1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
(************************************************************************)
(* * The Rocq Prover / The Rocq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Finite set library *)
(** Set interfaces, inspired by the one of Ocaml. When compared with
Ocaml, the main differences are:
- the lack of [iter] function, useless since Coq is purely functional
- the use of [option] types instead of [Not_found] exceptions
- the use of [nat] instead of [int] for the [cardinal] function
Several variants of the set interfaces are available:
- [WSfun] : functorial signature for weak sets, non-dependent style
- [WS] : self-contained version of [WSfun]
- [Sfun] : functorial signature for ordered sets, non-dependent style
- [S] : self-contained version of [Sfun]
- [Sdep] : analog of [S] written using dependent style
If unsure, [S] is probably what you're looking for: other signatures
are subsets of it, apart from [Sdep] which is isomorphic to [S] (see
[FSetBridge]).
*)
From Stdlib Require Export Bool OrderedType DecidableType.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Non-dependent signatures
The following signatures presents sets as purely informative
programs together with axioms *)
(** ** Functorial signature for weak sets
Weak sets are sets without ordering on base elements, only
a decidable equality. *)
Module Type WSfun (E : DecidableType).
Definition elt := E.t.
Parameter t : Type. (** the abstract type of sets *)
(** Logical predicates *)
Parameter In : elt -> t -> Prop.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
Parameter empty : t.
(** The empty set. *)
Parameter is_empty : t -> bool.
(** Test whether a set is empty or not. *)
Parameter mem : elt -> t -> bool.
(** [mem x s] tests whether [x] belongs to the set [s]. *)
Parameter add : elt -> t -> t.
(** [add x s] returns a set containing all elements of [s],
plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
Parameter singleton : elt -> t.
(** [singleton x] returns the one-element set containing only [x]. *)
Parameter remove : elt -> t -> t.
(** [remove x s] returns a set containing all elements of [s],
except [x]. If [x] was not in [s], [s] is returned unchanged. *)
Parameter union : t -> t -> t.
(** Set union. *)
Parameter inter : t -> t -> t.
(** Set intersection. *)
Parameter diff : t -> t -> t.
(** Set difference. *)
Definition eq : t -> t -> Prop := Equal.
Parameter eq_dec : forall s s', { eq s s' } + { ~ eq s s' }.
Parameter equal : t -> t -> bool.
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
equal, that is, contain equal elements. *)
Parameter subset : t -> t -> bool.
(** [subset s1 s2] tests whether the set [s1] is a subset of
the set [s2]. *)
Parameter fold : forall A : Type, (elt -> A -> A) -> t -> A -> A.
(** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
where [x1 ... xN] are the elements of [s].
The order in which elements of [s] are presented to [f] is
unspecified. *)
Parameter for_all : (elt -> bool) -> t -> bool.
(** [for_all p s] checks if all elements of the set
satisfy the predicate [p]. *)
Parameter exists_ : (elt -> bool) -> t -> bool.
(** [exists p s] checks if at least one element of
the set satisfies the predicate [p]. *)
Parameter filter : (elt -> bool) -> t -> t.
(** [filter p s] returns the set of all elements in [s]
that satisfy predicate [p]. *)
Parameter partition : (elt -> bool) -> t -> t * t.
(** [partition p s] returns a pair of sets [(s1, s2)], where
[s1] is the set of all the elements of [s] that satisfy the
predicate [p], and [s2] is the set of all the elements of
[s] that do not satisfy [p]. *)
Parameter cardinal : t -> nat.
(** Return the number of elements of a set. *)
Parameter elements : t -> list elt.
(** Return the list of all elements of the given set, in any order. *)
Parameter choose : t -> option elt.
(** Return one element of the given set, or [None] if
the set is empty. Which element is chosen is unspecified.
Equal sets could return different elements. *)
Section Spec.
Variable s s' s'': t.
Variable x y : elt.
(** Specification of [In] *)
Parameter In_1 : E.eq x y -> In x s -> In y s.
(** Specification of [eq] *)
Parameter eq_refl : eq s s.
Parameter eq_sym : eq s s' -> eq s' s.
Parameter eq_trans : eq s s' -> eq s' s'' -> eq s s''.
(** Specification of [mem] *)
Parameter mem_1 : In x s -> mem x s = true.
Parameter mem_2 : mem x s = true -> In x s.
(** Specification of [equal] *)
Parameter equal_1 : Equal s s' -> equal s s' = true.
Parameter equal_2 : equal s s' = true -> Equal s s'.
(** Specification of [subset] *)
Parameter subset_1 : Subset s s' -> subset s s' = true.
Parameter subset_2 : subset s s' = true -> Subset s s'.
(** Specification of [empty] *)
Parameter empty_1 : Empty empty.
(** Specification of [is_empty] *)
Parameter is_empty_1 : Empty s -> is_empty s = true.
Parameter is_empty_2 : is_empty s = true -> Empty s.
(** Specification of [add] *)
Parameter add_1 : E.eq x y -> In y (add x s).
Parameter add_2 : In y s -> In y (add x s).
Parameter add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
(** Specification of [remove] *)
Parameter remove_1 : E.eq x y -> ~ In y (remove x s).
