1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite sets library *)
(** This functor derives additional facts from [FSetInterface.S]. These
facts are mainly the specifications of [FSetInterface.S] written using
different styles: equivalence and boolean equalities.
Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
*)
From Stdlib Require Import DecidableTypeEx.
From Stdlib Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
(** First, a functor for Weak Sets in functorial version. *)
Module WFacts_fun (Import E : DecidableType)(Import M : WSfun E).
Notation eq_dec := E.eq_dec.
Definition eqb x y := if eq_dec x y then true else false.
(** * Specifications written using equivalences *)
Section IffSpec.
Variable s s' s'' : t.
Variable x y z : elt.
Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
Proof.
split; apply In_1; auto.
Qed.
Lemma mem_iff : In x s <-> mem x s = true.
Proof.
split; [apply mem_1|apply mem_2].
Qed.
Lemma not_mem_iff : ~In x s <-> mem x s = false.
Proof.
rewrite mem_iff; destruct (mem x s); intuition auto with bool.
Qed.
Lemma equal_iff : s[=]s' <-> equal s s' = true.
Proof.
split; [apply equal_1|apply equal_2].
Qed.
Lemma subset_iff : s[<=]s' <-> subset s s' = true.
Proof.
split; [apply subset_1|apply subset_2].
Qed.
Lemma empty_iff : In x empty <-> False.
Proof.
intuition; apply (empty_1 H).
Qed.
Lemma is_empty_iff : Empty s <-> is_empty s = true.
Proof.
split; [apply is_empty_1|apply is_empty_2].
Qed.
Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
Proof.
split; [apply singleton_1|apply singleton_2].
Qed.
Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
Proof.
split; [ | destruct 1; [apply add_1|apply add_2]]; auto.
destruct (eq_dec x y) as [E|E]; auto.
intro H; right; exact (add_3 E H).
Qed.
Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
Proof.
split; [apply add_3|apply add_2]; auto.
Qed.
Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
Proof.
split; [split; [apply remove_3 with x |] | destruct 1; apply remove_2]; auto.
intro.
apply (remove_1 H0 H).
Qed.
Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
Proof.
split; [apply remove_3|apply remove_2]; auto.
Qed.
Lemma union_iff : In x (union s s') <-> In x s \/ In x s'.
Proof.
split; [apply union_1 | destruct 1; [apply union_2|apply union_3]]; auto.
Qed.
Lemma inter_iff : In x (inter s s') <-> In x s /\ In x s'.
Proof.
split; [split; [apply inter_1 with s' | apply inter_2 with s] | destruct 1; apply inter_3]; auto.
Qed.
Lemma diff_iff : In x (diff s s') <-> In x s /\ ~ In x s'.
Proof.
split; [split; [apply diff_1 with s' | apply diff_2 with s] | destruct 1; apply diff_3]; auto.
Qed.
Variable f : elt->bool.
Lemma filter_iff : compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
Proof.
split; [split; [apply filter_1 with f | apply filter_2 with s] | destruct 1; apply filter_3]; auto.
Qed.
Lemma for_all_iff : compat_bool E.eq f ->
(For_all (fun x => f x = true) s <-> for_all f s = true).
Proof.
split; [apply for_all_1 | apply for_all_2]; auto.
Qed.
Lemma exists_iff : compat_bool E.eq f ->
(Exists (fun x => f x = true) s <-> exists_ f s = true).
Proof.
split; [apply exists_1 | apply exists_2]; auto.
Qed.
Lemma elements_iff : In x s <-> InA E.eq x (elements s).
Proof.
split; [apply elements_1 | apply elements_2].
Qed.
End IffSpec.
(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
Ltac set_iff :=
repeat (progress (
rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
|| rewrite union_iff || rewrite inter_iff || rewrite diff_iff
|| rewrite empty_iff)).
(** * Specifications written using boolean predicates *)
Section BoolSpec.
Variable s s' s'' : t.
Variable x y z : elt.
Lemma mem_b : E.eq x y -> mem x s = mem y s.
Proof.
intros.
generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
destruct (mem x s); destruct (mem y s); intuition.
Qed.
Lemma empty_b : mem y empty = false.
Proof.
generalize (empty_iff y)(mem_iff empty y).
destruct (mem y empty); intuition.
Qed.
Lemma add_b : mem y (add x s) = eqb x y || mem y s.
Proof.
generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
Proof.
intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
destruct (mem y s); destruct (mem y (add x s)); intuition.
Qed.
Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
Proof.
generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
Qed.
Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
Proof.
intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
destruct (mem y s); destruct (mem y (remove x s)); intuition.
