1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite map library *)
(** This file proposes an implementation of the non-dependent interface
[FMapInterface.WS] using lists of pairs, unordered but without redundancy. *)
From Stdlib Require Import FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
Module Raw (X:DecidableType).
Module Import PX := KeyDecidableType X.
Definition key := X.t.
Definition t (elt:Type) := list (X.t * elt).
Section Elt.
Variable elt : Type.
Notation eqk := (eqk (elt:=elt)).
Notation eqke := (eqke (elt:=elt)).
Notation MapsTo := (MapsTo (elt:=elt)).
Notation In := (In (elt:=elt)).
Notation NoDupA := (NoDupA eqk).
(** * [empty] *)
Definition empty : t elt := nil.
Definition Empty m := forall (a : key)(e:elt), ~ MapsTo a e m.
Lemma empty_1 : Empty empty.
Proof.
unfold Empty,empty.
intros a e.
intro abs.
inversion abs.
Qed.
#[local]
Hint Resolve empty_1 : core.
Lemma empty_NoDup : NoDupA empty.
Proof.
unfold empty; auto.
Qed.
(** * [is_empty] *)
Definition is_empty (l : t elt) : bool := if l then true else false.
Lemma is_empty_1 :forall m, Empty m -> is_empty m = true.
Proof.
unfold Empty, PX.MapsTo.
intros m.
case m;auto.
intros p l inlist.
destruct p.
absurd (InA eqke (t0, e) ((t0, e) :: l));auto.
Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof.
intros m.
case m;auto.
intros p l abs.
inversion abs.
Qed.
(** * [mem] *)
Fixpoint mem (k : key) (s : t elt) {struct s} : bool :=
match s with
| nil => false
| (k',_) :: l => if X.eq_dec k k' then true else mem k l
end.
Lemma mem_1 : forall m (Hm:NoDupA m) x, In x m -> mem x m = true.
Proof.
intros m Hm x; generalize Hm; clear Hm.
induction m; simpl; intros NoDup belong1.
- inversion belong1. inversion H.
- destruct a; destruct X.eq_dec; [reflexivity|]; apply IHm.
+ inversion_clear NoDup; assumption.
+ inversion_clear belong1; inversion_clear H; [elim n; apply H0|exists x0; auto].
Qed.
Lemma mem_2 : forall m (Hm:NoDupA m) x, mem x m = true -> In x m.
Proof.
intros m Hm x; generalize Hm; clear Hm; unfold PX.In,PX.MapsTo.
induction m; intros NoDup hyp; try discriminate; simpl in *.
destruct a, X.eq_dec.
+ exists e; constructor; split; [assumption|reflexivity].
+ destruct IHm as [e' He'].
- inversion_clear NoDup; assumption.
- assumption.
- exists e'; auto.
Qed.
(** * [find] *)
Fixpoint find (k:key) (s: t elt) {struct s} : option elt :=
match s with
| nil => None
| (k',x)::s' => if X.eq_dec k k' then Some x else find k s'
end.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof.
intros m x. unfold PX.MapsTo.
induction m; simpl;intros e' eqfind; inversion eqfind; auto.
destruct a, X.eq_dec.
+ constructor; split; simpl; congruence.
+ constructor 2; apply IHm; assumption.
Qed.
Lemma find_1 : forall m (Hm:NoDupA m) x e,
MapsTo x e m -> find x m = Some e.
Proof.
intros m; induction m as [|[a e]]; simpl; intros Hdup x e' Hm.
- inversion Hm.
- inversion_clear Hdup.
inversion_clear Hm; destruct X.eq_dec.
+ destruct H1; simpl in *; congruence.
+ elim n; apply H1.
+ elim H; apply InA_eqk with (x,e'); auto.
+ apply IHm; auto.
Qed.
(* Not part of the exported specifications, used later for [combine]. *)
Lemma find_eq : forall m (Hm:NoDupA m) x x',
X.eq x x' -> find x m = find x' m.
