1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite sets library *)
(** This module implements bridges (as functors) from dependent
to/from non-dependent set signature. *)
From Stdlib Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
Set Firstorder Depth 2.
(** * From non-dependent signature [S] to dependent signature [Sdep]. *)
Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
Local Ltac Tauto.intuition_solver ::= auto with bool set.
Definition empty : {s : t | Empty s}.
Proof.
exists empty; auto with set.
Qed.
Definition is_empty : forall s : t, {Empty s} + {~ Empty s}.
Proof.
intros; generalize (is_empty_1 (s:=s)) (is_empty_2 (s:=s)).
case (is_empty s); intuition.
Qed.
Definition mem : forall (x : elt) (s : t), {In x s} + {~ In x s}.
Proof.
intros; generalize (mem_1 (s:=s) (x:=x)) (mem_2 (s:=s) (x:=x)).
case (mem x s); intuition.
Qed.
Definition Add (x : elt) (s s' : t) :=
forall y : elt, In y s' <-> E.eq x y \/ In y s.
Definition add : forall (x : elt) (s : t), {s' : t | Add x s s'}.
Proof.
intros; exists (add x s); auto.
unfold Add; intuition.
elim (E.eq_dec x y); auto.
intros; right.
eapply add_3; eauto.
Qed.
Definition singleton :
forall x : elt, {s : t | forall y : elt, In y s <-> E.eq x y}.
Proof.
intros; exists (singleton x); intuition.
Qed.
Definition remove :
forall (x : elt) (s : t),
{s' : t | forall y : elt, In y s' <-> ~ E.eq x y /\ In y s}.
Proof.
intros; exists (remove x s); intuition.
- absurd (In x (remove x s)); auto with set ordered_type.
apply In_1 with y; auto with ordered_type.
- elim (E.eq_dec x y); intros; auto.
+ absurd (In x (remove x s)); auto with set ordered_type.
apply In_1 with y; auto with ordered_type.
+ eauto with set.
Qed.
Definition union :
forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s \/ In x s'}.
Proof.
intros; exists (union s s'); intuition.
Qed.
Definition inter :
forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ In x s'}.
Proof.
intros; exists (inter s s'); intuition; eauto with set.
Qed.
Definition diff :
forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ ~ In x s'}.
Proof.
intros; exists (diff s s'); intuition; eauto with set.
absurd (In x s'); eauto with set.
Qed.
Definition equal : forall s s' : t, {Equal s s'} + {~ Equal s s'}.
Proof.
intros.
generalize (equal_1 (s:=s) (s':=s')) (equal_2 (s:=s) (s':=s')).
case (equal s s'); intuition.
Qed.
Definition subset : forall s s' : t, {Subset s s'} + {~Subset s s'}.
Proof.
intros.
generalize (subset_1 (s:=s) (s':=s')) (subset_2 (s:=s) (s':=s')).
case (subset s s'); intuition.
Qed.
Definition elements :
forall s : t,
{l : list elt | sort E.lt l /\ (forall x : elt, In x s <-> InA E.eq x l)}.
Proof.
intros; exists (elements s); intuition.
Defined.
Definition fold :
forall (A : Type) (f : elt -> A -> A) (s : t) (i : A),
{r : A | let (l,_) := elements s in
r = fold_left (fun a e => f e a) l i}.
Proof.
intros; exists (fold (A:=A) f s i); exact (fold_1 s i f).
Qed.
Definition cardinal :
forall s : t,
{r : nat | let (l,_) := elements s in r = length l }.
Proof.
intros; exists (cardinal s); exact (cardinal_1 s).
Qed.
Definition fdec (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
(x : elt) := if Pdec x then true else false.
Lemma compat_P_aux :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}),
compat_P E.eq P -> compat_bool E.eq (fdec Pdec).
Proof.
unfold compat_P, compat_bool, Proper, respectful, fdec; intros.
generalize (E.eq_sym H0); case (Pdec x); case (Pdec y); firstorder.
Qed.
#[global]
Hint Resolve compat_P_aux : core.
Definition filter :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{s' : t | compat_P E.eq P -> forall x : elt, In x s' <-> In x s /\ P x}.
Proof.
intros.
exists (filter (fdec Pdec) s).
intro H; assert (compat_bool E.eq (fdec Pdec)); auto.
intuition.
- eauto with set.
