewrite IHs1; apply flatten_e_elements; auto.
Qed.
(** Proof of correction for the comparison *)
Variable cmp : elt->elt->bool.
Definition IfEq b l1 l2 := L.equal cmp l1 l2 = b.
Lemma cons_IfEq : forall b x1 x2 d1 d2 l1 l2,
X.eq x1 x2 -> cmp d1 d2 = true ->
IfEq b l1 l2 ->
IfEq b ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
unfold IfEq; destruct b; simpl; intros; destruct X.compare; simpl;
try rewrite H0; auto; order.
Qed.
Lemma equal_end_IfEq : forall e2,
IfEq (equal_end e2) nil (flatten_e e2).
Proof.
destruct e2; red; auto.
Qed.
Lemma equal_more_IfEq :
forall x1 d1 (cont:enumeration elt -> bool) x2 d2 r2 e2 l,
IfEq (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
IfEq (equal_more cmp x1 d1 cont (More x2 d2 r2 e2)) ((x1,d1)::l)
(flatten_e (More x2 d2 r2 e2)).
Proof.
unfold IfEq; simpl; intros; destruct X.compare; simpl; auto.
rewrite <-andb_lazy_alt; f_equal; auto.
Qed.
Lemma equal_cont_IfEq : forall m1 cont e2 l,
(forall e, IfEq (cont e) l (flatten_e e)) ->
IfEq (equal_cont cmp m1 cont e2) (elements m1 ++ l) (flatten_e e2).
Proof.
induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- elements_node; simpl.
apply Hl1; auto.
clear e2; intros [|x2 d2 r2 e2].
- simpl; red; auto.
- apply equal_more_IfEq.
rewrite <- cons_1; auto.
Qed.
Lemma equal_IfEq : forall (m1 m2:t elt),
IfEq (equal cmp m1 m2) (elements m1) (elements m2).
Proof.
intros; unfold equal.
rewrite <- (app_nil_r (elements m1)).
replace (elements m2) with (flatten_e (cons m2 (End _)))
by (rewrite cons_1; simpl; rewrite app_nil_r; auto).
apply equal_cont_IfEq.
intros.
apply equal_end_IfEq; auto.
Qed.
Definition Equivb m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma Equivb_elements : forall s s',
Equivb s s' <-> L.Equivb cmp (elements s) (elements s').
Proof.
unfold Equivb, L.Equivb; split; split; intros.
- do 2 rewrite elements_in; firstorder.
- destruct H.
apply (H2 k); rewrite <- elements_mapsto; auto.
- do 2 rewrite <- elements_in; firstorder.
- destruct H.
apply (H2 k); unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
Lemma equal_Equivb : forall (s s': t elt), bst s -> bst s' ->
(equal cmp s s' = true <-> Equivb s s').
Proof.
intros s s' B B'.
rewrite Equivb_elements, <- equal_IfEq.
split; [apply L.equal_2|apply L.equal_1]; auto.
Qed.
End Elt.
Section Map.
Variable elt elt' : Type.
Variable f : elt -> elt'.
Lemma map_1 : forall (m: t elt)(x:key)(e:elt),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_2 : forall (m: t elt)(x:key),
In x (map f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_bst : forall m, bst m -> bst (map f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto;
red; auto using map_2.
Qed.
End Map.
Section Mapi.
Variable elt elt' : Type.
Variable f : key -> elt -> elt'.
Lemma mapi_1 : forall (m: tree elt)(x:key)(e:elt),
MapsTo x e m -> exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
- exists k; auto with ordered_type.
- destruct (IHm1 _ _ H0).
exists x0; intuition.
- destruct (IHm2 _ _ H0).
exists x0; intuition.
Qed.
Lemma mapi_2 : forall (m: t elt)(x:key),
In x (mapi f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma mapi_bst : forall m, bst m -> bst (mapi f m).
Proof.
induction m; simpl; auto.
inversion_clear 1; constructor; auto;
red; auto using mapi_2.