Proof.
induction m; simpl; auto; destruct a; intros.
inversion_clear Hm.
rewrite (IHm H1 x x'); auto.
destruct (X.eq_dec x t0) as [|Hneq]; destruct (X.eq_dec x' t0) as [|?Hneq'];
trivial.
- elim Hneq'; apply X.eq_trans with x; auto.
- elim Hneq; apply X.eq_trans with x'; auto.
Qed.
(** * [add] *)
Fixpoint add (k : key) (x : elt) (s : t elt) {struct s} : t elt :=
match s with
| nil => (k,x) :: nil
| (k',y) :: l => if X.eq_dec k k' then (k,x)::l else (k',y)::add k x l
end.
Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Proof.
induction m as [|[a m]]; intros x y e He; simpl in *; auto.
destruct X.eq_dec; [now auto|].
apply InA_cons_tl, IHm, He.
Qed.
Lemma add_2 : forall m x y e e',
~ X.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
induction m as [|[a m]]; intros x y e e' H Hm; simpl in *.
- inversion_clear Hm.
- inversion_clear Hm; destruct X.eq_dec.
+ elim H; apply X.eq_trans with a; [auto|apply X.eq_sym; apply H0].
+ apply InA_cons_hd; apply H0.
+ apply InA_cons_tl; assumption.
+ apply InA_cons_tl; apply IHm; auto.
Qed.
Lemma add_3 : forall m x y e e',
~ X.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
induction m as [|[a m]]; intros x y e e' H Hm.
- exfalso; inversion_clear Hm.
+ elim H; apply X.eq_sym; apply H0.
+ inversion_clear H0.
- simpl in Hm; destruct X.eq_dec.
+ apply InA_cons_tl; apply InA_cons in Hm; destruct Hm; [|now auto].
elim H; apply X.eq_sym; apply H0.
+ apply InA_cons in Hm; destruct Hm.
* apply InA_cons_hd; auto.
* apply InA_cons_tl; eapply IHm; eauto.
Qed.
Lemma add_3' : forall m x y e e',
~ X.eq x y -> InA eqk (y,e) (add x e' m) -> InA eqk (y,e) m.
Proof.
induction m as [|[a m]]; intros x y e e' H Hm; simpl in *.
- inversion_clear Hm; [|now auto].
compute in H0; elim H; auto.
- destruct X.eq_dec; simpl in *.
+ apply InA_cons in Hm; destruct Hm; [elim H; apply X.eq_sym; apply H0|].
apply InA_cons_tl; auto.
+ apply InA_cons in Hm; destruct Hm; [apply InA_cons_hd; auto|].
apply InA_cons_tl; eapply IHm; eauto.
Qed.
Lemma add_NoDup : forall m (Hm:NoDupA m) x e, NoDupA (add x e m).
Proof.
induction m.
- simpl; constructor; auto; red; inversion 1.
- intros.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); inversion_clear Hm; auto.
+ constructor; auto.
contradict H.
apply InA_eqk with (x,e); auto.
+ constructor; auto.
contradict H; apply add_3' with x e; auto.
Qed.
(* Not part of the exported specifications, used later for [combine]. *)
Lemma add_eq : forall m (Hm:NoDupA m) x a e,
X.eq x a -> find x (add a e m) = Some e.
Proof.
intros.
apply find_1; auto.
- apply add_NoDup; auto.
- apply add_1; auto.
Qed.
Lemma add_not_eq : forall m (Hm:NoDupA m) x a e,
~X.eq x a -> find x (add a e m) = find x m.
Proof.
intros.
case_eq (find x m); intros.
- apply find_1; auto.
+ apply add_NoDup; auto.
+ apply add_2; auto.
apply find_2; auto.
- case_eq (find x (add a e m)); intros; auto.
rewrite <- H0; symmetry.
apply find_1; auto.
apply add_3 with a e; auto.
apply find_2; auto.
Qed.
(** * [remove] *)
Fixpoint remove (k : key) (s : t elt) {struct s} : t elt :=
match s with
| nil => nil
| (k',x) :: l => if X.eq_dec k k' then l else (k',x) :: remove k l
end.
