1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Compatibility functors between FSetInterface and MSetInterface. *)
From Stdlib Require Import FSetInterface FSetFacts MSetInterface MSetFacts.
Set Implicit Arguments.
Unset Strict Implicit.
Local Ltac Tauto.intuition_solver ::= auto with relations.
(** * From new Weak Sets to old ones *)
Module Backport_WSets
(E:DecidableType.DecidableType)
(M:MSetInterface.WSets with Definition E.t := E.t
with Definition E.eq := E.eq)
<: FSetInterface.WSfun E.
Definition elt := E.t.
Definition t := M.t.
Implicit Type s : t.
Implicit Type x y : elt.
Implicit Type f : elt -> bool.
Definition In : elt -> t -> Prop := M.In.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Definition empty : t := M.empty.
Definition is_empty : t -> bool := M.is_empty.
Definition mem : elt -> t -> bool := M.mem.
Definition add : elt -> t -> t := M.add.
Definition singleton : elt -> t := M.singleton.
Definition remove : elt -> t -> t := M.remove.
Definition union : t -> t -> t := M.union.
Definition inter : t -> t -> t := M.inter.
Definition diff : t -> t -> t := M.diff.
Definition eq : t -> t -> Prop := M.eq.
Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
Definition equal : t -> t -> bool := M.equal.
Definition subset : t -> t -> bool := M.subset.
Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
Definition filter : (elt -> bool) -> t -> t := M.filter.
Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
Definition cardinal : t -> nat := M.cardinal.
Definition elements : t -> list elt := M.elements.
Definition choose : t -> option elt := M.choose.
Module MF := MSetFacts.WFacts M.
Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s
:= MF.In_1.
Definition eq_refl : forall s, eq s s
:= @Equivalence_Reflexive _ _ M.eq_equiv.
Definition eq_sym : forall s s', eq s s' -> eq s' s
:= @Equivalence_Symmetric _ _ M.eq_equiv.
Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s''
:= @Equivalence_Transitive _ _ M.eq_equiv.
Definition mem_1 : forall s x, In x s -> mem x s = true
:= MF.mem_1.
Definition mem_2 : forall s x, mem x s = true -> In x s
:= MF.mem_2.
Definition equal_1 : forall s s', Equal s s' -> equal s s' = true
:= MF.equal_1.
Definition equal_2 : forall s s', equal s s' = true -> Equal s s'
:= MF.equal_2.
Definition subset_1 : forall s s', Subset s s' -> subset s s' = true
:= MF.subset_1.
Definition subset_2 : forall s s', subset s s' = true -> Subset s s'
:= MF.subset_2.
Definition empty_1 : Empty empty := MF.empty_1.
Definition is_empty_1 : forall s, Empty s -> is_empty s = true
:= MF.is_empty_1.
Definition is_empty_2 : forall s, is_empty s = true -> Empty s
:= MF.is_empty_2.
Definition add_1 : forall s x y, E.eq x y -> In y (add x s)
:= MF.add_1.
Definition add_2 : forall s x y, In y s -> In y (add x s)
:= MF.add_2.
Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s
:= MF.add_3.
Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s)
:= MF.remove_1.
Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s)
:= MF.remove_2.
Definition remove_3 : forall s x y, In y (remove x s) -> In y s
:= MF.remove_3.
Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s'
:= MF.union_1.
Definition union_2 : forall s s' x, In x s -> In x (union s s')
:= MF.union_2.
Definition union_3 : forall s s' x, In x s' -> In x (union s s')
:= MF.union_3.
Definition inter_1 : forall s s' x, In x (inter s s') -> In x s
:= MF.inter_1.
Definition inter_2 : forall s s' x, In x (inter s s') -> In x s'
:= MF.inter_2.
Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s')
:= MF.inter_3.
Definition diff_1 : forall s s' x, In x (diff s s') -> In x s
:= MF.diff_1.
Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s'
:= MF.diff_2.
Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s')
:= MF.diff_3.
Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y
:= MF.singleton_1.
Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x)
:= MF.singleton_2.
Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i
:= MF.fold_1.
Definition cardinal_1 : forall s, cardinal s = length (elements s)
:= MF.cardinal_1.
Definition filter_1 : forall s x f, compat_bool E.eq f ->
In x (filter f s) -> In x s
:= MF.filter_1.
Definition filter_2 : forall s x f, compat_bool E.eq f ->
In x (filter f s) -> f x = true
:= MF.filter_2.
Definition filter_3 : forall s x f, compat_bool E.eq f ->
In x s -> f x = true -> In x (filter f s)
:= MF.filter_3.
Definition for_all_1 : forall s f, compat_bool E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true
:= MF.for_all_1.