- generalize (filter_2 H0 H1).
unfold fdec.
case (Pdec x); intuition.
inversion H2.
- apply filter_3; auto.
unfold fdec; simpl.
case (Pdec x); intuition.
Qed.
Definition for_all :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{compat_P E.eq P -> For_all P s} + {compat_P E.eq P -> ~ For_all P s}.
Proof.
intros.
generalize (for_all_1 (s:=s) (f:=fdec Pdec))
(for_all_2 (s:=s) (f:=fdec Pdec)).
case (for_all (fdec Pdec) s); unfold For_all; [ left | right ];
intros.
- assert (compat_bool E.eq (fdec Pdec)); auto.
generalize (H0 H3 Logic.eq_refl _ H2).
unfold fdec.
case (Pdec x); intuition.
inversion H4.
- intuition.
absurd (false = true); [ auto with bool | apply H; auto ].
intro.
unfold fdec.
case (Pdec x); intuition.
Qed.
Definition exists_ :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{compat_P E.eq P -> Exists P s} + {compat_P E.eq P -> ~ Exists P s}.
Proof.
intros.
generalize (exists_1 (s:=s) (f:=fdec Pdec))
(exists_2 (s:=s) (f:=fdec Pdec)).
case (exists_ (fdec Pdec) s); unfold Exists; [ left | right ];
intros.
- elim H0; auto; intros.
exists x; intuition.
generalize H4.
unfold fdec.
case (Pdec x); intuition.
inversion H2.
- intuition.
elim H2; intros.
absurd (false = true); [ auto with bool | apply H; auto ].
exists x; intuition.
unfold fdec.
case (Pdec x); intuition.
Qed.
Definition partition :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x}) (s : t),
{partition : t * t |
let (s1, s2) := partition in
compat_P E.eq P ->
For_all P s1 /\
For_all (fun x => ~ P x) s2 /\
(forall x : elt, In x s <-> In x s1 \/ In x s2)}.
Proof.
intros.
exists (partition (fdec Pdec) s).
generalize (partition_1 s (f:=fdec Pdec)) (partition_2 s (f:=fdec Pdec)).
case (partition (fdec Pdec) s).
intros s1 s2; simpl.
intros; assert (compat_bool E.eq (fdec Pdec)); auto.
intros; assert (compat_bool E.eq (fun x => negb (fdec Pdec x))). {
generalize H2; unfold compat_bool, Proper, respectful; intuition;
apply (f_equal negb); auto.
}
intuition.
- generalize H4; unfold For_all, Equal; intuition.
elim (H0 x); intros.
assert (fdec Pdec x = true).
{ eapply filter_2; eauto with set. }
generalize H8; unfold fdec; case (Pdec x); intuition.
inversion H9.
- generalize H; unfold For_all, Equal; intuition.
elim (H0 x); intros.
cut ((fun x => negb (fdec Pdec x)) x = true).
{ unfold fdec; case (Pdec x); intuition. }
change ((fun x => negb (fdec Pdec x)) x = true).
apply (filter_2 (s:=s) (x:=x)); auto.
- set (b := fdec Pdec x) in *; generalize (Logic.eq_refl b);
pattern b at -1; case b; unfold b;
[ left | right ].
+ elim (H4 x); intros _ B; apply B; auto with set.
+ elim (H x); intros _ B; apply B; auto with set.
apply filter_3; auto.
rewrite H5; auto.
- eapply (filter_1 (s:=s) (x:=x) H2); elim (H4 x); intros B _; apply B;
auto.
- eapply (filter_1 (s:=s) (x:=x) H3); elim (H x); intros B _; apply B; auto.
Qed.
Definition choose_aux: forall s : t,
{ x : elt | M.choose s = Some x } + { M.choose s = None }.
Proof.
intros.
destruct (M.choose s); [left | right]; auto.
exists e; auto.
Qed.
Definition choose : forall s : t, {x : elt | In x s} + {Empty s}.
Proof.
intros; destruct (choose_aux s) as [(x,Hx)|H].
- left; exists x; apply choose_1; auto.
- right; apply choose_2; auto.
Defined.
Lemma choose_ok1 :
forall s x, M.choose s = Some x <-> exists H:In x s,
choose s = inleft _ (exist (fun x => In x s) x H).
Proof.
intros s x.
unfold choose; split; intros.