Lemma remove_1 : forall m (Hm:NoDupA m) x y, X.eq x y -> ~ In y (remove x m).
Proof.
induction m as [|[a m]]; intros Hm x y H; simpl in *.
- inversion 1; inversion H1.
- inversion_clear Hm.
destruct X.eq_dec.
+ intros [e' ?]; elim H0.
apply InA_eqk with (y, e').
* apply X.eq_trans with x; [|auto].
apply X.eq_sym; auto.
* apply InA_eqke_eqk; auto.
+ intros [e' H2]; apply InA_cons in H2; destruct H2.
* elim n; apply X.eq_trans with y; [auto|apply H2].
* elim IHm with x y; auto.
exists e'; auto.
Qed.
Lemma remove_2 : forall m (Hm:NoDupA m) x y e,
~ X.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof.
induction m as [|[a m]]; intros Hm x y e H He; simpl in *.
+ inversion_clear He.
+ apply InA_cons in He; destruct He, X.eq_dec.
- elim H; apply X.eq_trans with a; [auto|]; apply X.eq_sym; apply H0.
- inversion_clear Hm; apply InA_cons_hd; assumption.
- apply H0.
- inversion_clear Hm.
apply InA_cons; destruct (X.eq_dec y a).
* elim H1; apply InA_eqk with (y, e); [assumption|]; apply InA_eqke_eqk; auto.
* right; apply IHm; auto.
Qed.
Lemma remove_3 : forall m (Hm:NoDupA m) x y e,
MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
induction m as [|[a m]]; intros Hm x y e H; unfold PX.MapsTo; simpl in *; auto.
destruct X.eq_dec.
- apply InA_cons_tl; apply H.
- inversion_clear Hm; apply InA_cons in H; destruct H; [apply InA_cons_hd; auto|].
apply InA_cons_tl; apply IHm with x; auto.
Qed.
Lemma remove_3' : forall m (Hm:NoDupA m) x y e,
InA eqk (y,e) (remove x m) -> InA eqk (y,e) m.
Proof.
induction m as [|[a m]]; intros Hm x y e H; unfold PX.MapsTo; simpl in *.
- inversion_clear H.
- destruct X.eq_dec.
+ apply InA_cons_tl; auto.
+ apply InA_cons in H; destruct H; [apply InA_cons_hd; auto|].
inversion_clear Hm; apply InA_cons_tl; apply IHm with x; auto.
Qed.
Lemma remove_NoDup : forall m (Hm:NoDupA m) x, NoDupA (remove x m).
Proof.
induction m.
- simpl; intuition.
- intros.
inversion_clear Hm.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); auto.
constructor; auto.
contradict H; apply remove_3' with x; auto.
Qed.
(** * [elements] *)
Definition elements (m: t elt) := m.
Lemma elements_1 : forall m x e, MapsTo x e m -> InA eqke (x,e) (elements m).
Proof.
auto.
Qed.
Lemma elements_2 : forall m x e, InA eqke (x,e) (elements m) -> MapsTo x e m.
Proof.
auto.
Qed.
Lemma elements_3w : forall m (Hm:NoDupA m), NoDupA (elements m).
Proof.
auto.
Qed.
(** * [fold] *)
Fixpoint fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc : A) {struct m} : A :=
match m with
| nil => acc
| (k,e)::m' => fold f m' (f k e acc)
end.
Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
induction m as [|[a m]]; intros A i f; simpl; auto.
Qed.
(** * [equal] *)
Definition check (cmp : elt -> elt -> bool)(k:key)(e:elt)(m': t elt) :=
match find k m' with
| None => false
| Some e' => cmp e e'
end.
Definition submap (cmp : elt -> elt -> bool)(m m' : t elt) : bool :=
fold (fun k e b => andb (check cmp k e m') b) m true.
Definition equal (cmp : elt -> elt -> bool)(m m' : t elt) : bool :=
andb (submap cmp m m') (submap (fun e' e => cmp e e') m' m).
