1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * FMapPositive : an implementation of FMapInterface for [positive] keys. *)
From Stdlib Require Import Bool OrderedType ZArith OrderedType OrderedTypeEx FMapInterface.
Set Implicit Arguments.
Local Open Scope positive_scope.
Local Unset Elimination Schemes.
(** This file is an adaptation to the [FMap] framework of a work by
Xavier Leroy and Sandrine Blazy (used for building certified compilers).
Keys are of type [positive], and maps are binary trees: the sequence
of binary digits of a positive number corresponds to a path in such a tree.
This is quite similar to the [IntMap] library, except that no path
compression is implemented, and that the current file is simple enough to be
self-contained. *)
(** First, some stuff about [positive] *)
Fixpoint append (i j : positive) : positive :=
match i with
| xH => j
| xI ii => xI (append ii j)
| xO ii => xO (append ii j)
end.
Lemma append_assoc_0 :
forall (i j : positive), append i (xO j) = append (append i (xO xH)) j.
Proof.
induction i; intros; destruct j; simpl;
try rewrite (IHi (xI j));
try rewrite (IHi (xO j));
try rewrite <- (IHi xH);
auto.
Qed.
Lemma append_assoc_1 :
forall (i j : positive), append i (xI j) = append (append i (xI xH)) j.
Proof.
induction i; intros; destruct j; simpl;
try rewrite (IHi (xI j));
try rewrite (IHi (xO j));
try rewrite <- (IHi xH);
auto.
Qed.
Lemma append_neutral_r : forall (i : positive), append i xH = i.
Proof.
induction i; simpl; congruence.
Qed.
Lemma append_neutral_l : forall (i : positive), append xH i = i.
Proof.
simpl; auto.
Qed.
(** The module of maps over positive keys *)
Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
Module ME:=KeyOrderedType E.
Definition key := positive : Type.
#[universes(template)]
Inductive tree (A : Type) :=
| Leaf : tree A
| Node : tree A -> option A -> tree A -> tree A.
Scheme tree_ind := Induction for tree Sort Prop.
Definition t := tree.
Section A.
Variable A:Type.
Arguments Leaf {A}.
Definition empty : t A := Leaf.
Fixpoint is_empty (m : t A) : bool :=
match m with
| Leaf => true
| Node l None r => (is_empty l) && (is_empty r)
| _ => false
end.
Fixpoint find (i : key) (m : t A) : option A :=
match m with
| Leaf => None
| Node l o r =>
match i with
| xH => o
| xO ii => find ii l
| xI ii => find ii r
end
end.
Fixpoint mem (i : key) (m : t A) : bool :=
match m with
| Leaf => false
| Node l o r =>
match i with
| xH => match o with None => false | _ => true end
| xO ii => mem ii l
| xI ii => mem ii r
end
end.
Fixpoint add (i : key) (v : A) (m : t A) : t A :=
match m with
| Leaf =>
match i with
| xH => Node Leaf (Some v) Leaf
| xO ii => Node (add ii v Leaf) None Leaf
| xI ii => Node Leaf None (add ii v Leaf)
end
| Node l o r =>
match i with
| xH => Node l (Some v) r
| xO ii => Node (add ii v l) o r
| xI ii => Node l o (add ii v r)
end
end.
Fixpoint remove (i : key) (m : t A) : t A :=
match i with
| xH =>
match m with
| Leaf => Leaf
| Node Leaf _ Leaf => Leaf
| Node l _ r => Node l None r
end
| xO ii =>
match m with
| Leaf => Leaf
| Node l None Leaf =>
match remove ii l with
| Leaf => Leaf
| mm => Node mm None Leaf
end
| Node l o r => Node (remove ii l) o r
end
| xI ii =>
match m with
| Leaf => Leaf
| Node Leaf None r =>
match remove ii r with
| Leaf => Leaf
| mm => Node Leaf None mm
end
| Node l o r => Node l o (remove ii r)
end
end.
(** [elements] *)
Fixpoint xelements (m : t A) (i : key) : list (key * A) :=
match m with
| Leaf => nil
| Node l None r =>
(xelements l (append i (xO xH))) ++ (xelements r (append i (xI xH)))
| Node l (Some x) r =>
(xelements l (append i (xO xH)))
++ ((i, x) :: xelements r (append i (xI xH)))
end.