Definition for_all_2 : forall s f, compat_bool E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s
:= MF.for_all_2.
Definition exists_1 : forall s f, compat_bool E.eq f ->
Exists (fun x => f x = true) s -> exists_ f s = true
:= MF.exists_1.
Definition exists_2 : forall s f, compat_bool E.eq f ->
exists_ f s = true -> Exists (fun x => f x = true) s
:= MF.exists_2.
Definition partition_1 : forall s f, compat_bool E.eq f ->
Equal (fst (partition f s)) (filter f s)
:= MF.partition_1.
Definition partition_2 : forall s f, compat_bool E.eq f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
:= MF.partition_2.
Definition choose_1 : forall s x, choose s = Some x -> In x s
:= MF.choose_1.
Definition choose_2 : forall s, choose s = None -> Empty s
:= MF.choose_2.
Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s)
:= MF.elements_1.
Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s
:= MF.elements_2.
Definition elements_3w : forall s, NoDupA E.eq (elements s)
:= MF.elements_3w.
End Backport_WSets.
(** * From new Sets to new ones *)
Module Backport_Sets
(O:OrderedType.OrderedType)
(M:MSetInterface.Sets with Definition E.t := O.t
with Definition E.eq := O.eq
with Definition E.lt := O.lt)
<: FSetInterface.S with Module E:=O.
Include Backport_WSets O M.
Implicit Type s : t.
Implicit Type x y : elt.
Definition lt : t -> t -> Prop := M.lt.
Definition min_elt : t -> option elt := M.min_elt.
Definition max_elt : t -> option elt := M.max_elt.
Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s
:= M.min_elt_spec1.
Definition min_elt_2 : forall s x y,
min_elt s = Some x -> In y s -> ~ O.lt y x
:= M.min_elt_spec2.
Definition min_elt_3 : forall s, min_elt s = None -> Empty s
:= M.min_elt_spec3.
Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s
:= M.max_elt_spec1.
Definition max_elt_2 : forall s x y,
max_elt s = Some x -> In y s -> ~ O.lt x y
:= M.max_elt_spec2.
Definition max_elt_3 : forall s, max_elt s = None -> Empty s
:= M.max_elt_spec3.
Definition elements_3 : forall s, sort O.lt (elements s)
:= M.elements_spec2.
Definition choose_3 : forall s s' x y,
choose s = Some x -> choose s' = Some y -> Equal s s' -> O.eq x y
:= M.choose_spec3.
Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s''
:= @StrictOrder_Transitive _ _ M.lt_strorder.
Lemma lt_not_eq : forall s s', lt s s' -> ~ eq s s'.
Proof.
unfold lt, eq. intros s s' Hlt Heq. rewrite Heq in Hlt.
apply (StrictOrder_Irreflexive s'); auto.
Qed.
Definition compare : forall s s', Compare lt eq s s'.
Proof.
intros s s'; destruct (CompSpec2Type (M.compare_spec s s'));
[ apply EQ | apply LT | apply GT ]; auto.
Defined.
Module E := O.
End Backport_Sets.
(** * From old Weak Sets to new ones. *)
Module Update_WSets
(E:Equalities.DecidableType)
(M:FSetInterface.WS with Definition E.t := E.t
with Definition E.eq := E.eq)
<: MSetInterface.WSetsOn E.
Definition elt := E.t.
Definition t := M.t.
Implicit Type s : t.
Implicit Type x y : elt.
Implicit Type f : elt -> bool.
Definition In : elt -> t -> Prop := M.In.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Definition empty : t := M.empty.
Definition is_empty : t -> bool := M.is_empty.
Definition mem : elt -> t -> bool := M.mem.
Definition add : elt -> t -> t := M.add.
Definition singleton : elt -> t := M.singleton.
Definition remove : elt -> t -> t := M.remove.
Definition union : t -> t -> t := M.union.
Definition inter : t -> t -> t := M.inter.
Definition diff : t -> t -> t := M.diff.
Definition eq : t -> t -> Prop := M.eq.
Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
Definition equal : t -> t -> bool := M.equal.
Definition subset : t -> t -> bool := M.subset.
Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
Definition filter : (elt -> bool) -> t -> t := M.filter.
Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
Definition cardinal : t -> nat := M.cardinal.
Definition elements : t -> list elt := M.elements.
Definition choose : t -> option elt := M.choose.
Module MF := FSetFacts.WFacts M.
#[global]
Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In.
Proof. intros x x' Hx s s' Hs. subst. apply MF.In_eq_iff; auto. Qed.
#[global]
Instance eq_equiv : Equivalence eq := _.
Section Spec.
Variable s s': t.
Variable x y : elt.