Definition Submap cmp m m' :=
(forall k, In k m -> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Definition Equivb cmp m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma submap_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
Submap cmp m m' -> submap cmp m m' = true.
Proof.
unfold Submap, submap.
induction m.
- simpl; auto.
- destruct a; simpl; intros.
destruct H.
inversion_clear Hm.
assert (H3 : In t0 m').
+ apply H; exists e; auto.
+ destruct H3 as (e', H3).
unfold check at 2; rewrite (find_1 Hm' H3).
rewrite (H0 t0); simpl; auto.
eapply IHm; auto.
split; intuition.
* apply H.
destruct H5 as (e'',H5); exists e''; auto.
* apply H0 with k; auto.
Qed.
Lemma submap_2 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
submap cmp m m' = true -> Submap cmp m m'.
Proof.
unfold Submap, submap.
induction m.
- simpl; auto.
intuition.
+ destruct H0; inversion H0.
+ inversion H0.
- destruct a; simpl; intros.
inversion_clear Hm.
rewrite andb_b_true in H.
assert (check cmp t0 e m' = true).
+ clear H1 H0 Hm' IHm.
set (b:=check cmp t0 e m') in *.
generalize H; clear H; generalize b; clear b.
induction m; simpl; auto; intros.
destruct a; simpl in *.
destruct (andb_prop _ _ (IHm _ H)); auto.
+ rewrite H2 in H.
destruct (IHm H1 m' Hm' cmp H); auto.
unfold check in H2.
case_eq (find t0 m'); [intros e' H5 | intros H5];
rewrite H5 in H2; try discriminate.
split; intros.
* destruct H6 as (e0,H6); inversion_clear H6.
-- compute in H7; destruct H7; subst.
exists e'.
apply PX.MapsTo_eq with t0; auto.
apply find_2; auto.
-- apply H3.
exists e0; auto.
* inversion_clear H6.
-- compute in H8; destruct H8; subst.
rewrite (find_1 Hm' (PX.MapsTo_eq H6 H7)) in H5; congruence.
-- apply H4 with k; auto.
Qed.
(** Specification of [equal] *)
Lemma equal_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
Equivb cmp m m' -> equal cmp m m' = true.
Proof.
unfold Equivb, equal.
intuition.
apply andb_true_intro; split; apply submap_1; unfold Submap; firstorder.
Qed.
Lemma equal_2 : forall m (Hm:NoDupA m) m' (Hm':NoDupA m') cmp,
equal cmp m m' = true -> Equivb cmp m m'.
Proof.
unfold Equivb, equal.
intros.
destruct (andb_prop _ _ H); clear H.
generalize (submap_2 Hm Hm' H0).
generalize (submap_2 Hm' Hm H1).
firstorder.
Qed.
Variable elt':Type.
(** * [map] and [mapi] *)
Fixpoint map (f:elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f e) :: map f m'
end.
Fixpoint mapi (f: key -> elt -> elt') (m:t elt) : t elt' :=
match m with
| nil => nil
| (k,e)::m' => (k,f k e) :: mapi f m'
end.
End Elt.
Section Elt2.
(* A new section is necessary for previous definitions to work
with different [elt], especially [MapsTo]... *)
Variable elt elt' : Type.
(** Specification of [map] *)
Lemma map_1 : forall (m:t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros m x e f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m.
- inversion 1.
- destruct a as (x',e').
simpl.
inversion_clear 1.
+ constructor 1.
unfold eqke in *; simpl in *; intuition congruence.
+ constructor 2.
unfold MapsTo in *; auto.
Qed.
Lemma map_2 : forall (m:t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
intros m x f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m; simpl.
- intros (e,abs).
inversion abs.
- destruct a as (x',e).
intros hyp.
inversion hyp. clear hyp.
inversion H; subst; rename x0 into e'.
+ exists e; constructor.
unfold eqke in *; simpl in *; intuition.
+ destruct IHm as (e'',hyp).