- destruct (choose_aux s) as [(y,Hy)|H']; try congruence.
replace x with y in * by congruence.
exists (choose_1 Hy); auto.
- destruct H.
destruct (choose_aux s) as [(y,Hy)|H']; congruence.
Qed.
Lemma choose_ok2 :
forall s, M.choose s = None <-> exists H:Empty s,
choose s = inright _ H.
Proof.
intros s.
unfold choose; split; intros.
- destruct (choose_aux s) as [(y,Hy)|H']; try congruence.
exists (choose_2 H'); auto.
- destruct H.
destruct (choose_aux s) as [(y,Hy)|H']; congruence.
Qed.
Lemma choose_equal : forall s s', Equal s s' ->
match choose s, choose s' with
| inleft (exist _ x _), inleft (exist _ x' _) => E.eq x x'
| inright _, inright _ => True
| _, _ => False
end.
Proof.
intros.
generalize (@M.choose_1 s)(@M.choose_2 s)
(@M.choose_1 s')(@M.choose_2 s')(@M.choose_3 s s')
(choose_ok1 s)(choose_ok2 s)(choose_ok1 s')(choose_ok2 s').
destruct (choose s) as [(x,Hx)|Hx]; destruct (choose s') as [(x',Hx')|Hx']; auto; intros.
- apply H4; auto.
+ rewrite H5; exists Hx; auto.
+ rewrite H7; exists Hx'; auto.
- apply Hx' with x; unfold Equal in H; rewrite <-H; auto.
- apply Hx with x'; unfold Equal in H; rewrite H; auto.
Qed.
Definition min_elt :
forall s : t,
{x : elt | In x s /\ For_all (fun y => ~ E.lt y x) s} + {Empty s}.
Proof.
intros;
generalize (min_elt_1 (s:=s)) (min_elt_2 (s:=s)) (min_elt_3 (s:=s)).
case (min_elt s); [ left | right ]; auto.
exists e; unfold For_all; eauto.
Qed.
Definition max_elt :
forall s : t,
{x : elt | In x s /\ For_all (fun y => ~ E.lt x y) s} + {Empty s}.
Proof.
intros;
generalize (max_elt_1 (s:=s)) (max_elt_2 (s:=s)) (max_elt_3 (s:=s)).
case (max_elt s); [ left | right ]; auto.
exists e; unfold For_all; eauto.
Qed.
Definition elt := elt.
Definition t := t.
Definition In := In.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) (s : t) :=
forall x : elt, In x s -> P x.
Definition Exists (P : elt -> Prop) (s : t) :=
exists x : elt, In x s /\ P x.
Definition eq_In := In_1.
Definition eq := Equal.
Definition lt := lt.
Definition eq_refl := eq_refl.
Definition eq_sym := eq_sym.
Definition eq_trans := eq_trans.
Definition lt_trans := lt_trans.
Definition lt_not_eq := lt_not_eq.
Definition compare := compare.
Module E := E.
End DepOfNodep.
(** * From dependent signature [Sdep] to non-dependent signature [S]. *)
Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Import M.
Module ME := OrderedTypeFacts E.
Definition empty : t := let (s, _) := empty in s.
Lemma empty_1 : Empty empty.
Proof.
unfold empty; case M.empty; auto.
Qed.
Definition is_empty (s : t) : bool :=
if is_empty s then true else false.
Lemma is_empty_1 : forall s : t, Empty s -> is_empty s = true.
Proof.
intros; unfold is_empty; case (M.is_empty s); auto.
Qed.
Lemma is_empty_2 : forall s : t, is_empty s = true -> Empty s.
Proof.
intro s; unfold is_empty; case (M.is_empty s); auto.
intros; discriminate H.
Qed.
Definition mem (x : elt) (s : t) : bool :=
if mem x s then true else false.
Lemma mem_1 : forall (s : t) (x : elt), In x s -> mem x s = true.
Proof.
intros; unfold mem; case (M.mem x s); auto.
Qed.
Lemma mem_2 : forall (s : t) (x : elt), mem x s = true -> In x s.
Proof.
intros s x; unfold mem; case (M.mem x s); auto.
intros; discriminate H.
Qed.
Definition eq_dec := equal.
Definition equal (s s' : t) : bool :=
if equal s s' then true else false.
Lemma equal_1 : forall s s' : t, Equal s s' -> equal s s' = true.