Qed.
Lemma singleton_b : mem y (singleton x) = eqb x y.
Proof.
generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
Qed.
Lemma union_b : mem x (union s s') = mem x s || mem x s'.
Proof.
generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
Qed.
Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
Proof.
generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
Qed.
Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
Proof.
generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
Qed.
Lemma elements_b : mem x s = existsb (eqb x) (elements s).
Proof.
generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
rewrite InA_alt.
destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
- symmetry.
rewrite H1.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
exists a; intuition.
unfold eqb; destruct (eq_dec x a); auto.
- rewrite <- H.
rewrite H0.
destruct H1 as (H1,_).
destruct H1 as (a,(Ha1,Ha2)); [intuition|].
exists a; intuition.
unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
Qed.
Variable f : elt->bool.
Lemma filter_b : compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
Proof.
intros.
generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
Qed.
Lemma for_all_b : compat_bool E.eq f ->
for_all f s = forallb f (elements s).
Proof.
intros.
generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
unfold For_all.
destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
- rewrite <- H1; intros.
destruct H0 as (H0,_).
rewrite (H2 x0) in H3.
rewrite (InA_alt E.eq x0 (elements s)) in H3.
destruct H3 as (a,(Ha1,Ha2)).
rewrite (H _ _ Ha1).
apply H0; auto.
- symmetry.
rewrite H0; intros.
destruct H1 as (_,H1).
apply H1; auto.
rewrite H2.
rewrite InA_alt; eauto.
Qed.
Lemma exists_b : compat_bool E.eq f ->
exists_ f s = existsb f (elements s).
Proof.
intros.
generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
unfold Exists.
destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
- rewrite <- H1; intros.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); auto.
exists a; split; auto.
rewrite H2; rewrite InA_alt; eauto.
- symmetry.
rewrite H0.
destruct H1 as (_,H1).
destruct H1 as (a,(Ha1,Ha2)); auto.
rewrite (H2 a) in Ha1.
rewrite (InA_alt E.eq a (elements s)) in Ha1.
destruct Ha1 as (b,(Hb1,Hb2)).
exists b; auto.
rewrite <- (H _ _ Hb1); auto.
Qed.
End BoolSpec.
(** * [E.eq] and [Equal] are setoid equalities *)
#[global]
Instance E_ST : Equivalence E.eq.
Proof.
constructor ; red; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
Qed.
#[global]
Instance Equal_ST : Equivalence Equal.
Proof.
constructor ; red; [apply eq_refl | apply eq_sym | apply eq_trans].
Qed.
#[global]
Instance In_m : Proper (E.eq ==> Equal ==> iff) In.
Proof.
unfold Equal; intros x y H s s' H0.
rewrite (In_eq_iff s H); auto.
Qed.
#[global]
Instance is_empty_m : Proper (Equal==> Logic.eq) is_empty.
Proof.
unfold Equal; intros s s' H.
generalize (is_empty_iff s)(is_empty_iff s').
destruct (is_empty s); destruct (is_empty s');
unfold Empty; auto; intros.
- symmetry.
rewrite <- H1; intros a Ha.
rewrite <- (H a) in Ha.
destruct H0 as (_,H0).
exact (H0 Logic.eq_refl _ Ha).
- rewrite <- H0; intros a Ha.
rewrite (H a) in Ha.
destruct H1 as (_,H1).
exact (H1 Logic.eq_refl _ Ha).
Qed.
#[global]
Instance Empty_m : Proper (Equal ==> iff) Empty.
Proof.
repeat red; intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
Qed.
#[global]
Instance mem_m : Proper (E.eq ==> Equal ==> Logic.eq) mem.
Proof.
unfold Equal; intros x y H s s' H0.
generalize (H0 x); clear H0; rewrite (In_eq_iff s' H).
generalize (mem_iff s x)(mem_iff s' y).
destruct (mem x s); destruct (mem y s'); intuition.
Qed.
#[global]
Instance singleton_m : Proper (E.eq ==> Equal) singleton.
Proof.
unfold Equal; intros x y H a.
do 2 rewrite singleton_iff; split; intros.
- apply E.eq_trans with x; auto.
- apply E.eq_trans with y; auto.
Qed.
#[global]
Instance add_m : Proper (E.eq==>Equal==>Equal) add.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite add_iff; rewrite H; rewrite H0; intuition.
Qed.
#[global]
Instance remove_m : Proper (E.eq==>Equal==>Equal) remove.
Proof.
unfold Equal; intros x y H s s' H0 a.
do 2 rewrite remove_iff; rewrite H; rewrite H0; intuition.