(* Note: function [xelements] above is inefficient. We should apply
deforestation to it, but that makes the proofs even harder. *)
Definition elements (m : t A) := xelements m xH.
(** [cardinal] *)
Fixpoint cardinal (m : t A) : nat :=
match m with
| Leaf => 0%nat
| Node l None r => (cardinal l + cardinal r)%nat
| Node l (Some _) r => S (cardinal l + cardinal r)
end.
Section CompcertSpec.
Theorem gempty:
forall (i: key), find i empty = None.
Proof.
destruct i; simpl; auto.
Qed.
Theorem gss:
forall (i: key) (x: A) (m: t A), find i (add i x m) = Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
Lemma gleaf : forall (i : key), find i (Leaf : t A) = None.
Proof. exact gempty. Qed.
Theorem gso:
forall (i j: key) (x: A) (m: t A),
i <> j -> find i (add j x m) = find i m.
Proof.
induction i; intros; destruct j; destruct m; simpl;
try rewrite <- (gleaf i); auto; try apply IHi; congruence.
Qed.
Lemma rleaf : forall (i : key), remove i Leaf = Leaf.
Proof. destruct i; simpl; auto. Qed.
Theorem grs:
forall (i: key) (m: t A), find i (remove i m) = None.
Proof.
induction i; destruct m.
- simpl; auto.
- destruct m1; destruct o; destruct m2 as [ | ll oo rr]; simpl; auto.
+ rewrite (rleaf i); auto.
+ cut (find i (remove i (Node ll oo rr)) = None).
* destruct (remove i (Node ll oo rr)); auto; apply IHi.
* apply IHi.
- simpl; auto.
- destruct m1 as [ | ll oo rr]; destruct o; destruct m2; simpl; auto.
+ rewrite (rleaf i); auto.
+ cut (find i (remove i (Node ll oo rr)) = None).
* destruct (remove i (Node ll oo rr)); auto; apply IHi.
* apply IHi.
- simpl; auto.
- destruct m1; destruct m2; simpl; auto.
Qed.
Theorem gro:
forall (i j: key) (m: t A),
i <> j -> find i (remove j m) = find i m.
Proof.
induction i; intros; destruct j; destruct m;
try rewrite (rleaf (xI j));
try rewrite (rleaf (xO j));
try rewrite (rleaf 1); auto;
destruct m1; destruct o; destruct m2;
simpl;
try apply IHi; try congruence;
try rewrite (rleaf j); auto;
try rewrite (gleaf i); auto.
- cut (find i (remove j (Node m2_1 o m2_2)) = find i (Node m2_1 o m2_2));
[ destruct (remove j (Node m2_1 o m2_2)); try rewrite (gleaf i); auto
| apply IHi; congruence ].
- destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf i);
auto.
- destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf i);
auto.
- cut (find i (remove j (Node m1_1 o0 m1_2)) = find i (Node m1_1 o0 m1_2));
[ destruct (remove j (Node m1_1 o0 m1_2)); try rewrite (gleaf i); auto
| apply IHi; congruence ].
- destruct (remove j (Node m2_1 o m2_2)); simpl; try rewrite (gleaf i);
auto.
- destruct (remove j (Node m1_1 o0 m1_2)); simpl; try rewrite (gleaf i);
auto.
Qed.
Lemma xelements_correct:
forall (m: t A) (i j : key) (v: A),
find i m = Some v -> List.In (append j i, v) (xelements m j).
Proof.
induction m; intros.
- rewrite (gleaf i) in H; discriminate.
- destruct o; destruct i; simpl; simpl in H.
+ rewrite append_assoc_1; apply in_or_app; right; apply in_cons;
apply IHm2; auto.
+ rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
+ rewrite append_neutral_r; apply in_or_app; injection H as [= ->];
right; apply in_eq.
+ rewrite append_assoc_1; apply in_or_app; right; apply IHm2; auto.
+ rewrite append_assoc_0; apply in_or_app; left; apply IHm1; auto.
+ congruence.
Qed.
Theorem elements_correct:
forall (m: t A) (i: key) (v: A),
find i m = Some v -> List.In (i, v) (elements m).