Proof.
intros; unfold equal; case M.equal; intuition.
Qed.
Lemma equal_2 : forall s s' : t, equal s s' = true -> Equal s s'.
Proof.
intros s s'; unfold equal; case (M.equal s s'); intuition;
inversion H.
Qed.
Definition subset (s s' : t) : bool :=
if subset s s' then true else false.
Lemma subset_1 : forall s s' : t, Subset s s' -> subset s s' = true.
Proof.
intros; unfold subset; case M.subset; intuition.
Qed.
Lemma subset_2 : forall s s' : t, subset s s' = true -> Subset s s'.
Proof.
intros s s'; unfold subset; case (M.subset s s'); intuition;
inversion H.
Qed.
Definition choose (s : t) : option elt :=
match choose s with
| inleft (exist _ x _) => Some x
| inright _ => None
end.
Lemma choose_1 : forall (s : t) (x : elt), choose s = Some x -> In x s.
Proof.
intros s x; unfold choose; case (M.choose s).
- simple destruct s0; intros; injection H; intros; subst; auto.
- intros; discriminate H.
Qed.
Lemma choose_2 : forall s : t, choose s = None -> Empty s.
Proof.
intro s; unfold choose; case (M.choose s); auto.
simple destruct s0; intros; discriminate H.
Qed.
Lemma choose_3 : forall s s' x x',
choose s = Some x -> choose s' = Some x' -> Equal s s' -> E.eq x x'.
Proof.
unfold choose; intros.
generalize (M.choose_equal H1); clear H1.
destruct (M.choose s) as [(?,?)|?]; destruct (M.choose s') as [(?,?)|?];
simpl; auto; congruence.
Qed.
Definition elements (s : t) : list elt := let (l, _) := elements s in l.
Lemma elements_1 : forall (s : t) (x : elt), In x s -> InA E.eq x (elements s).
Proof.
intros; unfold elements; case (M.elements s); firstorder.
Qed.
Lemma elements_2 : forall (s : t) (x : elt), InA E.eq x (elements s) -> In x s.
Proof.
intros s x; unfold elements; case (M.elements s); firstorder.
Qed.
Lemma elements_3 : forall s : t, sort E.lt (elements s).
Proof.
intros; unfold elements; case (M.elements s); firstorder.
Qed.
#[global]
Hint Resolve elements_3 : core.
Lemma elements_3w : forall s : t, NoDupA E.eq (elements s).
Proof. auto with ordered_type. Qed.
Definition min_elt (s : t) : option elt :=
match min_elt s with
| inleft (exist _ x _) => Some x
| inright _ => None
end.
Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s.
Proof.
intros s x; unfold min_elt; case (M.min_elt s).
- simple destruct s0; intros; injection H; intros; subst; intuition.
- intros; discriminate H.
Qed.
Lemma min_elt_2 :
forall (s : t) (x y : elt), min_elt s = Some x -> In y s -> ~ E.lt y x.
Proof.
intros s x y; unfold min_elt; case (M.min_elt s).
- unfold For_all; simple destruct s0; intros; injection H; intros;
subst; firstorder.
- intros; discriminate H.
Qed.
Lemma min_elt_3 : forall s : t, min_elt s = None -> Empty s.
Proof.
intros s; unfold min_elt; case (M.min_elt s); auto.
simple destruct s0; intros; discriminate H.
Qed.
Definition max_elt (s : t) : option elt :=
match max_elt s with
| inleft (exist _ x _) => Some x
| inright _ => None
end.
Lemma max_elt_1 : forall (s : t) (x : elt), max_elt s = Some x -> In x s.
Proof.
intros s x; unfold max_elt; case (M.max_elt s).
- simple destruct s0; intros; injection H; intros; subst; intuition.
- intros; discriminate H.
Qed.
Lemma max_elt_2 :
forall (s : t) (x y : elt), max_elt s = Some x -> In y s -> ~ E.lt x y.
Proof.
intros s x y; unfold max_elt; case (M.max_elt s).
- unfold For_all; simple destruct s0; intros; injection H; intros;
subst; firstorder.
- intros; discriminate H.
Qed.
Lemma max_elt_3 : forall s : t, max_elt s = None -> Empty s.
Proof.
intros s; unfold max_elt; case (M.max_elt s); auto.
simple destruct s0; intros; discriminate H.
Qed.