Qed.
End Mapi.
Section Map_option.
Variable elt elt' : Type.
Variable f : key -> elt -> option elt'.
Hypothesis f_compat : forall x x' d, X.eq x x' -> f x d = f x' d.
Lemma map_option_2 : forall (m:t elt)(x:key),
In x (map_option f m) -> exists d, MapsTo x d m /\ f x d <> None.
Proof.
intros m; induction elt, elt', f, m, (map_option f m) using map_option_ind; clearf; simpl; auto; intros.
- inversion H.
- rewrite join_in in H; destruct H as [H|[H|H]].
+ exists d; split; auto; rewrite (f_compat d H), H0; discriminate.
+ destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
+ destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
- rewrite concat_in in H; destruct H as [H|H].
+ destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
+ destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
Qed.
Lemma map_option_bst : forall m, bst m -> bst (map_option f m).
Proof.
intros m; induction elt, elt', f, m, (map_option f m) using map_option_ind; clearf; simpl; auto; intros;
inv bst.
- apply join_bst; auto; intros y H;
destruct (map_option_2 H) as (d0 & ? & ?); eauto using MapsTo_In.
- apply concat_bst; auto; intros y y' H H'.
destruct (map_option_2 H) as (d0 & ? & ?).
destruct (map_option_2 H') as (d0' & ? & ?).
eapply X.lt_trans with x; eauto using MapsTo_In.
Qed.
#[local]
Hint Resolve map_option_bst : core.
Ltac nonify e :=
replace e with (@None elt) by
(symmetry; rewrite not_find_iff; auto; intro; order).
Lemma map_option_find : forall (m:t elt)(x:key),
bst m ->
find x (map_option f m) =
match (find x m) with Some d => f x d | None => None end.
Proof.
intros m; induction elt, elt', f, m, (map_option f m) using map_option_ind; clearf; simpl; auto; intros;
inv bst; rewrite join_find || rewrite concat_find; auto; simpl;
try destruct X.compare as [Hlt|Heq|Hlt]; simpl; auto.
- rewrite (f_compat d Heq); auto.
- intros y H;
destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
- intros y H;
destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
- rewrite <- IHt, IHt0; auto; nonify (find x0 r); auto.
- rewrite IHt, IHt0; auto; nonify (find x0 r); nonify (find x0 l); auto.
rewrite (f_compat d Heq); auto.
- rewrite <- IHt0, IHt; auto; nonify (find x0 l); auto.
destruct (find x0 (map_option f r)); auto.
- intros y y' H H'.
destruct (map_option_2 H) as (? & ? & ?).
destruct (map_option_2 H') as (? & ? & ?).
eapply X.lt_trans with x; eauto using MapsTo_In.
Qed.
End Map_option.
Section Map2_opt.
Variable elt elt' elt'' : Type.
Variable f0 : key -> option elt -> option elt' -> option elt''.
Variable f : key -> elt -> option elt' -> option elt''.
Variable mapl : t elt -> t elt''.
Variable mapr : t elt' -> t elt''.
Hypothesis f0_f : forall x d o, f x d o = f0 x (Some d) o.
Hypothesis mapl_bst : forall m, bst m -> bst (mapl m).
Hypothesis mapr_bst : forall m', bst m' -> bst (mapr m').
Hypothesis mapl_f0 : forall x m, bst m ->
find x (mapl m) =
match find x m with Some d => f0 x (Some d) None | None => None end.
Hypothesis mapr_f0 : forall x m', bst m' ->
find x (mapr m') =
match find x m' with Some d' => f0 x None (Some d') | None => None end.
Hypothesis f0_compat : forall x x' o o', X.eq x x' -> f0 x o o' = f0 x' o o'.
Notation map2_opt := (map2_opt f mapl mapr).
Lemma map2_opt_2 : forall m m' y, bst m -> bst m' ->
In y (map2_opt m m') -> In y m \/ In y m'.