* exists e'; auto.
* exists e''.
constructor 2; auto.
Qed.
Lemma map_NoDup : forall m (Hm : NoDupA (@eqk elt) m)(f:elt->elt'),
NoDupA (@eqk elt') (map f m).
Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm.
constructor; auto.
contradict H.
(* il faut un map_1 avec eqk au lieu de eqke *)
clear IHm H0.
induction m; simpl in *; auto.
- inversion H.
- destruct a; inversion H; auto.
Qed.
(** Specification of [mapi] *)
Lemma mapi_1 : forall (m:t elt)(x:key)(e:elt)(f:key->elt->elt'),
MapsTo x e m ->
exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros m x e f.
(* functional induction mapi elt elt' f m. *) (* Marche pas ??? *)
induction m.
- inversion 1.
- destruct a as (x',e').
simpl.
inversion_clear 1.
+ exists x'.
destruct H0; simpl in *.
split; auto.
constructor 1.
unfold eqke in *; simpl in *; intuition congruence.
+ destruct IHm as (y, hyp); auto.
exists y; intuition.
Qed.
Lemma mapi_2 : forall (m:t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
intros m x f.
(* functional induction mapi elt elt' f m. *) (* Marche pas ??? *)
induction m; simpl.
- intros (e,abs).
inversion abs.
- destruct a as (x',e).
intros hyp.
inversion hyp. clear hyp.
inversion H; subst; rename x0 into e'.
+ exists e; constructor.
unfold eqke in *; simpl in *; intuition.
+ destruct IHm as (e'',hyp).
* exists e'; auto.
* exists e''.
constructor 2; auto.
Qed.
Lemma mapi_NoDup : forall m (Hm : NoDupA (@eqk elt) m)(f: key->elt->elt'),
NoDupA (@eqk elt') (mapi f m).
Proof.
induction m; simpl; auto.
intros.
destruct a as (x',e').
inversion_clear Hm; auto.
constructor; auto.
contradict H.
clear IHm H0.
induction m; simpl in *; auto.
- inversion_clear H.
- destruct a; inversion_clear H; auto.
Qed.
End Elt2.
Section Elt3.
Variable elt elt' elt'' : Type.
Notation oee' := (option elt * option elt')%type.
Definition combine_l (m:t elt)(m':t elt') : t oee' :=
mapi (fun k e => (Some e, find k m')) m.
Definition combine_r (m:t elt)(m':t elt') : t oee' :=
mapi (fun k e' => (find k m, Some e')) m'.
Definition fold_right_pair (A B C:Type)(f:A->B->C->C) :=
List.fold_right (fun p => f (fst p) (snd p)).
Definition combine (m:t elt)(m':t elt') : t oee' :=
let l := combine_l m m' in
let r := combine_r m m' in
fold_right_pair (add (elt:=oee')) r l.
Lemma fold_right_pair_NoDup :
forall l r (Hl: NoDupA (eqk (elt:=oee')) l)
(Hl: NoDupA (eqk (elt:=oee')) r),
NoDupA (eqk (elt:=oee')) (fold_right_pair (add (elt:=oee')) r l).
Proof.
induction l; simpl; auto.
destruct a; simpl; auto.
inversion_clear 1.
intros; apply add_NoDup; auto.
Qed.
#[local]
Hint Resolve fold_right_pair_NoDup : core.
Lemma combine_NoDup :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m'),
NoDupA (@eqk oee') (combine m m').
Proof.
unfold combine, combine_r, combine_l.
intros.
set (f1 := fun (k : key) (e : elt) => (Some e, find k m')).
set (f2 := fun (k : key) (e' : elt') => (find k m, Some e')).
generalize (mapi_NoDup Hm f1).
generalize (mapi_NoDup Hm' f2).
set (l := mapi f1 m); clearbody l.
set (r := mapi f2 m'); clearbody r.
auto.
Qed.
Definition at_least_left (o:option elt)(o':option elt') :=
match o with
| None => None
| _ => Some (o,o')
end.