Proof.
intros m i v H.
exact (xelements_correct m i xH H).
Qed.
Fixpoint xfind (i j : key) (m : t A) : option A :=
match i, j with
| _, xH => find i m
| xO ii, xO jj => xfind ii jj m
| xI ii, xI jj => xfind ii jj m
| _, _ => None
end.
Lemma xfind_left :
forall (j i : key) (m1 m2 : t A) (o : option A) (v : A),
xfind i (append j (xO xH)) m1 = Some v -> xfind i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
destruct i; simpl in *; auto.
Qed.
Lemma xelements_ii :
forall (m: t A) (i j : key) (v: A),
List.In (xI i, v) (xelements m (xI j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
- simpl; auto.
- intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
apply in_or_app.
+ left; apply IHm1; auto.
+ right; destruct (in_inv H0).
* injection H1 as [= -> ->]; apply in_eq.
* apply in_cons; apply IHm2; auto.
+ left; apply IHm1; auto.
+ right; apply IHm2; auto.
Qed.
Lemma xelements_io :
forall (m: t A) (i j : key) (v: A),
~List.In (xI i, v) (xelements m (xO j)).
Proof.
induction m.
- simpl; auto.
- intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
+ apply (IHm1 _ _ _ H0).
+ destruct (in_inv H0).
* congruence.
* apply (IHm2 _ _ _ H1).
+ apply (IHm1 _ _ _ H0).
+ apply (IHm2 _ _ _ H0).
Qed.
Lemma xelements_oo :
forall (m: t A) (i j : key) (v: A),
List.In (xO i, v) (xelements m (xO j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
- simpl; auto.
- intros; destruct o; simpl; simpl in H; destruct (in_app_or _ _ _ H);
apply in_or_app.
+ left; apply IHm1; auto.
+ right; destruct (in_inv H0).
* injection H1 as [= -> ->]; apply in_eq.
* apply in_cons; apply IHm2; auto.
+ left; apply IHm1; auto.
+ right; apply IHm2; auto.
Qed.
Lemma xelements_oi :
forall (m: t A) (i j : key) (v: A),
~List.In (xO i, v) (xelements m (xI j)).
Proof.
induction m.
- simpl; auto.
- intros; destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
+ apply (IHm1 _ _ _ H0).
+ destruct (in_inv H0).
* congruence.
* apply (IHm2 _ _ _ H1).
+ apply (IHm1 _ _ _ H0).
+ apply (IHm2 _ _ _ H0).
Qed.
Lemma xelements_ih :
forall (m1 m2: t A) (o: option A) (i : key) (v: A),
List.In (xI i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m2 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
- absurd (List.In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
- destruct (in_inv H0).
+ congruence.
+ apply xelements_ii; auto.
- absurd (List.In (xI i, v) (xelements m1 2)); auto; apply xelements_io; auto.
- apply xelements_ii; auto.
Qed.
Lemma xelements_oh :
forall (m1 m2: t A) (o: option A) (i : key) (v: A),
List.In (xO i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m1 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
- apply xelements_oo; auto.
- destruct (in_inv H0).
+ congruence.
+ absurd (List.In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
- apply xelements_oo; auto.
- absurd (List.In (xO i, v) (xelements m2 3)); auto; apply xelements_oi; auto.
Qed.
Lemma xelements_hi :
forall (m: t A) (i : key) (v: A),
~List.In (xH, v) (xelements m (xI i)).
Proof.
induction m; intros.
- simpl; auto.
- destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
+ generalize H0; apply IHm1; auto.
+ destruct (in_inv H0).
* congruence.
* generalize H1; apply IHm2; auto.
+ generalize H0; apply IHm1; auto.
+ generalize H0; apply IHm2; auto.
Qed.
Lemma xelements_ho :
forall (m: t A) (i : key) (v: A),
~List.In (xH, v) (xelements m (xO i)).
Proof.
induction m; intros.
- simpl; auto.
- destruct o; simpl; intro H; destruct (in_app_or _ _ _ H).
+ generalize H0; apply IHm1; auto.
+ destruct (in_inv H0).
* congruence.
* generalize H1; apply IHm2; auto.
+ generalize H0; apply IHm1; auto.