Definition add (x : elt) (s : t) : t := let (s', _) := add x s in s'.
Lemma add_1 : forall (s : t) (x y : elt), E.eq x y -> In y (add x s).
Proof.
intros; unfold add; case (M.add x s); unfold Add;
firstorder.
Qed.
Lemma add_2 : forall (s : t) (x y : elt), In y s -> In y (add x s).
Proof.
intros; unfold add; case (M.add x s); unfold Add;
firstorder.
Qed.
Lemma add_3 :
forall (s : t) (x y : elt), ~ E.eq x y -> In y (add x s) -> In y s.
Proof.
intros s x y; unfold add; case (M.add x s); unfold Add;
firstorder.
Qed.
Definition remove (x : elt) (s : t) : t := let (s', _) := remove x s in s'.
Lemma remove_1 : forall (s : t) (x y : elt), E.eq x y -> ~ In y (remove x s).
Proof.
intros; unfold remove; case (M.remove x s); firstorder.
Qed.
Lemma remove_2 :
forall (s : t) (x y : elt), ~ E.eq x y -> In y s -> In y (remove x s).
Proof.
intros; unfold remove; case (M.remove x s); firstorder.
Qed.
Lemma remove_3 : forall (s : t) (x y : elt), In y (remove x s) -> In y s.
Proof.
intros s x y; unfold remove; case (M.remove x s); firstorder.
Qed.
Definition singleton (x : elt) : t := let (s, _) := singleton x in s.
Lemma singleton_1 : forall x y : elt, In y (singleton x) -> E.eq x y.
Proof.
intros x y; unfold singleton; case (M.singleton x); firstorder.
Qed.
Lemma singleton_2 : forall x y : elt, E.eq x y -> In y (singleton x).
Proof.
intros x y; unfold singleton; case (M.singleton x); firstorder.
Qed.
Definition union (s s' : t) : t := let (s'', _) := union s s' in s''.
Lemma union_1 :
forall (s s' : t) (x : elt), In x (union s s') -> In x s \/ In x s'.
Proof.
intros s s' x; unfold union; case (M.union s s'); firstorder.
Qed.
Lemma union_2 : forall (s s' : t) (x : elt), In x s -> In x (union s s').
Proof.
intros s s' x; unfold union; case (M.union s s'); firstorder.
Qed.
Lemma union_3 : forall (s s' : t) (x : elt), In x s' -> In x (union s s').
Proof.
intros s s' x; unfold union; case (M.union s s'); firstorder.
Qed.
Definition inter (s s' : t) : t := let (s'', _) := inter s s' in s''.
Lemma inter_1 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s.
Proof.
intros s s' x; unfold inter; case (M.inter s s'); firstorder.
Qed.
Lemma inter_2 : forall (s s' : t) (x : elt), In x (inter s s') -> In x s'.
Proof.
intros s s' x; unfold inter; case (M.inter s s'); firstorder.
Qed.
Lemma inter_3 :
forall (s s' : t) (x : elt), In x s -> In x s' -> In x (inter s s').
Proof.
intros s s' x; unfold inter; case (M.inter s s'); firstorder.
Qed.
Definition diff (s s' : t) : t := let (s'', _) := diff s s' in s''.
Lemma diff_1 : forall (s s' : t) (x : elt), In x (diff s s') -> In x s.
Proof.
intros s s' x; unfold diff; case (M.diff s s'); firstorder.
Qed.
Lemma diff_2 : forall (s s' : t) (x : elt), In x (diff s s') -> ~ In x s'.
Proof.
intros s s' x; unfold diff; case (M.diff s s'); firstorder.
Qed.
Lemma diff_3 :
forall (s s' : t) (x : elt), In x s -> ~ In x s' -> In x (diff s s').
Proof.
intros s s' x; unfold diff; case (M.diff s s'); firstorder.
Qed.
Definition cardinal (s : t) : nat := let (f, _) := cardinal s in f.
Lemma cardinal_1 : forall s, cardinal s = length (elements s).
Proof.
intros; unfold cardinal; case (M.cardinal s); unfold elements in *;
destruct (M.elements s); auto.
Qed.
Definition fold (B : Type) (f : elt -> B -> B) (i : t)
(s : B) : B := let (fold, _) := fold f i s in fold.
Lemma fold_1 :
forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
intros; unfold fold; case (M.fold f s i); unfold elements in *;
destruct (M.elements s); auto.