Definition at_least_right (o:option elt)(o':option elt') :=
match o' with
| None => None
| _ => Some (o,o')
end.
Lemma combine_l_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (combine_l m m') = at_least_left (find x m) (find x m').
Proof.
unfold combine_l.
intros.
case_eq (find x m); intros.
- simpl.
apply find_1.
+ apply mapi_NoDup; auto.
+ destruct (mapi_1 (fun k e => (Some e, find k m')) (find_2 H)) as (y,(H0,H1)).
rewrite (find_eq Hm' (X.eq_sym H0)); auto.
- simpl.
case_eq (find x (mapi (fun k e => (Some e, find k m')) m)); intros; auto.
destruct (@mapi_2 _ _ m x (fun k e => (Some e, find k m'))).
+ exists p; apply find_2; auto.
+ rewrite (find_1 Hm H1) in H; discriminate.
Qed.
Lemma combine_r_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (combine_r m m') = at_least_right (find x m) (find x m').
Proof.
unfold combine_r.
intros.
case_eq (find x m'); intros.
- simpl.
apply find_1.
+ apply mapi_NoDup; auto.
+ destruct (mapi_1 (fun k e => (find k m, Some e)) (find_2 H)) as (y,(H0,H1)).
rewrite (find_eq Hm (X.eq_sym H0)); auto.
- simpl.
case_eq (find x (mapi (fun k e' => (find k m, Some e')) m')); intros; auto.
destruct (@mapi_2 _ _ m' x (fun k e' => (find k m, Some e'))).
+ exists p; apply find_2; auto.
+ rewrite (find_1 Hm' H1) in H; discriminate.
Qed.
Definition at_least_one (o:option elt)(o':option elt') :=
match o, o' with
| None, None => None
| _, _ => Some (o,o')
end.
Lemma combine_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (combine m m') = at_least_one (find x m) (find x m').
Proof.
unfold combine.
intros.
generalize (combine_r_1 Hm Hm' x).
generalize (combine_l_1 Hm Hm' x).
assert (NoDupA (eqk (elt:=oee')) (combine_l m m')). {
unfold combine_l; apply mapi_NoDup; auto.
}
assert (NoDupA (eqk (elt:=oee')) (combine_r m m')). {
unfold combine_r; apply mapi_NoDup; auto.
}
set (l := combine_l m m') in *; clearbody l.
set (r := combine_r m m') in *; clearbody r.
set (o := find x m); clearbody o.
set (o' := find x m'); clearbody o'.
clear Hm' Hm m m'.
induction l.
- destruct o; destruct o'; simpl; intros; discriminate || auto.
- destruct a; simpl in *; intros.
destruct (X.eq_dec x t0); simpl in *.
+ unfold at_least_left in H1.
destruct o; simpl in *; try discriminate.
inversion H1; subst.
apply add_eq; auto.
inversion_clear H; auto.
+ inversion_clear H.
rewrite <- IHl; auto.
apply add_not_eq; auto.
Qed.
Variable f : option elt -> option elt' -> option elt''.
Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
match o with
| Some e => (k,e)::l
| None => l
end.
Definition map2 m m' :=
let m0 : t oee' := combine m m' in
let m1 : t (option elt'') := map (fun p => f (fst p) (snd p)) m0 in
fold_right_pair (option_cons (A:=elt'')) nil m1.
Lemma map2_NoDup :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m'),
NoDupA (@eqk elt'') (map2 m m').
Proof.
intros.
unfold map2.
assert (H0:=combine_NoDup Hm Hm').
set (l0:=combine m m') in *; clearbody l0.
set (f':= fun p : oee' => f (fst p) (snd p)).
assert (H1:=map_NoDup (elt' := option elt'') H0 f').
set (l1:=map f' l0) in *; clearbody l1.
clear f' f H0 l0 Hm Hm' m m'.
induction l1.
- simpl; auto.
- inversion_clear H1.
destruct a; destruct o; simpl; auto.
constructor; auto.
contradict H.
clear IHl1.
induction l1.