Parameter remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
Parameter remove_3 : In y (remove x s) -> In y s.
(** Specification of [singleton] *)
Parameter singleton_1 : In y (singleton x) -> E.eq x y.
Parameter singleton_2 : E.eq x y -> In y (singleton x).
(** Specification of [union] *)
Parameter union_1 : In x (union s s') -> In x s \/ In x s'.
Parameter union_2 : In x s -> In x (union s s').
Parameter union_3 : In x s' -> In x (union s s').
(** Specification of [inter] *)
Parameter inter_1 : In x (inter s s') -> In x s.
Parameter inter_2 : In x (inter s s') -> In x s'.
Parameter inter_3 : In x s -> In x s' -> In x (inter s s').
(** Specification of [diff] *)
Parameter diff_1 : In x (diff s s') -> In x s.
Parameter diff_2 : In x (diff s s') -> ~ In x s'.
Parameter diff_3 : In x s -> ~ In x s' -> In x (diff s s').
(** Specification of [fold] *)
Parameter fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
(** Specification of [cardinal] *)
Parameter cardinal_1 : cardinal s = length (elements s).
Section Filter.
Variable f : elt -> bool.
(** Specification of [filter] *)
Parameter filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s.
Parameter filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true.
Parameter filter_3 :
compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
(** Specification of [for_all] *)
Parameter for_all_1 :
compat_bool E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Parameter for_all_2 :
compat_bool E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s.
(** Specification of [exists] *)
Parameter exists_1 :
compat_bool E.eq f ->
Exists (fun x => f x = true) s -> exists_ f s = true.
Parameter exists_2 :
compat_bool E.eq f ->
exists_ f s = true -> Exists (fun x => f x = true) s.
(** Specification of [partition] *)
Parameter partition_1 :
compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
Parameter partition_2 :
compat_bool E.eq f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
End Filter.
(** Specification of [elements] *)
Parameter elements_1 : In x s -> InA E.eq x (elements s).
Parameter elements_2 : InA E.eq x (elements s) -> In x s.
(** When compared with ordered sets, here comes the only
property that is really weaker: *)
Parameter elements_3w : NoDupA E.eq (elements s).
(** Specification of [choose] *)
Parameter choose_1 : choose s = Some x -> In x s.
Parameter choose_2 : choose s = None -> Empty s.
End Spec.
#[global]
Hint Transparent elt : core.
#[global]
Hint Resolve mem_1 equal_1 subset_1 empty_1
is_empty_1 choose_1 choose_2 add_1 add_2 remove_1
remove_2 singleton_2 union_1 union_2 union_3
inter_3 diff_3 fold_1 filter_3 for_all_1 exists_1
partition_1 partition_2 elements_1 elements_3w
: set.
#[global]
Hint Immediate In_1 mem_2 equal_2 subset_2 is_empty_2 add_3
remove_3 singleton_1 inter_1 inter_2 diff_1 diff_2
filter_1 filter_2 for_all_2 exists_2 elements_2
: set.
End WSfun.
(** ** Static signature for weak sets
Similar to the functorial signature [SW], except that the
module [E] of base elements is incorporated in the signature. *)
Module Type WS.
Declare Module E : DecidableType.
Include WSfun E.
End WS.
(** ** Functorial signature for sets on ordered elements
Based on [WSfun], plus ordering on sets and [min_elt] and [max_elt]
and some stronger specifications for other functions. *)
Module Type Sfun (E : OrderedType).
Include WSfun E.
Parameter lt : t -> t -> Prop.
Parameter compare : forall s s' : t, Compare lt eq s s'.
(** Total ordering between sets. Can be used as the ordering function
for doing sets of sets. *)
Parameter min_elt : t -> option elt.
(** Return the smallest element of the given set
(with respect to the [E.compare] ordering),
or [None] if the set is empty. *)
Parameter max_elt : t -> option elt.
(** Same as [min_elt], but returns the largest element of the
given set. *)
Section Spec.
Variable s s' s'' : t.
Variable x y : elt.
(** Specification of [lt] *)
Parameter lt_trans : lt s s' -> lt s' s'' -> lt s s''.
Parameter lt_not_eq : lt s s' -> ~ eq s s'.
(** Additional specification of [elements] *)
Parameter elements_3 : sort E.lt (elements s).
(** Remark: since [fold] is specified via [elements], this stronger
specification of [elements] has an indirect impact on [fold],
which can now be proved to receive elements in increasing order.
*)
(** Specification of [min_elt] *)
Parameter min_elt_1 : min_elt s = Some x -> In x s.
Parameter min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
Parameter min_elt_3 : min_elt s = None -> Empty s.
(** Specification of [max_elt] *)
Parameter max_elt_1 : max_elt s = Some x -> In x s.
Parameter max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
Parameter max_elt_3 : max_elt s = None -> Empty s.
(** Additional specification of [choose] *)
Parameter choose_3 : choose s = Some x -> choose s' = Some y ->
Equal s s' -> E.eq x y.
End Spec.
#[global]
Hint Resolve elements_3 : set.