Lemma mem_spec : mem x s = true <-> In x s.
Proof. intros; symmetry; apply MF.mem_iff. Qed.
Lemma equal_spec : equal s s' = true <-> Equal s s'.
Proof. intros; symmetry; apply MF.equal_iff. Qed.
Lemma subset_spec : subset s s' = true <-> Subset s s'.
Proof. intros; symmetry; apply MF.subset_iff. Qed.
Definition empty_spec : Empty empty := M.empty_1.
Lemma is_empty_spec : is_empty s = true <-> Empty s.
Proof. intros; symmetry; apply MF.is_empty_iff. Qed.
Declare Equivalent Keys In M.In.
Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
Proof. intros. rewrite MF.add_iff. intuition. Qed.
Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
Proof. intros. rewrite MF.remove_iff. intuition. Qed.
Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
Proof. intros; rewrite MF.singleton_iff. intuition. Qed.
Definition union_spec : In x (union s s') <-> In x s \/ In x s'
:= @MF.union_iff s s' x.
Definition inter_spec : In x (inter s s') <-> In x s /\ In x s'
:= @MF.inter_iff s s' x.
Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s'
:= @MF.diff_iff s s' x.
Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (flip f) (elements s) i
:= @M.fold_1 s.
Definition cardinal_spec : cardinal s = length (elements s)
:= @M.cardinal_1 s.
Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
Proof. intros; symmetry; apply MF.elements_iff. Qed.
Definition elements_spec2w : NoDupA E.eq (elements s)
:= @M.elements_3w s.
Definition choose_spec1 : choose s = Some x -> In x s
:= @M.choose_1 s x.
Definition choose_spec2 : choose s = None -> Empty s
:= @M.choose_2 s.
Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f ->
(In x (filter f s) <-> In x s /\ f x = true)
:= @MF.filter_iff s x.
Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f ->
Equal (fst (partition f s)) (filter f s)
:= @M.partition_1 s.
Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
:= @M.partition_2 s.
Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f ->
(for_all f s = true <-> For_all (fun x => f x = true) s).
Proof. intros; symmetry; apply MF.for_all_iff; auto. Qed.
Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f ->
(exists_ f s = true <-> Exists (fun x => f x = true) s).
Proof. intros; symmetry; apply MF.exists_iff; auto. Qed.
End Spec.
End Update_WSets.
(** * From old Sets to new ones. *)
Module Update_Sets
(O:Orders.OrderedType)
(M:FSetInterface.S with Definition E.t := O.t
with Definition E.eq := O.eq
with Definition E.lt := O.lt)
<: MSetInterface.Sets with Module E:=O.
Include Update_WSets O M.
Implicit Type s : t.
Implicit Type x y : elt.
Definition lt : t -> t -> Prop := M.lt.
Definition min_elt : t -> option elt := M.min_elt.
Definition max_elt : t -> option elt := M.max_elt.
Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s
:= M.min_elt_1.
Definition min_elt_spec2 : forall s x y,
min_elt s = Some x -> In y s -> ~ O.lt y x
:= M.min_elt_2.
Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s
:= M.min_elt_3.
Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s
:= M.max_elt_1.
Definition max_elt_spec2 : forall s x y,
max_elt s = Some x -> In y s -> ~ O.lt x y
:= M.max_elt_2.
Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s
:= M.max_elt_3.
Definition elements_spec2 : forall s, sort O.lt (elements s)
:= M.elements_3.
Definition choose_spec3 : forall s s' x y,
choose s = Some x -> choose s' = Some y -> Equal s s' -> O.eq x y
:= M.choose_3.
#[global]
Instance lt_strorder : StrictOrder lt.
Proof.
split.
- intros x Hx. apply (M.lt_not_eq Hx). auto with crelations.
- exact M.lt_trans.
Qed.
#[global]
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
apply proper_sym_impl_iff_2. 1-2: auto with crelations.
intros s s' Hs u u' Hu H.
assert (H0 : lt s' u). {
destruct (M.compare s' u) as [H'|H'|H']; auto.
- elim (M.lt_not_eq H). transitivity s'; auto.
- elim (M.lt_not_eq (M.lt_trans H H')); auto.
}
destruct (M.compare s' u') as [H'|H'|H']; auto.
- elim (M.lt_not_eq H).
transitivity u'. 2: auto with crelations. transitivity s'; auto.
- elim (M.lt_not_eq (M.lt_trans H' H0)); auto with crelations.
Qed.
Definition compare s s' :=
match M.compare s s' with
| EQ _ => Eq
| LT _ => Lt
| GT _ => Gt
end.
Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s').
Proof. intros; unfold compare; destruct M.compare; auto. Qed.
Module E := O.
End Update_Sets.
|