Proof.
intros m m'; induction elt, elt', elt'', f, mapl, mapr, m, m', (map2_opt m m') using map2_opt_ind; clearf; intros;
auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2;
try (generalize (split_in_1 x1 H0 y)(split_in_2 x1 H0 y)
(split_bst x1 H0); rewrite H1; simpl; destruct 3; inv bst).
- right; apply find_in.
generalize (in_find (mapr_bst H0) H1); rewrite mapr_f0; auto.
destruct (find y m2); auto; intros; discriminate.
- factornode l1 x1 d1 r1 _x as m1.
left; apply find_in.
generalize (in_find (mapl_bst H) H1); rewrite mapl_f0; auto.
destruct (find y m1); auto; intros; discriminate.
- rewrite join_in in H3; destruct H3 as [H'|[H'|H']]; auto.
+ destruct (IHt1 y H8 H6 H'); intuition.
+ destruct (IHt0 y H9 H7 H'); intuition.
- rewrite concat_in in H3; destruct H3 as [H'|H']; auto.
+ destruct (IHt1 y H8 H6 H'); intuition.
+ destruct (IHt0 y H9 H7 H'); intuition.
Qed.
Lemma map2_opt_bst : forall m m', bst m -> bst m' ->
bst (map2_opt m m').
Proof.
intros m m'; induction elt, elt', elt'', f, mapl, mapr, m, m', (map2_opt m m') using map2_opt_ind; clearf; intros;
auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2; inv bst;
generalize (split_in_1 x1 H0)(split_in_2 x1 H0)(split_bst x1 H0);
rewrite H1; simpl in *; destruct 3.
- apply join_bst; auto.
+ intros y Hy; specialize H with y.
destruct (map2_opt_2 H3 H8 Hy); intuition.
+ intros y Hy; specialize H7 with y.
destruct (map2_opt_2 H4 H9 Hy); intuition.
- apply concat_bst; auto.
intros y y' Hy Hy'; specialize H with y; specialize H7 with y'.
apply X.lt_trans with x1.
+ destruct (map2_opt_2 H3 H8 Hy); intuition.
+ destruct (map2_opt_2 H4 H9 Hy'); intuition.
Qed.
#[local]
Hint Resolve map2_opt_bst : core.
Ltac map2_aux :=
match goal with
| H : In ?x _ \/ In ?x ?m,
H' : find ?x ?m = find ?x ?m', B:bst ?m, B':bst ?m' |- _ =>
destruct H; [ intuition_in; order |
rewrite <-(find_in_equiv B B' H'); auto ]
end.
Ltac nonify t :=
match t with (find ?y (map2_opt ?m ?m')) =>
replace t with (@None elt'');
[ | symmetry; rewrite not_find_iff; auto; intro;
destruct (@map2_opt_2 m m' y); auto; order ]
end.
Lemma map2_opt_1 : forall m m' y, bst m -> bst m' ->
In y m \/ In y m' ->
find y (map2_opt m m') = f0 y (find y m) (find y m').
Proof.
intros m m'; induction elt, elt', elt'', f, mapl, mapr, m, m', (map2_opt m m') using map2_opt_ind; clearf; intros;
auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2;
try (generalize (split_in_1 x1 H0)(split_in_2 x1 H0)
(split_in_3 x1 H0)(split_bst x1 H0)(split_find x1 y H0)
(split_lt_tree (x:=x1) H0)(split_gt_tree (x:=x1) H0);
rewrite H1; simpl in *; destruct 4; intros; inv bst;
subst o2; rewrite H9, ?join_find, ?concat_find; auto).
- simpl; destruct H1; [ inversion_clear H1 | ].
rewrite mapr_f0; auto.
generalize (in_find H0 H1); destruct (find y m2); intuition.
- factornode l1 x1 d1 r1 _x as m1.
destruct H1; [ | inversion_clear H1 ].
rewrite mapl_f0; auto.
generalize (in_find H H1); destruct (find y m1); intuition.