+ inversion H.
+ inversion_clear H0.
destruct a; destruct o; simpl in *; auto.
inversion_clear H; auto.
Qed.
Definition at_least_one_then_f (o:option elt)(o':option elt') :=
match o, o' with
| None, None => None
| _, _ => f o o'
end.
Lemma map2_0 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
find x (map2 m m') = at_least_one_then_f (find x m) (find x m').
Proof.
intros.
unfold map2.
assert (H:=combine_1 Hm Hm' x).
assert (H2:=combine_NoDup Hm Hm').
set (f':= fun p : oee' => f (fst p) (snd p)).
set (m0 := combine m m') in *; clearbody m0.
set (o:=find x m) in *; clearbody o.
set (o':=find x m') in *; clearbody o'.
clear Hm Hm' m m'.
generalize H; clear H.
match goal with |- ?m=?n -> ?p=?q =>
assert ((m=n->p=q)/\(m=None -> p=None)); [|intuition] end.
induction m0; simpl in *; intuition.
- destruct o; destruct o'; simpl in *; try discriminate; auto.
- destruct a as (k,(oo,oo')); simpl in *.
inversion_clear H2.
destruct (X.eq_dec x k) as [|Hneq]; simpl in *.
+ (* x = k *)
assert (at_least_one_then_f o o' = f oo oo').
* destruct o; destruct o'; simpl in *; inversion_clear H; auto.
* rewrite H2.
unfold f'; simpl.
destruct (f oo oo'); simpl.
-- destruct (X.eq_dec x k) as [|Hneq]; try contradict Hneq; auto.
-- destruct (IHm0 H1) as (_,H4); apply H4; auto.
case_eq (find x m0); intros; auto.
elim H0.
apply InA_eqk with (x,p); auto.
apply InA_eqke_eqk.
exact (find_2 H3).
+ (* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
* destruct (X.eq_dec x k); [ contradict Hneq; auto | auto].
destruct (IHm0 H1) as (H3,_); apply H3; auto.
* destruct (IHm0 H1) as (H3,_); apply H3; auto.
- (* None -> None *)
destruct a as (k,(oo,oo')).
simpl.
inversion_clear H2.
destruct (X.eq_dec x k) as [|Hneq].
+ (* x = k *)
discriminate.
+ (* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
* destruct (X.eq_dec x k); [ contradict Hneq; auto | auto].
destruct (IHm0 H1) as (_,H4); apply H4; auto.
* destruct (IHm0 H1) as (_,H4); apply H4; auto.
Qed.
(** Specification of [map2] *)
Lemma map2_1 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
In x m \/ In x m' ->
find x (map2 m m') = f (find x m) (find x m').
Proof.
intros.
rewrite map2_0; auto.
destruct H as [(e,H)|(e,H)].
- rewrite (find_1 Hm H).
destruct (find x m'); simpl; auto.
- rewrite (find_1 Hm' H).
destruct (find x m); simpl; auto.
Qed.
Lemma map2_2 :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m')(x:key),
In x (map2 m m') -> In x m \/ In x m'.
Proof.
intros.
destruct H as (e,H).
generalize (map2_0 Hm Hm' x).
rewrite (find_1 (map2_NoDup Hm Hm') H).
generalize (@find_2 _ m x).
generalize (@find_2 _ m' x).
destruct (find x m);
destruct (find x m'); simpl; intros.
- left; exists e0; auto.
- left; exists e0; auto.
- right; exists e0; auto.
- discriminate.
Qed.
End Elt3.
End Raw.
Module Make (X: DecidableType) <: WS with Module E:=X.
Module Raw := Raw X.
Module E := X.
Definition key := E.t.
Record slist (elt:Type) :=
{this :> Raw.t elt; NoDup : NoDupA (@Raw.PX.eqk elt) this}.
Definition t (elt:Type) := slist elt.
Section Elt.
Variable elt elt' elt'':Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
Definition empty : t elt := Build_slist (Raw.empty_NoDup elt).