+ generalize H0; apply IHm2; auto.
Qed.
Lemma find_xfind_h :
forall (m: t A) (i: key), find i m = xfind i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Lemma xelements_complete:
forall (i j : key) (m: t A) (v: A),
List.In (i, v) (xelements m j) -> xfind i j m = Some v.
Proof.
induction i; simpl; intros; destruct j; simpl.
- apply IHi; apply xelements_ii; auto.
- absurd (List.In (xI i, v) (xelements m (xO j))); auto; apply xelements_io.
- destruct m.
+ simpl in H; tauto.
+ rewrite find_xfind_h. apply IHi. apply (xelements_ih _ _ _ _ _ H).
- absurd (List.In (xO i, v) (xelements m (xI j))); auto; apply xelements_oi.
- apply IHi; apply xelements_oo; auto.
- destruct m.
+ simpl in H; tauto.
+ rewrite find_xfind_h. apply IHi. apply (xelements_oh _ _ _ _ _ H).
- absurd (List.In (xH, v) (xelements m (xI j))); auto; apply xelements_hi.
- absurd (List.In (xH, v) (xelements m (xO j))); auto; apply xelements_ho.
- destruct m.
+ simpl in H; tauto.
+ destruct o; simpl in H; destruct (in_app_or _ _ _ H).
* absurd (List.In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
* destruct (in_inv H0).
-- congruence.
-- absurd (List.In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
* absurd (List.In (xH, v) (xelements m1 (xO xH))); auto; apply xelements_ho.
* absurd (List.In (xH, v) (xelements m2 (xI xH))); auto; apply xelements_hi.
Qed.
Theorem elements_complete:
forall (m: t A) (i: key) (v: A),
List.In (i, v) (elements m) -> find i m = Some v.
Proof.
intros m i v H.
unfold elements in H.
rewrite find_xfind_h.
exact (xelements_complete i xH m v H).
Qed.
Lemma cardinal_1 :
forall (m: t A), cardinal m = length (elements m).
Proof.
unfold elements.
intros m; set (p:=1); clearbody p; revert m p.
induction m; simpl; auto; intros.
rewrite (IHm1 (append p 2)), (IHm2 (append p 3)).
destruct o; rewrite length_app; simpl; auto.
Qed.
End CompcertSpec.
Definition MapsTo (i:key)(v:A)(m:t A) := find i m = Some v.
Definition In (i:key)(m:t A) := exists e:A, MapsTo i e m.
Definition Empty m := forall (a : key)(e:A) , ~ MapsTo a e m.
Definition eq_key (p p':key*A) := E.eq (fst p) (fst p').
Definition eq_key_elt (p p':key*A) :=
E.eq (fst p) (fst p') /\ (snd p) = (snd p').
Definition lt_key (p p':key*A) := E.lt (fst p) (fst p').
Global Instance eqk_equiv : Equivalence eq_key := _.
Global Instance eqke_equiv : Equivalence eq_key_elt := _.
Global Instance ltk_strorder : StrictOrder lt_key := _.
Lemma mem_find :
forall m x, mem x m = match find x m with None => false | _ => true end.
Proof.
induction m; destruct x; simpl; auto.
Qed.
Lemma Empty_alt : forall m, Empty m <-> forall a, find a m = None.
Proof.
unfold Empty, MapsTo.
intuition.
- generalize (H a).
destruct (find a m); intuition.
elim (H0 a0); auto.
- rewrite H in H0; discriminate.
Qed.
Lemma Empty_Node : forall l o r, Empty (Node l o r) <-> o=None /\ Empty l /\ Empty r.
Proof.
intros l o r.
split.
- rewrite Empty_alt.
split.
+ destruct o; auto.
generalize (H 1); simpl; auto.
+ split; rewrite Empty_alt; intros.
* generalize (H (xO a)); auto.
* generalize (H (xI a)); auto.
- intros (H,(H0,H1)).
subst.
rewrite Empty_alt; intros.
destruct a; auto.
+ simpl; generalize H1; rewrite Empty_alt; auto.
+ simpl; generalize H0; rewrite Empty_alt; auto.
Qed.
Section FMapSpec.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
unfold In, MapsTo; intros m x; rewrite mem_find.
destruct 1 as (e0,H0); rewrite H0; auto.