- simpl; destruct X.compare; auto.
+ apply IHt1; auto; map2_aux.
+ rewrite (@f0_compat y x1), <- f0_f; auto.
+ apply IHt0; auto; map2_aux.
- intros z Hz; destruct (@map2_opt_2 l1 l2' z); auto.
- intros z Hz; destruct (@map2_opt_2 r1 r2' z); auto.
- destruct X.compare.
+ nonify (find y (map2_opt r1 r2')).
apply IHt1; auto; map2_aux.
+ nonify (find y (map2_opt r1 r2')).
nonify (find y (map2_opt l1 l2')).
rewrite (@f0_compat y x1), <- f0_f; auto.
+ nonify (find y (map2_opt l1 l2')).
rewrite IHt0; auto; [ | map2_aux ].
destruct (f0 y (find y r1) (find y r2')); auto.
- intros y1 y2 Hy1 Hy2; apply X.lt_trans with x1.
+ destruct (@map2_opt_2 l1 l2' y1); auto.
+ destruct (@map2_opt_2 r1 r2' y2); auto.
Qed.
End Map2_opt.
Section Map2.
Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
Lemma map2_bst : forall m m', bst m -> bst m' -> bst (map2 f m m').
Proof.
unfold map2; intros.
apply map2_opt_bst with (fun _ => f); auto using map_option_bst;
intros; rewrite map_option_find; auto.
Qed.
Lemma map2_1 : forall m m' y, bst m -> bst m' ->
In y m \/ In y m' -> find y (map2 f m m') = f (find y m) (find y m').
Proof.
unfold map2; intros.
rewrite (map2_opt_1 (f0:=fun _ => f));
auto using map_option_bst; intros; rewrite map_option_find; auto.
Qed.
Lemma map2_2 : forall m m' y, bst m -> bst m' ->
In y (map2 f m m') -> In y m \/ In y m'.
Proof.
unfold map2; intros.
eapply map2_opt_2 with (f0:=fun _ => f); try eassumption; trivial; intros.
- apply map_option_bst; auto.
- apply map_option_bst; auto.
- rewrite map_option_find; auto.
- rewrite map_option_find; auto.
Qed.
End Map2.
End Proofs.
End Raw.
(** * Encapsulation
Now, in order to really provide a functor implementing [S], we
need to encapsulate everything into a type of balanced binary search trees. *)
Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module E := X.
Module Raw := Raw I X.
Import Raw.Proofs.
#[universes(template)]
Record bst (elt:Type) :=
Bst {this :> Raw.tree elt; is_bst : Raw.bst this}.
Definition t := bst.
Definition key := E.t.
Section Elt.
Variable elt elt' elt'': Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Bst (empty_bst elt).
Definition is_empty m : bool := Raw.is_empty (this m).
Definition add x e m : t elt := Bst (add_bst x e (is_bst m)).
Definition remove x m : t elt := Bst (remove_bst x (is_bst m)).
Definition mem x m : bool := Raw.mem x (this m).
Definition find x m : option elt := Raw.find x (this m).
Definition map f m : t elt' := Bst (map_bst f (is_bst m)).
Definition mapi (f:key->elt->elt') m : t elt' :=
Bst (mapi_bst f (is_bst m)).
Definition map2 f m (m':t elt') : t elt'' :=
Bst (map2_bst f (is_bst m) (is_bst m')).
Definition elements m : list (key*elt) := Raw.elements (this m).
Definition cardinal m := Raw.cardinal (this m).
Definition fold (A:Type) (f:key->elt->A->A) m i := Raw.fold (A:=A) f (this m) i.
Definition equal cmp m m' : bool := Raw.equal cmp (this m) (this m').
Definition MapsTo x e m : Prop := Raw.MapsTo x e (this m).
Definition In x m : Prop := Raw.In0 x (this m).