Definition is_empty m : bool := Raw.is_empty (this m).
Definition add x e m : t elt := Build_slist (Raw.add_NoDup (NoDup m) x e).
Definition find x m : option elt := Raw.find x (this m).
Definition remove x m : t elt := Build_slist (Raw.remove_NoDup (NoDup m) x).
Definition mem x m : bool := Raw.mem x (this m).
Definition map f m : t elt' := Build_slist (Raw.map_NoDup (NoDup m) f).
Definition mapi (f:key->elt->elt') m : t elt' := Build_slist (Raw.mapi_NoDup (NoDup m) f).
Definition map2 f m (m':t elt') : t elt'' :=
Build_slist (Raw.map2_NoDup f (NoDup m) (NoDup m')).
Definition elements m : list (key*elt) := @Raw.elements elt (this m).
Definition cardinal m := length (this m).
Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f (this m) i.
Definition equal cmp m m' : bool := @Raw.equal elt cmp (this m) (this m').
Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e (this m).
Definition In x m : Prop := Raw.PX.In x (this m).
Definition Empty m : Prop := Raw.Empty (this m).
Definition Equal m m' := forall y, find y m = find y m'.
Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb cmp m m' : Prop := @Raw.Equivb elt cmp (this m) (this m').
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.PX.eqke elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof. intros m; exact (@Raw.PX.MapsTo_eq elt (this m)). Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof. intros m; exact (@Raw.mem_1 elt (this m) (NoDup m)). Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof. intros m; exact (@Raw.mem_2 elt (this m) (NoDup m)). Qed.
Lemma empty_1 : Empty empty.
Proof. exact (@Raw.empty_1 elt). Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof. intros m; exact (@Raw.is_empty_1 elt (this m)). Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
Proof. intros m; exact (@Raw.is_empty_2 elt (this m)). Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
Proof. intros m; exact (@Raw.add_1 elt (this m)). Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
Proof. intros m; exact (@Raw.add_2 elt (this m)). Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Proof. intros m; exact (@Raw.add_3 elt (this m)). Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof. intros m; exact (@Raw.remove_1 elt (this m) (NoDup m)). Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
Proof. intros m; exact (@Raw.remove_2 elt (this m) (NoDup m)). Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
Proof. intros m; exact (@Raw.remove_3 elt (this m) (NoDup m)). Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
Proof. intros m; exact (@Raw.find_1 elt (this m) (NoDup m)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
Proof. intros m; exact (@Raw.find_2 elt (this m)). Qed.
Lemma elements_1 : forall m x e, MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof. intros m; exact (@Raw.elements_1 elt (this m)). Qed.
Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof. intros m; exact (@Raw.elements_2 elt (this m)). Qed.
Lemma elements_3w : forall m, NoDupA eq_key (elements m).
Proof. intros m; exact (@Raw.elements_3w elt (this m) (NoDup m)). Qed.
Lemma cardinal_1 : forall m, cardinal m = length (elements m).
Proof. intros; reflexivity. Qed.
Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@Raw.fold_1 elt (this m)). Qed.
Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
Proof. intros m m'; exact (@Raw.equal_1 elt (this m) (NoDup m) (this m') (NoDup m')). Qed.
Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'.
Proof. intros m m'; exact (@Raw.equal_2 elt (this m) (NoDup m) (this m') (NoDup m')). Qed.
End Elt.
Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m; exact (@Raw.map_1 elt elt' (this m)). Qed.
Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.map_2 elt elt' (this m)). Qed.
Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m; exact (@Raw.mapi_1 elt elt' (this m)). Qed.
Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.mapi_2 elt elt' (this m)). Qed.
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
intros elt elt' elt'' m m' x f;
exact (@Raw.map2_1 elt elt' elt'' f (this m) (NoDup m) (this m') (NoDup m') x).
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
intros elt elt' elt'' m m' x f;
exact (@Raw.map2_2 elt elt' elt'' f (this m) (NoDup m) (this m') (NoDup m') x).
Qed.
End Make.
|