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, MapsTo; intros m x; rewrite mem_find.
destruct (find x m).
- exists a; auto.
- intros; discriminate.
Qed.
Variable m m' m'' : t A.
Variable x y z : key.
Variable e e' : A.
Lemma MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros; rewrite <- H; auto. Qed.
Lemma find_1 : MapsTo x e m -> find x m = Some e.
Proof. unfold MapsTo; auto. Qed.
Lemma find_2 : find x m = Some e -> MapsTo x e m.
Proof. red; auto. Qed.
Lemma empty_1 : Empty empty.
Proof.
rewrite Empty_alt; apply gempty.
Qed.
Lemma is_empty_1 : Empty m -> is_empty m = true.
Proof.
induction m; simpl; auto.
rewrite Empty_Node.
intros (H,(H0,H1)).
subst; simpl.
rewrite IHt0_1; simpl; auto.
Qed.
Lemma is_empty_2 : is_empty m = true -> Empty m.
Proof.
induction m; simpl; auto.
- rewrite Empty_alt.
intros _; exact gempty.
- rewrite Empty_Node.
destruct o.
+ intros; discriminate.
+ intro H; destruct (andb_prop _ _ H); intuition.
Qed.
Lemma add_1 : E.eq x y -> MapsTo y e (add x e m).
Proof.
unfold MapsTo.
intro H; rewrite H; clear H.
apply gss.
Qed.
Lemma add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
unfold MapsTo.
intros; rewrite gso; auto.
Qed.
Lemma add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
unfold MapsTo.
intro H; rewrite gso; auto.
Qed.
Lemma remove_1 : E.eq x y -> ~ In y (remove x m).
Proof.
intros; intro.
generalize (mem_1 H0).
rewrite mem_find.
red in H.
rewrite H.
rewrite grs.
intros; discriminate.
Qed.
Lemma remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
unfold MapsTo.
intro H; rewrite gro; auto.
Qed.
Lemma remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
unfold MapsTo.
destruct (E.eq_dec x y).
- subst.
rewrite grs; intros; discriminate.
- rewrite gro; auto.
Qed.
Lemma elements_1 :
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
unfold MapsTo.
rewrite InA_alt.
intro H.
exists (x,e).
split.
- red; simpl; unfold E.eq; auto.
- apply elements_correct; auto.
Qed.
Lemma elements_2 :
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
unfold MapsTo.
rewrite InA_alt.
intros ((e0,a),(H,H0)).
red in H; simpl in H; unfold E.eq in H; destruct H; subst.
apply elements_complete; auto.
Qed.
Lemma xelements_bits_lt_1 : forall p p0 q m v,
List.In (p0,v) (xelements m (append p (xO q))) -> E.bits_lt p0 p.
Proof using.
intros.
generalize (xelements_complete _ _ _ _ H); clear H; intros.
revert p0 H.
induction p; destruct p0; simpl; intros; eauto; try discriminate.
Qed.
Lemma xelements_bits_lt_2 : forall p p0 q m v,
List.In (p0,v) (xelements m (append p (xI q))) -> E.bits_lt p p0.
Proof using.
intros.
generalize (xelements_complete _ _ _ _ H); clear H; intros.
revert p0 H.
induction p; destruct p0; simpl; intros; eauto; try discriminate.
Qed.
Lemma xelements_sort : forall p, sort lt_key (xelements m p).
Proof.
induction m.
- simpl; auto.
- destruct o; simpl; intros.
+ (* Some *)
apply (SortA_app (eqA:=eq_key_elt)). 1-2: auto with typeclass_instances.
* constructor; auto.
apply In_InfA; intros.
destruct y0.
red; red; simpl.
eapply xelements_bits_lt_2; eauto.
* intros x0 y0.
do 2 rewrite InA_alt.
intros (y1,(Hy1,H)) (y2,(Hy2,H0)).
destruct y1; destruct x0; compute in Hy1; destruct Hy1; subst.
destruct y2; destruct y0; compute in Hy2; destruct Hy2; subst.
red; red; simpl.
destruct H0.
-- injection H0 as [= H0 _]; subst.
eapply xelements_bits_lt_1; eauto.