#[global]
Hint Immediate
min_elt_1 min_elt_2 min_elt_3 max_elt_1 max_elt_2 max_elt_3 : set.
End Sfun.
(** ** Static signature for sets on ordered elements
Similar to the functorial signature [Sfun], except that the
module [E] of base elements is incorporated in the signature. *)
Module Type S.
Declare Module E : OrderedType.
Include Sfun E.
End S.
(** ** Some subtyping tests
<<
WSfun ---> WS
| |
| |
V V
Sfun ---> S
Module S_WS (M : S) <: WS := M.
Module Sfun_WSfun (E:OrderedType)(M : Sfun E) <: WSfun E := M.
Module S_Sfun (M : S) <: Sfun M.E := M.
Module WS_WSfun (M : WS) <: WSfun M.E := M.
>>
*)
(** * Dependent signature
Signature [Sdep] presents ordered sets using dependent types *)
Module Type Sdep.
Declare Module E : OrderedType.
Definition elt := E.t.
Parameter t : Type.
Parameter In : elt -> t -> Prop.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
Definition Subset s s' := forall a : elt, In a s -> In a s'.
Definition Add x s s' := forall y, In y s' <-> E.eq x y \/ In y s.
Definition Empty s := forall a : elt, ~ In a s.
Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
Definition eq : t -> t -> Prop := Equal.
Parameter lt : t -> t -> Prop.
Parameter compare : forall s s' : t, Compare lt eq s s'.
Parameter eq_refl : forall s : t, eq s s.
Parameter eq_sym : forall s s' : t, eq s s' -> eq s' s.
Parameter eq_trans : forall s s' s'' : t, eq s s' -> eq s' s'' -> eq s s''.
Parameter lt_trans : forall s s' s'' : t, lt s s' -> lt s' s'' -> lt s s''.
Parameter lt_not_eq : forall s s' : t, lt s s' -> ~ eq s s'.
Parameter eq_In : forall (s : t) (x y : elt), E.eq x y -> In x s -> In y s.
Parameter empty : {s : t | Empty s}.
Parameter is_empty : forall s : t, {Empty s} + {~ Empty s}.
Parameter mem : forall (x : elt) (s : t), {In x s} + {~ In x s}.
Parameter add : forall (x : elt) (s : t), {s' : t | Add x s s'}.
Parameter
singleton : forall x : elt, {s : t | forall y : elt, In y s <-> E.eq x y}.
Parameter
remove :
forall (x : elt) (s : t),
{s' : t | forall y : elt, In y s' <-> ~ E.eq x y /\ In y s}.
Parameter
union :
forall s s' : t,
{s'' : t | forall x : elt, In x s'' <-> In x s \/ In x s'}.
Parameter
inter :
forall s s' : t,
{s'' : t | forall x : elt, In x s'' <-> In x s /\ In x s'}.
Parameter
diff :
forall s s' : t,
{s'' : t | forall x : elt, In x s'' <-> In x s /\ ~ In x s'}.
Parameter equal : forall s s' : t, {s[=]s'} + {~ s[=]s'}.
Parameter subset : forall s s' : t, {Subset s s'} + {~ Subset s s'}.
Parameter
filter :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
(s : t),
{s' : t | compat_P E.eq P -> forall x : elt, In x s' <-> In x s /\ P x}.
Parameter
for_all :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
(s : t),
{compat_P E.eq P -> For_all P s} + {compat_P E.eq P -> ~ For_all P s}.
Parameter
exists_ :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
(s : t),
{compat_P E.eq P -> Exists P s} + {compat_P E.eq P -> ~ Exists P s}.
Parameter
partition :
forall (P : elt -> Prop) (Pdec : forall x : elt, {P x} + {~ P x})
(s : t),
{partition : t * t |
let (s1, s2) := partition in
compat_P E.eq P ->
For_all P s1 /\
For_all (fun x => ~ P x) s2 /\
(forall x : elt, In x s <-> In x s1 \/ In x s2)}.
Parameter
elements :
forall s : t,
{l : list elt |
sort E.lt l /\ (forall x : elt, In x s <-> InA E.eq x l)}.
Parameter
fold :
forall (A : Type) (f : elt -> A -> A) (s : t) (i : A),
{r : A | let (l,_) := elements s in
r = fold_left (fun a e => f e a) l i}.
Parameter
cardinal :
forall s : t,
{r : nat | let (l,_) := elements s in r = length l }.
Parameter
min_elt :
forall s : t,
{x : elt | In x s /\ For_all (fun y => ~ E.lt y x) s} + {Empty s}.
Parameter
max_elt :
forall s : t,
{x : elt | In x s /\ For_all (fun y => ~ E.lt x y) s} + {Empty s}.
Parameter choose : forall s : t, {x : elt | In x s} + {Empty s}.
(** The [choose_3] specification of [S] cannot be packed
in the dependent version of [choose], so we leave it separate. *)
Parameter choose_equal : forall s s', Equal s s' ->
match choose s, choose s' with
| inleft (exist _ x _), inleft (exist _ x' _) => E.eq x x'
| inright _, inright _ => True
| _, _ => False
end.
End Sdep.
|