Definition Empty m : Prop := Empty (this m).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros m; exact (@MapsTo_1 _ (this m)). Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
apply (is_bst m).
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
Qed.
Lemma empty_1 : Empty empty.
Proof. exact (@empty_1 elt). Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof. intros m; exact (@is_empty_1 _ (this m)). Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof. intros m; exact (@is_empty_2 _ (this m)). Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Proof. intros m x y e; exact (@add_1 elt _ x y e). Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof. intros m x y e e'; exact (@add_2 elt _ x y e e'). Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof. intros m x y e e'; exact (@add_3 elt _ x y e e'). Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof.
unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
apply (is_bst m).
Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof. intros m x y e; exact (@remove_2 elt _ x y e (is_bst m)). Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof. intros m x y e; exact (@remove_3 elt _ x y e (is_bst m)). Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof. intros m x e; exact (@find_1 elt _ x e (is_bst m)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof. intros m; exact (@find_2 elt (this m)). Qed.
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@fold_1 elt (this m) (is_bst m)). Qed.
Lemma elements_1 : forall m x e,
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
Qed.
Lemma elements_2 : forall m x e,
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
Qed.
Lemma elements_3 : forall m, sort lt_key (elements m).
Proof. intros m; exact (@elements_sort elt (this m) (is_bst m)). Qed.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@elements_nodup elt (this m) (is_bst m)). Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Proof. intro m; exact (@elements_cardinal elt (this m)). Qed.
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp := Equiv (Cmp cmp).
Lemma Equivb_Equivb : forall cmp m m',
Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
Proof.
intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In. intuition.
- generalize (H0 k); do 2 rewrite In_alt; intuition.
- generalize (H0 k); do 2 rewrite In_alt; intuition.
- generalize (H0 k); do 2 rewrite <- In_alt; intuition.
- generalize (H0 k); do 2 rewrite <- In_alt; intuition.
Qed.
Lemma equal_1 : forall m m' cmp,
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb;
intros; simpl in *; rewrite equal_Equivb; auto.
Qed.
Lemma equal_2 : forall m m' cmp,
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb;
intros; simpl in *; rewrite <-equal_Equivb; auto.
Qed.
End Elt.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m x e f; exact (@map_1 elt elt' f (this m) x e). Qed.
Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
Proof.
intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
apply map_2; auto.
Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m x e f; exact (@mapi_1 elt elt' f (this m) x e). Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof.
intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
unfold find, map2, In; intros elt elt' elt'' m m' x f.
do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
- apply (is_bst m).
- apply (is_bst m').
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
unfold In, map2; intros elt elt' elt'' m m' x f.
do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
- apply (is_bst m).
- apply (is_bst m').
Qed.
End IntMake.
Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Sord with Module Data := D
with Module MapS.E := X.
Module Data := D.
Module Import MapS := IntMake(I)(X).
Module LO := FMapList.Make_ord(X)(D).
Module R := Raw.
Module P := Raw.Proofs.
Definition t := MapS.t D.t.
Definition cmp e e' :=
match D.compare e e' with EQ _ => true | _ => false end.
(** One step of comparison of elements *)
Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 :=
match e2 with
| R.End _ => Gt
| R.More x2 d2 r2 e2 =>
match X.compare x1 x2 with
| EQ _ => match D.compare d1 d2 with
| EQ _ => cont (R.cons r2 e2)
| LT _ => Lt
| GT _ => Gt
end
| LT _ => Lt
| GT _ => Gt
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 :=
match s1 with
| R.Leaf _ => cont e2
| R.Node l1 x1 d1 r1 _ =>
compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition compare_end (e2:R.enumeration D.t) :=
match e2 with R.End _ => Eq | _ => Lt end.
(** The complete comparison *)
Definition compare_pure s1 s2 :=
compare_cont s1 compare_end (R.cons s2 (Raw.End _)).
(** Correctness of this comparison *)
Definition Cmp c :=
match c with
| Eq => LO.eq_list
| Lt => LO.lt_list
| Gt => (fun l1 l2 => LO.lt_list l2 l1)
end.
Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2,
X.eq x1 x2 -> D.eq d1 d2 ->
Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
destruct c; simpl; intros; P.MX.elim_comp; auto with ordered_type.
Qed.
#[global]
Hint Resolve cons_Cmp : core.
Lemma compare_end_Cmp :
forall e2, Cmp (compare_end e2) nil (P.flatten_e e2).
Proof.
destruct e2; simpl; auto.
Qed.
Lemma compare_more_Cmp : forall x1 d1 cont x2 d2 r2 e2 l,
Cmp (cont (R.cons r2 e2)) l (R.elements r2 ++ P.flatten_e e2) ->
Cmp (compare_more x1 d1 cont (R.More x2 d2 r2 e2)) ((x1,d1)::l)
(P.flatten_e (R.More x2 d2 r2 e2)).
Proof.
simpl; intros; destruct X.compare; simpl;
try destruct D.compare; simpl; auto; P.MX.elim_comp; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l,
(forall e, Cmp (cont e) l (P.flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (R.elements s1 ++ l) (P.flatten_e e2).
Proof.
induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- P.elements_node; simpl.
apply Hl1; auto. clear e2. intros [|x2 d2 r2 e2].
- simpl; auto.
- apply compare_more_Cmp.
rewrite <- P.cons_1; auto.
Qed.
Lemma compare_Cmp : forall s1 s2,
Cmp (compare_pure s1 s2) (R.elements s1) (R.elements s2).
Proof.
intros; unfold compare_pure.
rewrite <- (app_nil_r (R.elements s1)).
replace (R.elements s2) with (P.flatten_e (R.cons s2 (R.End _))) by
(rewrite P.cons_1; simpl; rewrite app_nil_r; auto).
auto using compare_cont_Cmp, compare_end_Cmp.
Qed.
(** The dependent-style [compare] *)
Definition eq (m1 m2 : t) := LO.eq_list (elements m1) (elements m2).
Definition lt (m1 m2 : t) := LO.lt_list (elements m1) (elements m2).
Definition compare (s s':t) : Compare lt eq s s'.
Proof.
destruct s as (s,b), s' as (s',b').
generalize (compare_Cmp s s').
destruct compare_pure; intros; [apply EQ|apply LT|apply GT]; red; auto.
Defined.
(* Proofs about [eq] and [lt] *)
Definition selements (m1 : t) :=
LO.MapS.Build_slist (P.elements_sort (is_bst m1)).
Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
Proof.
unfold eq, seq, selements, elements, LO.eq; intuition.
Qed.
Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
Proof.
unfold lt, slt, selements, elements, LO.lt; intuition.
Qed.
Lemma eq_1 : forall (m m' : t), Equivb cmp m m' -> eq m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite P.Equivb_elements.
auto using LO.eq_1.
Qed.
Lemma eq_2 : forall m m', eq m m' -> Equivb cmp m m'.
Proof.
intros m m'.
rewrite eq_seq; unfold seq.
rewrite Equivb_Equivb.
rewrite P.Equivb_elements.
intros.
generalize (LO.eq_2 H).
auto.
Qed.
Lemma eq_refl : forall m : t, eq m m.
Proof.
intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
Qed.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
Qed.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
Proof.
intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
intros; eapply LO.eq_trans; eauto.
Qed.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Proof.
intros m1 m2 m3; rewrite 3 lt_slt; unfold slt;
intros; eapply LO.lt_trans; eauto.
Qed.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Proof.
intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq;
intros; apply LO.lt_not_eq; auto.
Qed.
End IntMake_ord.
(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
Module Make (X: OrderedType) <: S with Module E := X
:=IntMake(Z_as_Int)(X).
Module Make_ord (X: OrderedType)(D: OrderedType)
<: Sord with Module Data := D
with Module MapS.E := X
:=IntMake_ord(Z_as_Int)(X)(D).
|