-- apply E.bits_lt_trans with p.
++ eapply xelements_bits_lt_1; eauto.
++ eapply xelements_bits_lt_2; eauto.
+ (* None *)
apply (SortA_app (eqA:=eq_key_elt)).
{ auto with typeclass_instances. } 1-2: auto.
intros x0 y0.
do 2 rewrite InA_alt.
intros (y1,(Hy1,H)) (y2,(Hy2,H0)).
destruct y1; destruct x0; compute in Hy1; destruct Hy1; subst.
destruct y2; destruct y0; compute in Hy2; destruct Hy2; subst.
red; red; simpl.
apply E.bits_lt_trans with p.
* eapply xelements_bits_lt_1; eauto.
* eapply xelements_bits_lt_2; eauto.
Qed.
Lemma elements_3 : sort lt_key (elements m).
Proof.
unfold elements.
apply xelements_sort; auto.
Qed.
Lemma elements_3w : NoDupA eq_key (elements m).
Proof.
apply ME.Sort_NoDupA.
apply elements_3.
Qed.
End FMapSpec.
(** [map] and [mapi] *)
Variable B : Type.
Section Mapi.
Variable f : key -> A -> B.
Fixpoint xmapi (m : t A) (i : key) : t B :=
match m with
| Leaf => @Leaf B
| Node l o r => Node (xmapi l (append i (xO xH)))
(option_map (f i) o)
(xmapi r (append i (xI xH)))
end.
Definition mapi m := xmapi m xH.
End Mapi.
Definition map (f : A -> B) m := mapi (fun _ => f) m.
End A.
Lemma xgmapi:
forall (A B: Type) (f: key -> A -> B) (i j : key) (m: t A),
find i (xmapi f m j) = option_map (f (append j i)) (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
- rewrite (append_assoc_1 j i); apply IHi.
- rewrite (append_assoc_0 j i); apply IHi.
- rewrite (append_neutral_r j); auto.
Qed.
Theorem gmapi:
forall (A B: Type) (f: key -> A -> B) (i: key) (m: t A),
find i (mapi f m) = option_map (f i) (find i m).
Proof.
intros.
unfold mapi.
replace (f i) with (f (append xH i)).
- apply xgmapi.
- rewrite append_neutral_l; auto.
Qed.
Lemma mapi_1 :
forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros.
exists x.
split; [red; auto|].
apply find_2.
generalize (find_1 H); clear H; intros.
rewrite gmapi.
rewrite H.
simpl; auto.
Qed.
Lemma mapi_2 :
forall (elt elt':Type)(m: t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
intros.
apply mem_2.
rewrite mem_find.
destruct H as (v,H).
generalize (find_1 H); clear H; intros.
rewrite gmapi in H.
destruct (find x m); auto.
simpl in *; discriminate.
Qed.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros; unfold map.
destruct (mapi_1 (fun _ => f) H); intuition.
Qed.
Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
intros; unfold map in *; eapply mapi_2; eauto.
Qed.
Section map2.
Variable A B C : Type.
Variable f : option A -> option B -> option C.
Arguments Leaf {A}.
Fixpoint xmap2_l (m : t A) : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap2_l l) (f o None) (xmap2_l r)
end.
Lemma xgmap2_l : forall (i : key) (m : t A),
f None None = None -> find i (xmap2_l m) = f (find i m) None.
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Fixpoint xmap2_r (m : t B) : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap2_r l) (f None o) (xmap2_r r)
end.
Lemma xgmap2_r : forall (i : key) (m : t B),
f None None = None -> find i (xmap2_r m) = f None (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Fixpoint _map2 (m1 : t A)(m2 : t B) : t C :=
match m1 with
| Leaf => xmap2_r m2
| Node l1 o1 r1 =>
match m2 with
| Leaf => xmap2_l m1
| Node l2 o2 r2 => Node (_map2 l1 l2) (f o1 o2) (_map2 r1 r2)
end
end.
Lemma gmap2: forall (i: key)(m1:t A)(m2: t B),
f None None = None ->
find i (_map2 m1 m2) = f (find i m1) (find i m2).
Proof.
induction i; intros; destruct m1; destruct m2; simpl; auto;
try apply xgmap2_r; try apply xgmap2_l; auto.