Qed.
Definition f_dec :
forall (f : elt -> bool) (x : elt), {f x = true} + {f x <> true}.
Proof.
intros; case (f x); auto with bool.
Defined.
Lemma compat_P_aux :
forall f : elt -> bool,
compat_bool E.eq f -> compat_P E.eq (fun x => f x = true).
Proof.
unfold compat_bool, compat_P, Proper, respectful, impl; intros;
rewrite <- H1; firstorder.
Qed.
#[global]
Hint Resolve compat_P_aux : core.
Definition filter (f : elt -> bool) (s : t) : t :=
let (s', _) := filter (P:=fun x => f x = true) (f_dec f) s in s'.
Lemma filter_1 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> In x s.
Proof.
intros s x f; unfold filter; case M.filter as (x0,Hiff); intuition.
generalize (Hiff (compat_P_aux H)); firstorder.
Qed.
Lemma filter_2 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> f x = true.
Proof.
intros s x f; unfold filter; case M.filter as (x0,Hiff); intuition.
generalize (Hiff (compat_P_aux H)); firstorder.
Qed.
Lemma filter_3 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
Proof.
intros s x f; unfold filter; case M.filter as (x0,Hiff); intuition.
generalize (Hiff (compat_P_aux H)); firstorder.
Qed.
Definition for_all (f : elt -> bool) (s : t) : bool :=
if for_all (P:=fun x => f x = true) (f_dec f) s
then true
else false.
Lemma for_all_1 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Proof.
intros s f; unfold for_all; case M.for_all; intuition; elim n;
auto.
Qed.
Lemma for_all_2 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s.
Proof.
intros s f; unfold for_all; case M.for_all; intuition;
inversion H0.
Qed.
Definition exists_ (f : elt -> bool) (s : t) : bool :=
if exists_ (P:=fun x => f x = true) (f_dec f) s
then true
else false.
Lemma exists_1 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
Proof.
intros s f; unfold exists_; case M.exists_; intuition; elim n;
auto.
Qed.
Lemma exists_2 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
Proof.
intros s f; unfold exists_; case M.exists_; intuition;
inversion H0.
Qed.
Definition partition (f : elt -> bool) (s : t) :
t * t :=
let (p, _) := partition (P:=fun x => f x = true) (f_dec f) s in p.
Lemma partition_1 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
Proof.
intros s f; unfold partition; case M.partition.
intro p; case p; clear p; intros s1 s2 H C.
generalize (H (compat_P_aux C)); clear H; intro H.
simpl; unfold Equal; intuition.
- apply filter_3; firstorder.
- elim (H2 a); intros.
assert (In a s).
+ eapply filter_1; eauto.
+ elim H3; intros; auto.
absurd (f a = true).
* exact (H a H6).
* eapply filter_2; eauto.
Qed.
Lemma partition_2 :
forall (s : t) (f : elt -> bool),
compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Proof.
intros s f; unfold partition; case M.partition.
intro p; case p; clear p; intros s1 s2 H C.
generalize (H (compat_P_aux C)); clear H; intro H.
assert (D : compat_bool E.eq (fun x => negb (f x))). {
generalize C; unfold compat_bool, Proper, respectful; intros; apply (f_equal negb);
auto.
}
simpl; unfold Equal; intuition.
- apply filter_3; firstorder with bool.
- elim (H2 a); intros.
assert (In a s).
{ eapply filter_1; eauto. }
elim H3; intros; auto.
absurd (f a = true).
+ intro.
generalize (filter_2 D H1).
rewrite H7; intros H8; inversion H8.
+ exact (H0 a H6).
Qed.
Definition elt := elt.
Definition t := t.
Definition In := In.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Add (x : elt) (s s' : t) :=
forall y : elt, In y s' <-> E.eq y x \/ In y s.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) (s : t) :=
forall x : elt, In x s -> P x.
Definition Exists (P : elt -> Prop) (s : t) :=
exists x : elt, In x s /\ P x.
Definition In_1 := eq_In.
Definition eq := Equal.
Definition lt := lt.
Definition eq_refl := eq_refl.
Definition eq_sym := eq_sym.
Definition eq_trans := eq_trans.
Definition lt_trans := lt_trans.
Definition lt_not_eq := lt_not_eq.
Definition compare := compare.
Module E := E.
End NodepOfDep.
|