Qed.
#[global]
Instance union_m : Proper (Equal==>Equal==>Equal) union.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite union_iff; rewrite H; rewrite H0; intuition.
Qed.
#[global]
Instance inter_m : Proper (Equal==>Equal==>Equal) inter.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite inter_iff; rewrite H; rewrite H0; intuition.
Qed.
#[global]
Instance diff_m : Proper (Equal==>Equal==>Equal) diff.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite diff_iff; rewrite H; rewrite H0; intuition.
Qed.
#[global]
Instance Subset_m : Proper (Equal==>Equal==>iff) Subset.
Proof.
unfold Equal, Subset; firstorder.
Qed.
#[global]
Instance subset_m : Proper (Equal ==> Equal ==> Logic.eq) subset.
Proof.
intros s s' H s'' s''' H0.
generalize (subset_iff s s'') (subset_iff s' s''').
destruct (subset s s''); destruct (subset s' s'''); auto; intros.
- rewrite H in H1; rewrite H0 in H1; intuition.
- rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
#[global]
Instance equal_m : Proper (Equal ==> Equal ==> Logic.eq) equal.
Proof.
intros s s' H s'' s''' H0.
generalize (equal_iff s s'') (equal_iff s' s''').
destruct (equal s s''); destruct (equal s' s'''); auto; intros.
- rewrite H in H1; rewrite H0 in H1; intuition.
- rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
(* [Subset] is a setoid order *)
Lemma Subset_refl : forall s, s[<=]s.
Proof. red; auto. Qed.
Lemma Subset_trans : forall s s' s'', s[<=]s'->s'[<=]s''->s[<=]s''.
Proof. unfold Subset; eauto. Qed.
Add Relation t Subset
reflexivity proved by Subset_refl
transitivity proved by Subset_trans
as SubsetSetoid.
#[global]
Instance In_s_m : Morphisms.Proper (E.eq ==> Subset ++> Basics.impl) In | 1.
Proof.
simpl_relation. eauto with set.
Qed.
Add Morphism Empty with signature Subset --> Basics.impl as Empty_s_m.
Proof.
unfold Subset, Empty, Basics.impl; firstorder.
Qed.
Add Morphism add with signature E.eq ==> Subset ++> Subset as add_s_m.
Proof.
unfold Subset; intros x y H s s' H0 a.
do 2 rewrite add_iff; rewrite H; intuition.
Qed.
Add Morphism remove with signature E.eq ==> Subset ++> Subset as remove_s_m.
Proof.
unfold Subset; intros x y H s s' H0 a.
do 2 rewrite remove_iff; rewrite H; intuition.
Qed.
Add Morphism union with signature Subset ++> Subset ++> Subset as union_s_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite union_iff; intuition.
Qed.
Add Morphism inter with signature Subset ++> Subset ++> Subset as inter_s_m.
Proof.
unfold Equal; intros s s' H s'' s''' H0 a.
do 2 rewrite inter_iff; intuition.
Qed.
Add Morphism diff with signature Subset ++> Subset --> Subset as diff_s_m.
Proof.
unfold Subset; intros s s' H s'' s''' H0 a.
do 2 rewrite diff_iff; intuition.
Qed.
(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
without additional hypothesis on [f]. For instance: *)
Lemma filter_equal : forall f, compat_bool E.eq f ->
forall s s', s[=]s' -> filter f s [=] filter f s'.
Proof.
unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
Qed.
Lemma filter_ext : forall f f', compat_bool E.eq f -> (forall x, f x = f' x) ->
forall s s', s[=]s' -> filter f s [=] filter f' s'.
Proof.
intros f f' Hf Hff' s s' Hss' x. do 2 (rewrite filter_iff; auto).
- rewrite Hff', Hss'; intuition.
- repeat red; intros; rewrite <- 2 Hff'; auto.
Qed.
Lemma filter_subset : forall f, compat_bool E.eq f ->
forall s s', s[<=]s' -> filter f s [<=] filter f s'.
Proof.
unfold Subset; intros; rewrite filter_iff in *; intuition.
Qed.
(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
structures on [list elt] and [option elt]. *)
(* Later:
Add Morphism cardinal ; cardinal_m.
*)
End WFacts_fun.
(** Now comes variants for self-contained weak sets and for full sets.
For these variants, only one argument is necessary. Thanks to
the subtyping [WS<=S], the [Facts] functor which is meant to be
used on modules [(M:S)] can simply be an alias of [WFacts]. *)
Module WFacts (M:WS) := WFacts_fun M.E M.
Module Facts := WFacts.
|