Qed.
End map2.
Definition map2 (elt elt' elt'':Type)(f:option elt->option elt'->option elt'') :=
_map2 (fun o1 o2 => match o1,o2 with None,None => None | _, _ => f o1 o2 end).
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros.
unfold map2.
rewrite gmap2; auto.
generalize (@mem_1 _ m x) (@mem_1 _ m' x).
do 2 rewrite mem_find.
destruct (find x m); simpl; auto.
destruct (find x m'); simpl; auto.
intros.
destruct H; intuition; try discriminate.
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
intros.
generalize (mem_1 H); clear H; intros.
rewrite mem_find in H.
unfold map2 in H.
rewrite gmap2 in H; auto.
generalize (@mem_2 _ m x) (@mem_2 _ m' x).
do 2 rewrite mem_find.
destruct (find x m); simpl in *; auto.
destruct (find x m'); simpl in *; auto.
Qed.
Section Fold.
Variables A B : Type.
Variable f : key -> A -> B -> B.
Fixpoint xfoldi (m : t A) (v : B) (i : key) :=
match m with
| Leaf _ => v
| Node l (Some x) r =>
xfoldi r (f i x (xfoldi l v (append i 2))) (append i 3)
| Node l None r =>
xfoldi r (xfoldi l v (append i 2)) (append i 3)
end.
Lemma xfoldi_1 :
forall m v i,
xfoldi m v i = fold_left (fun a p => f (fst p) (snd p) a) (xelements m i) v.
Proof.
set (F := fun a p => f (fst p) (snd p) a).
induction m; intros; simpl; auto.
destruct o.
- rewrite fold_left_app; simpl.
rewrite <- IHm1.
rewrite <- IHm2.
unfold F; simpl; reflexivity.
- rewrite fold_left_app; simpl.
rewrite <- IHm1.
rewrite <- IHm2.
reflexivity.
Qed.
Definition fold m i := xfoldi m i 1.
End Fold.
Lemma fold_1 :
forall (A:Type)(m:t A)(B:Type)(i : B) (f : key -> A -> B -> B),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros; unfold fold, elements.
rewrite xfoldi_1; reflexivity.
Qed.
Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) : bool :=
match m1, m2 with
| Leaf _, _ => is_empty m2
| _, Leaf _ => is_empty m1
| Node l1 o1 r1, Node l2 o2 r2 =>
(match o1, o2 with
| None, None => true
| Some v1, Some v2 => cmp v1 v2
| _, _ => false
end)
&& equal cmp l1 l2 && equal cmp r1 r2
end.
Definition Equal (A:Type)(m m':t A) :=
forall y, find y m = find y m'.
Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb (A:Type)(cmp: A->A->bool) := Equiv (Cmp cmp).
Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
induction m.
- (* m = Leaf *)
destruct 1.
simpl.
apply is_empty_1.
red; red; intros.
assert (In a (Leaf A)).
+ rewrite H.
exists e; auto.
+ destruct H2; red in H2.
destruct a; simpl in *; discriminate.
- (* m = Node *)
destruct m'.
+ (* m' = Leaf *)
destruct 1.
simpl.
destruct o.
* assert (In xH (Leaf A)).
{ rewrite <- H.
exists a; red; auto. }
destruct H1; red in H1; simpl in H1; discriminate.
* apply andb_true_intro; split; apply is_empty_1; red; red; intros.
-- assert (In (xO a) (Leaf A)). {
rewrite <- H.
exists e; auto.
}
destruct H2; red in H2; simpl in H2; discriminate.
-- assert (In (xI a) (Leaf A)). {
rewrite <- H.
exists e; auto.
}
destruct H2; red in H2; simpl in H2; discriminate.
+ (* m' = Node *)
destruct 1.
assert (Equivb cmp m1 m'1). {
split.
- intros k; generalize (H (xO k)); unfold In, MapsTo; simpl; auto.
- intros k e e'; generalize (H0 (xO k) e e'); unfold In, MapsTo; simpl; auto.
}
assert (Equivb cmp m2 m'2). {
split.
- intros k; generalize (H (xI k)); unfold In, MapsTo; simpl; auto.
- intros k e e'; generalize (H0 (xI k) e e'); unfold In, MapsTo; simpl; auto.
}
simpl.
destruct o; destruct o0; simpl.
* repeat (apply andb_true_intro; split); auto.
apply (H0 xH); red; auto.
* generalize (H xH); unfold In, MapsTo; simpl; intuition.
destruct H4; try discriminate; eauto.
* generalize (H xH); unfold In, MapsTo; simpl; intuition.
destruct H5; try discriminate; eauto.
* apply andb_true_intro; split; auto.
Qed.
Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
induction m.
- (* m = Leaf *)
simpl.
split; intros.
+ split.
* destruct 1; red in H0; destruct k; discriminate.
* destruct 1; elim (is_empty_2 H H0).
+ red in H0; destruct k; discriminate.
- (* m = Node *)
destruct m'.
+ (* m' = Leaf *)
simpl.
destruct o; intros; try discriminate.
destruct (andb_prop _ _ H); clear H.
split; intros.
* split; unfold In, MapsTo; destruct 1.
-- destruct k; simpl in *; try discriminate.
++ destruct (is_empty_2 H1 (find_2 _ _ H)).
++ destruct (is_empty_2 H0 (find_2 _ _ H)).
-- destruct k; simpl in *; discriminate.
* unfold In, MapsTo; destruct k; simpl in *; discriminate.
+ (* m' = Node *)
destruct o; destruct o0; simpl; intros; try discriminate.
* destruct (andb_prop _ _ H); clear H.
destruct (andb_prop _ _ H0); clear H0.
destruct (IHm1 _ _ H2); clear H2 IHm1.
destruct (IHm2 _ _ H1); clear H1 IHm2.
split; intros.
-- destruct k; unfold In, MapsTo in *; simpl; auto.
split; eauto.
-- destruct k; unfold In, MapsTo in *; simpl in *.
++ eapply H4; eauto.
++ eapply H3; eauto.
++ congruence.
* destruct (andb_prop _ _ H); clear H.
destruct (IHm1 _ _ H0); clear H0 IHm1.
destruct (IHm2 _ _ H1); clear H1 IHm2.
split; intros.
-- destruct k; unfold In, MapsTo in *; simpl; auto.
split; eauto.
-- destruct k; unfold In, MapsTo in *; simpl in *.
++ eapply H3; eauto.
++ eapply H2; eauto.
++ try discriminate.
Qed.
End PositiveMap.
(** Here come some additional facts about this implementation.
Most are facts that cannot be derivable from the general interface. *)
Module PositiveMapAdditionalFacts.
Import PositiveMap.
(* Derivable from the Map interface *)
Theorem gsspec:
forall (A:Type)(i j: key) (x: A) (m: t A),
find i (add j x m) = if E.eq_dec i j then Some x else find i m.
Proof.
intros.
destruct (E.eq_dec i j) as [ ->|]; [ apply gss | apply gso; auto ].
Qed.
(* Not derivable from the Map interface *)
Theorem gsident:
forall (A:Type)(i: key) (m: t A) (v: A),
find i m = Some v -> add i v m = m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
- rewrite (IHi m2 v H); congruence.
- rewrite (IHi m1 v H); congruence.
Qed.
Lemma xmap2_lr :
forall (A B : Type)(f g: option A -> option A -> option B)(m : t A),
(forall (i j : option A), f i j = g j i) ->
xmap2_l f m = xmap2_r g m.
Proof.
induction m; intros; simpl; auto.
rewrite IHm1; auto.
rewrite IHm2; auto.
rewrite H; auto.
Qed.
Theorem map2_commut:
forall (A B: Type) (f g: option A -> option A -> option B),
(forall (i j: option A), f i j = g j i) ->
forall (m1 m2: t A),
_map2 f m1 m2 = _map2 g m2 m1.
Proof.
intros A B f g Eq1.
assert (Eq2: forall (i j: option A), g i j = f j i).
{ intros; auto. }
induction m1; intros; destruct m2; simpl;
try rewrite Eq1;
repeat rewrite (xmap2_lr f g);
repeat rewrite (xmap2_lr g f);
auto.
rewrite IHm1_1.
rewrite IHm1_2.
auto.
Qed.
End PositiveMapAdditionalFacts.
|